
Policy Gradients

In this lecture, we will continue to consider the problem of directly
learning a policy from sampled information of costs and rewards.
We will focus on policy gradient methods, that sample a noisy gradient
from the environment and update the policy.

Before specifying the details of this approach, we will review back-
propagation and its use in neural networks and controls.

Back-propagation

Many systems are composed of interconnected modules. This makes
it easier to organize a complex system and debug the system by unit
testing individual components. For example, robotics has the “sense,
act, plan” paradigm, where each component is often studied and
optized seperately. However, we make the paradoxical observation
that modifying a single module can influence the overall system
performance in a complicated way due to the inter-correlation be-
tween modules. Back-propagation attempts to address this problem
by offering a principled method to calculate the cascaded effects of
module parameters on overall system performance.

Back-propagation makes it possible to solve a large group of prob-
lems that are previously computationally intractable. One of the most
notorious applications is training neural networks, which results in
a lot of recent advances in computer vision such as the Google cats
paper [3] and the GPU-accelerated ImageNet classifier [1]. How-
ever, there is a common misunderstanding that back-propagation is
specific to neural network training. In fact, back-propagation can be
used to compute gradients for any differentiable function. In par-
ticular, the very same idea has been used widely in optimal control,
known as the adjoint method7. Just as back-propagation’s success in 7 A good summary of the ad-

joint method can be found here:
http://www.argmin.net/2016/05/
18/mates-of-costate/

training neural nets, the ajoint method has enabled researchers to
tackle complex control problems with millions of control inputs. One
example is the work “Fluid Control with the Adjoint Method” [1],
where the simulation of a human-shaped smoke cloud required over
one million control inputs.

http://www.argmin.net/2016/05/18/mates-of-costate/
http://www.argmin.net/2016/05/18/mates-of-costate/

58 modern adaptive control and reinforcement learning

We will first look at back-propagation as a general algorithm
to compute gradients, then we will see several examples includ-
ing multi-layer neural networks and the LQR problem. A good
reference for backpropogation canbe found here: https://www.
deeplearningbook.org/contents/mlp.html Section 6.5.

The Chain Rule

Before diving in and solving complicated problems with back-
propagation, let’s review some basic calculus starting with the chain
rule of calculus. First, let us consider the simplest case where x 2 R

is a real number. Let f and g be two differentiable functions that map
R to R. Suppose that y = g(x) and z = f (y) = f (g(x)). Then, the
chain rule tells us,

dz
dx

=
dz
dy

dy
dx

. (0.0.56)

The chain rule can further generalize to the case when x 2 Rm and
y 2 Rn are vectors8. Let f : Rm ! R and g : Rn ! Rm be two 8 In fact, the chain rule can be gen-

eralized to the case of tensors. See
https://www.deeplearningbook.org/
contents/mlp.html for more discus-
sions.

differentiable functions. As before, suppose that z = f (g(x)). Then,
we have,

∂z
∂xi

=
m

Â
j=1

∂z
∂yj

∂yj

∂xi
. (0.0.57)

In vector notation, we rewrite the above equation as,

rx z =

✓
∂y
∂x

◆>

ry z, (0.0.58)

where rx z = [∂z
∂x1

, . . . ∂z
∂xm

]> and ry z = [∂z
∂y1

, . . . ∂z
∂yn

]> are the
gradient of z with respect to x and y, respectively, and

∂y
∂x

=

2

666664

∂y1
∂x1

∂y1
∂x2

· · ·
∂y1
∂xm

∂y2
∂x1

∂y2
∂x2

· · ·
∂y2
∂xm

...
...

. . .
...

∂yn
∂x1

∂yn
∂x2

· · ·
∂yn
∂xm

3

777775

is the Jacobian matrix of the function g.

Block Diagrams

Now that we are equipped with the necessary mathematical tools to
compute gradients, let us take one step further and look at how we
can represent how the modules are interconnected in a system using
a block diagram.

In the language of block diagram, each module or operation is rep-
resented by a block, whereas the arrows between blocks indicate

https://www.deeplearningbook.org/contents/mlp.html
https://www.deeplearningbook.org/contents/mlp.html
https://www.deeplearningbook.org/contents/mlp.html
https://www.deeplearningbook.org/contents/mlp.html

policy gradients 59

variables that are inputs to/outputs of the operations. For example,
the system considered in the previous section can be represented as
Figure 0.0.21.

Figure 0.0.21: The block di-
agram representation of the
simple example.Given a block diagram and a variable x in the diagram, we say

a variable y is a parent9 of x if there exists a block f such that x is 9 Here we abuse the definition of
parents by denoting an “edge” as
a parent of another “edge” in the
diagram. Same for children.

the output of f and y one of the inputs. Note that a variable may
have multiple parents since there can be multiple inputs to block f .
We denote the set of variables that are parents of x as Parents(x).
Conversely, we call a variable y as a child of x if x is a parent of y,
i.e., there exists a block g such that y is the output of g and x is one
of the inputs. We denote the set of variables that are children of x as
Children(x).

We say a block diagram is acyclic if it has no cyclic paths. For
back-propagation, we assume that the associated block diagram is
acyclic10, and there exists a topological ordering (over variables) such 10 Recurrent neural networks and closed

loop control systems (with a finite
horizon) can be represented by an
acyclic diagram through an operation
called unfold. We will discuss it later.

that the output of the system is the last one in the list. In our case, we
assume that the output of the system is a scalar J 2 R. It could be
the value of the loss function if we are training a neural network, it
can also be the total cost of the trajectory(ies) if we are optimizing a
policy.

Recall that we are interested how the output o is changed when we
change a variable x in the diagram, which is precisely the gradient
rx o. By the chain rule, we have,

rx J = Â
y2Children(x)

✓
∂y
∂x

◆>

ry J (0.0.59)

Examples

To make things more concrete, let us look at some examples.

• Linear

Figure 0.0.22: The block dia-
gram of the linear module.

A linear module takes two inputs x and w to produce output y =

f (x, w) = w> x. Assume that the system is associated with an

60 modern adaptive control and reinforcement learning

overall output J = L(y). Then, we have,

✓
∂y
∂x

◆>

= w,
✓

∂y
∂w

◆>

= x (0.0.60)

rx J =

✓
∂y
∂x

◆>

ry J =
dL
dy

w (0.0.61)

rw J =

✓
∂y
∂w

◆>

ry J =
dL
dy

x (0.0.62)

• Squared Loss

Figure 0.0.23: The block di-
agram of the squared loss
module.

A squared loss module takes two inputs x and y and produces out-
put z = f (x, y) = 1

2 (y � x)>(y � x) = 1
2ky � xk2. Assume that

the system is associated with an overall output J = L(z). Then, we
have,

✓
∂z
∂x

◆>

= x � y,
✓

∂z
∂y

◆>

= y � x (0.0.63)

rx J =

✓
∂z
∂x

◆>

rz J =
dL
dz

(x � y) (0.0.64)

ry J =

✓
∂z
∂y

◆>

rz J =
dL
dz

(y � x) (0.0.65)

• Branch

Figure 0.0.24: The block dia-
gram of the branch module.

A branch module takes in one input x and produces two outputs
y1 = f1(x) = x and y2 = f2(x) = x. Assume that the system is
associated with an overall output J = L(y1, y2). Then, we have,

✓
∂y1
∂x

◆>

=

✓
∂y2
∂x

◆>

= I (0.0.66)

rx J =

✓
∂y1
∂x

◆>

ry1 J +

✓
∂y2
∂y

◆>

ry2 J = ry1 J + ry2 J (0.0.67)

• Addition

policy gradients 61

Figure 0.0.25: The block dia-
gram of the plus module.

An addition module takes in two inputs x and y and produces out-
put z = f (x, y) = x + y. Again, assume that the system is associ-
ated with an overall output J = L(z). Then, we have,

✓
∂z
∂x

◆>

=

✓
∂z
∂y

◆>

= I (0.0.68)

rx J =

✓
∂z
∂x

◆>

rz J = rz J (0.0.69)

ry J =

✓
∂z
∂y

◆>

rz J = rz J (0.0.70)

Back-propagation: A Dynamic Programming Algorithm

Although given any variable x in the diagram, we can calculate the
gradient of the output J with respect to the variable x by recursively
applying the chain rule. However, when we are training a neural
network or solving an optimal control problem, we oftentimes want
to compute the gradient with respect to a large set of variables, such as
weights in every layer of the neural network, or the control input at
every time step. The question then becomes, can we do something
better than calculating the gradients one by one? The answer is yes!

To see this, let us look back at the linear module example. When
we calculate the rx J and rw J in (0.0.61) and (0.0.62), we actually
use the value of ry J for multiple times. Therefore, if we can some-
how store the previously calculated gradients, and order the variables
in such a way that we can make use of the gradients computed pre-
viously, then we can save a lot of computation by reusing these gra-
dients. This idea of dynamic programming is the main idea behind
back-propagation.

Recall from the previous part that the gradient with respect to a
variable x can be computed based on the gradient with respect to all
its children y 2 Children(x),

rx J = Â
y2Children(x)

✓
∂y
∂x

◆>

ry J.

Based on this observation, we see that in order to reuse the previ-
ously computed gradient, we need to order the variables backwards –
from the output to the inputs, from the parents to the children. Then,
we need to backward propagate the gradients from the children to the
parents, this is where the name back-propagation comes from.

62 modern adaptive control and reinforcement learning

The “Learning” Algorithm

Now, let us try to do something useful with the back-propagation
algorithm. Assume that there are a set of input variables in the di-
agram called parameters that we are free to choose. We denote these
parameters as {wi}i. Examples of these parameters include weights
in the neural networks, control inputs and initial conditions, etc.
Conversely, there are other input variables whose values are given
and we have no control over, such as the inputs to the neural net-
work, the system dynamics, etc. Our goal is to find a set of parameters
such that the value of some scalar output J is minimized (loss for
training neural networks, cost for optimal control problems, etc), i.e.,

{w⇤

i }i = arg min
{wi}i

J (0.0.71)

We are interested in designing a learning algorithm that updates
parameters of a system to reduce the value of J. One way to perform
the gradient descent algorithm,

wk+1
i = wk

i � arwi J. (0.0.72)

where a > 0 is the learning rate. Note that here the gradients can be
calculated by the back-propagation algorithm.

In summary, there are three main steps in the learning algorithm:
forward-propagation, back-propagation, and gradient descent. Forward
propagation consists of generating all module outputs by running
the system “forward” (from the inputs to the output). This is neces-
sary for recursively evaluating all the partial derivatives in the back
propagation step, as detailed in the previous section. Finally, once all
gradients have been calculated, we take a gradient descent step. Then
we repeat the whole process until convergence.

System Examples

Below are examples of modular systems where back-propagation can
be used.

Linear Regression Example

We can describe a linear regression by a linear module cascaded
with a squared loss module, as shown below. Linear module takes
two inputs x and w, and output z = w>x. Squared loss module
takes inputs z and y, and output o = 1

2 (z � y)>(z � y). The system
takes inputs x, y, and w, where x corresponds to the data, y are the
respective regression targets, and w is the regression parameter we
can control. Our goal is to minimize the loss z. Back-propagation is

policy gradients 63

usually not used here because it is not difficult to calculate the total
derivatives directly.

TODO: change the figure to make the notation consistent

Linear'Module'
'
' Loss'Module'

'
'

w

y

xin x1

x2f(x) = wT x

f(x) =
1

2
||y � x||

2

Figure 0.0.26: Linear regression
represented as a cascade of
modules.

Neural Networks

A neural network consists of layered linear modules and nonlinear
firing units. Traditionally, the firing units are sigmoid functions such
as hyperbolic tangent or the logistic function. Recently, the nonlinear
rectifier function shown below has come into common practice. The
sigmoid functions have small linear support regions between satura-
tion, which require the inputs to be scaled properly. The rectifier does
not suffer from these issues, and is computationally simpler, allowing
for large neural networks to be applied to a variety of data.

In deep, multi-layer networks, cascading makes it difficult to di-
rectly determine total derivatives for all the parameters. Utilizing
the back-propagation algorithm, however, we can efficiently tune the
linear module weight parameters.

y

x2

Squared(Loss(
(
(
(
(
(
(
(
(
(

1

2
||y � x||

2

(
(
(
(
(

Linear(

Rec0fier((
(
(
(
(
(
(

wT x
xi

wi

xi+1

i = 1 . . . N

xin

Figure 0.0.27: A neural net.

Let J be the output of the squared loss function. Then, we have,

rxN+1 J = xN+1 � y. (0.0.73)

64 modern adaptive control and reinforcement learning

By the chain rule, for any i = 1, . . . , N, we have,

rxi J =

✓
∂xi+1

∂xi

◆>

rxi+1 J (0.0.74)

rwi J =

✓
∂xi+1
∂wi

◆>

rxi+1 J (0.0.75)

We can use these relations to recursively calculate all the gradients
of our system using only partial derivatives and back propogating
gradients from later modules in the system. This process begins at
the output.

Note that there are numerous variations on neural network ar-
chitectures and update algorithms for domain-specific applications.
Variations include pooling, probabilistic drop-out, autoregressive
loss, and convolution layers, etc.

Rederiving LQR with Back-propagation

By now, we have seen two “backward” algorithms in this class, the
back-propagation algorithm that we just saw and the Riccati differ-
ence equation for the LQR problem. One natural question one may
ask is whether there are some connections between the two, the an-
swer is – indeed! Actually, we will see that we can derive the Riccati
difference equation from back-propagation!

Recall from the earlier lecture that the LQR problem is stated as
the following,

min
u0,...,uT

T�1

Â
t=0

⇣
xt

>Qxt + ut
>Rut

⌘
(0.0.76)

s.t. xt+1 = Axt + But, 8t = 0, . . . , T (0.0.77)

where xt+1 = Axt + But is the system dynamics, and xt
>Qxt +

ut
>Rut is the instantaneous cost at each time step.
First of all, let us rewrite the LQR problem into a block diagram.

The block diagram of the LQR problem is shown in Figure 0.0.28.
Here we introduce a quadratic cost module at each time step and
aggregate them into a total cost J.

First, we have,

ruT J = 2R uT , (0.0.78)

rxT J = 2Q xT . (0.0.79)

policy gradients 65

Figure 0.0.28: Finite horizon
LQR realized by a block dia-
gram.

By the chain rule, for any t = 0, . . . , T � 1, we have,

rxt J =

✓
∂J
∂xt

◆>

+

✓
∂xt+1

∂xt

◆>

rxt+1 J

= 2Q xt + A>
rxt+1 J (0.0.80)

rut J =

✓
∂J
∂ut

◆>

+

✓
∂xt+1
∂ut

◆>

rxt+1 J

= 2R ut + B>
rxt+1 J (0.0.81)

With the gradient we get from back-propagation, one can certainly
run gradient descent for {ut}

T�1
t=0 . The gradient descent process does

not require a matrix inversion as we saw earlier, but in return, it re-
quires possibly many gradient descent steps. This can also be viewed
as a policy search approach to LQR.

Note, however, that we can also solve for optimal input using these
gradients since we know that the problem is convex – we can just set
the gradients as zero!

• At time step T, by setting ruT J = 0, we have,

2R uT = 0) uT = 0. (0.0.82)

Let VT = Q, we have,

rxT J = 2Q xT
.
= 2VT xT . (0.0.83)

• At time step T � 1, we have,

ruT�1 J = 2R uT�1 + B>
rxT J

= 2R uT�1 + 2B> VT xT

= 2R uT�1 + 2B> VT (A xT�1 + B uT�1)

= 2(R + B> VT B) uT�1 + 2B> VT A xT�1

(0.0.84)

By setting ruT�1 J = 0, we have,

uT�1 = �(R + B> VT B)�1 B> VT A xT�1
.
= KT�1 xT�1. (0.0.85)

66 modern adaptive control and reinforcement learning

Meanwhile,

rxT�1 J = 2Q xT�1 + 2A>
rxT J

= 2Q xT�1 + 2A> VT (A + B KT�1) xT�1

= 2(Q + (A + B KT�1)
> VT (A + B KT�1)

� K>
T�1 B> VT (A + B KT�1)) xT�1

= 2(Q + (A + B KT�1)
> VT (A + B KT�1) + K>

T�1 RT KT�1) xT�1
.
= 2VT�1 xT�1.

(0.0.86)

• By repeating the process, we get,

Kt�1 = �(R + B> Vt B)�1 B> Vt A

Vt�1 = Q + (A + B Kt�1)
> Vt (A + B Kt�1) + K>

t�1 Rt Kt�1
(0.0.87)

This is precisely the Riccati difference equation!

