2
LQR: The Analytic MDP

2.1 The Linear Quadratic Regulator

In the previous chapter we defined MDPs and investigated how to
compute the value function at any state with Value Iteration. While
the examples thus far have involved discrete state and action spaces,
important applications of the basic algorithms and theory of MDPs
include problems where both states and actions are continuous. Per-
haps the simplest such problem is the Linear Quadratic Regulator
(LQR) problem.

LQOR solutions are one of the most effective and widely used
methods in robotics and control systems design. The basic prob-
lem is to identify a mapping from states to controls that minimizes
the quadratic cost of a linear (possibly time invariant) system. A
quadratic cost has the form,

c(x,u) =x" Qx+u' Ru, (2.1.1)

where x € R" is the state of the system, and u € R* is the control.*
In the cost function, Q should be symmetric positive semi-definite
(Q = QT,Q = 0).2 It does not have to be strictly positive definite
in general.3 For example, in the cartpole problem, we only need the
pendulum to stay upright and we do not care much about where the
cart is. However, to avoid infinite control effort, R should be strictly
positive definite (R = R",R = 0).

Exercise

There is confusion in the literature as to what positive definite applied
to a matrix Q means: does it imply symmetry, or just that x" Qx > 0
for all non-zero x? Let’s see the root of this confusion: Why can we
consider Q = Q" without any loss of generality in the LQR problem?
Specifically, make the opposite assumption, and then consider a sym-
metric Q that would lead to precisely the cost function. In a sense

*which is precisely the action a in the
previous section. Here we choose to
use u to denote actions in order to be
consistent with the broad literature on
control.

2Why? Note what would fail if Q did
not have these properties? Is symmetry
a requirement

3 For instance because sometimes we do
not need every component of the state
to reach 0 and don’t care about these
components

24 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

then, we can simply assume positive definiteness implies symmetry
as this is simpler to countenance and will lead to equivalent results.

Continuous Control of a Discrete-Time System

An example of a continuous time-invariant system with quadratic
cost is the problem of balancing a simple inverted pendulum. The
pendulum is illustrated in Figure 2.1.1. The simple pendulum con-
sists of a bob, modeled as a point mass, and attached to a mass-less
rigid rod. Let the mass of the bob be m, the length of the rod be I,
and gravity be g. The angle between the pendulum and the y-axis 6
is controlled by the torque T exerted at the origin. The dynamics of
this system is given by

ml*6 = mglsin@ + T
~ <0+ m—f (2.1.2)
To find the control policy of the system, we first linearize it about

Figure 2.1.1: An inverted pen-
dulum.

‘)CD

T

the up-right configuration. Let « = ¢/, and assume m/?> = 1. The
state space equations become

.-

The optimal control policy can be found by formulating an MDP. For

1+ 3A2 -0 At
c- At 1

Y
0

1A42
1At

Af T (2.1.3)

t

the linearized simple pendulum,

e state: x lﬂ
Xt = A,

0
t

e action: u; = T,

e cost: c(x,u) = x"Qx+u'Ru,

LQR: THE ANALYTIC MDP 25
* dynamics: x;11 = Ax; + Buy,
1+1a2.c At 1a82
where A = t2 ¢ and B = |2 .
c- At At

We already know how to solve this problem: Value Iteration! Let’s
look at this more closely.
2.2 Value Iteration for Linear Quadratic MDPs
Let the value function of the MDP for a finite-horizon problem with
horizon T be be J™(x;,t), i.e.

T-1

J (xe, t) =Y ey, mw(xp,). (2.2.1)

t=t

Recall the Bellman Equation for the finite horizon problem:

J*(x,8) = min [e(xy, up) + J7 (xt41,£ +1)]
- T (2.2.2)
= rr}tin [(xt Qxt + uy Rut) +]*(xt+l,t+ 1)}

t
and

J(x, T—1)= min [e(xT—1,ur-1)] (2.2.3)
Let’s consider the recursive formulation for solving this problem.
Time T —1:

At the last time step t = T — 1, the solution to Equation 2.2.2 is
ur_q1 = 0. This is due to the fact that we are not concerned with the
next step since we already reach the time limit. Hence, any action
will increase the cost: minimizing (2.2.3) is essentially minimizing
u—TllRuT,l. By definition, R is a positive definite matrix, and there-
fore setting ut_1 = 0 can result in minimum cost at t = T — 1.

Now let calculate the optimal value function [*(x7_1, T — 1). Since
ur—1' Rur_1 =0, by (2.2.3),

T (xr-1, T—1) = x7_1 Qxp_1 = x7_1' Vr_1x7_1, (2.2.4)
where Vr_1 is the value matrix.4 4In literature, people sometimes use P;

In summary, at the last time step, we have a zero control and a
value that is quadratic in the state.
Time T — 2:

The optimal value function at t = T — 2 is,
J*(x12,T—2) = {};ifz}c(xﬁzl ur—2) +J"(x7-1, T —1) (2.2.5)

. T T T
= min (Xsz Qxr2+ur2 Rur +x1r1 VT—1XT—1) :

(2.2.6)

instead of V; to denote the value matrix.

26 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

For the sake of notational simplicity, let x = x7_p and u = ur_,.
From the dynamics of the system, xr_1 = Ax + Bu.
J*(x,T —2) = min {xTQx +uTRu+ (Ax+ Bu) Vi_1(Ax + Bu)}
u

(2.2.7)
Taking the partial derivative of the function to be minimized with

respect to u and setting it to 0 yields
2Ru +2B' Vr_jAx + 2B Vr_1Bu =0
(R+B'Vr_1B)u=—B'Vp_Ax
u=—(R+B"Vr_1B) 'B'Vp_;Ax (2.2.8)
The solution to u always exists because the inverse of R + B"Vy_4B
exists since R is positive definite and B' V;_1B is at least positive
semi-definite. Let Kr_p, = —(R+ B Vy_1B)" !B Vr_4A,
ur— = Kr_axr_2. (2.2.9)
The control ur_» is a linear function of state x7_» with control matrix
Krt_5. The optimal value function at t = T — 2 can be found as
J*(x7—2, T —2) = x7_5 Qx7_0 + x7_2 K{_,RKr_2xT_2
+x7-2" (A+ BKr_2) " Vr_1(A+ BKr_5)x1_»
= x7 2" (Q+Kj_oRKr 2 + (A + BKr2) "Vr_1(A+ BKy))xr 2
= x7_2 ' Vr_ox7).
(2.2.10)

Observe that in this time step, the value is also quadratic in state.
Therefore, we can derive similar results of linear control and quadratic
value for every time step prior tot = T — 2:

Ki=—(R+B"V;41B) 'BTVi A

Vi= Q + K/RK; +(A+BK) Viq(A+BK) (2.2.11)
N——"
current cost cost of action at t cost to go

and the optimal value function is,
T*(xt,t) = xt | Vix;. (2.2.12)
Algorithm 7 summarizes value iteration for LQRs:
Algorithm OptimalValue(A,B,Q,R,t,T)
if t =T — 1 then
‘ return Q

end

else
Vii1 = Optimalvalue(A,B,Q,R,t+1,T)

Ki=—(R+B'V;;1B) "B Vi A
return V; = Q + K RK; + (A + BK;) " Vi1 (A + BKy)
end

Algorithm 7: LQR value Iteration

The complexity of the above algorithm is a function of the horizon T,
the dimensionality of the state space 7, and the dimensionality of the
action space k: O(T(n% + k3)).

Convergence of Value Iteration

Recall that in the finite horizon LQR problem, K; and V; are com-
puted backward in time as,

Ki=—(R+B'V;41B) BTV, 1A

(2.2.13)
Vi = Q+ K/ RK; + (A + BK;) "V, 1(A + BKy).

One natural idea is to keep applying (2.2.13) until K; and V; con-
verge to a fixed point. The associated question is thus, do K; and V;
always converge? And further, if they do not always converge, when
do they actually converge? The answer is, K; and V; converge if the
system is so called stabilizable,> and they converge to the solution to
the Discrete Algebraic Ricatti Equation (DARE): ©

V=Q+K'RK+ (A+BK) V(A + BK)

K=—(R+B'VB)"'B'VA (2.2.14)

Moreover, the K and V that solve the DARE indeed yield the optimal
policy for the infinite horizon LQR problem. We can view V as a
combination of the cost of current state and control, along with the
future cost. If the system is not stabilizable, for example, a system

of two motors controlling two inverted pendulums with one of the
motors broken, then K; and V; no longer converge. However, the
value iteration will still return the policy that can get the system

to work as well as possible by using the good motor to attempt to
stabilize the system. On the infinite horizon, it may, of course lead

to a diverging value estimate— in essence, the issues that happen in
finite state spaces with non-converging value functions can happen in
solving the Ricatti equation. 7

2.3 Extensions of LQR

In the following sections, we continue to expand the domain of appli-
cability of the general strategy for solving LQR problems developed
above. The basic techniques that we will augment LQR with include

1. Allowing the system to be time varying

2. Allowing general affine systems (via homogenous coordinates or
direct derivation)

3. Moving from controls to “deviations” in control

LQR: THE ANALYTIC MDP 27

5Brian D. O. Anderson and John B.
Moore. Optimal Control: Linear Quadratic
Methods. Prentice-Hall, Inc., 1990

¢ The conditions for LQR to converge
are effectively identical to that of any
other value iteration problem. It's
enough here that we can asymptotically
drive all the state variables to 0.

7 There are linear-algebraic methods

to solve the Ricatti equations as well

as simply the natural Value-Iteration
backup procedure; these can be more
computationally efficient, but are rarely
required

28 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

4. lIteratively re-linearizing

We visit each of these incrementally, as it’s useful to see each addi-
tion, and end up with a general algorithm for a wide class of control
problems.

Tracking Trajectories with LQR

The method described in Algorithm 7 will not work for a pendulum
“swing up” problem, since the system dynamics at # = 0° (unstable)
and 6 = 180° (stable) are qualitatively different. Linearization will
fail as the linearized model (2.1.3) is a good approximation of the
non-linear dynamics only at a small region around 6 = 0°.

Given a trajectory, possibly recorded from an expert demonstra-
tion, (x4, u¢) from 6 = 180° to & = 0° (see Fig 2.3.1), one might
imagine that it could simply be replayed to balance the inverted
pendulum. However, this doesn’t work in practice due to modeling
error— moreover, the same sequence of controls is unlikely to produce
exactly the same behavior when played twice on a real system due
to minor variations in the system. However, a reference trajectory
can still be useful. One way to use an expert trajectory in presence of

uncertainty, is to use LQR tracking, which we describe below. Be-
77N
A . .
Sl Figure 2.3.1: Solving inverted
' Dk
s . pendulum swing up using LQR
) . .
A tracking.
NN
o

fore describing how tracking works, we first introduce several minor
variations on the LQR approach, including LOR for Linear Time Vary-
ing dynamical systems, Affine Quadratic Regulation, and LQR with
stochastic dynamics.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

Xp11 = Asxe 4+ Bruy (2.3.1)

c(xt,up) = xtTtht + utTRtut (2.3.2)

LQR: THE ANALYTIC MDP 29

In this case, the LQR equations are simply updated to
Ki = —(B{ Vi41Bt + Re) 7'B{ Vi1 As (2.3.3)
Vi = Qi + K/ RiK; + (A + BiKy) " Vigq (Ar + BiKy) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and B; and a state offset x?ff:

off

Xpp1 = Aexe + Beuy + X7 (2.3.5)
Affine problems can be converted to linear problems by using homo-
geneous coordinatesgz 8https://en.wikipedia.org/wiki/
Homogeneous_coordinates
x
¥ = 2.3.6
M (2.3.6)
3 Ar X 1B K. B
Xiy1 = [0 ; Xt + 0 ur = Asxr + Biug (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(%;, u;) = JZtT Oy + utTRtut, where the
choice of Q is problem dependent. We will later see how we can
design Q for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR

problem.9 9 Essentially the same trick can be
applied to enable us to have linear
cost functions terms in the controls as

Tmcking well, but we defer this to the general
formulation derived at the end.

There are two natural formulations for a tracking cost function:

e ur) = (o = x7) T Qxe — x7) + (e —) 'R(uy —) (23.8)
cr(xp,up) = (xp — x7) T Q(xr — x7) + u/ Ruy (2-3.9)

where x{ and u} are the nominal trajectory and nominal control
input obtained from the expert (not necessarily optimal ones!). Q
penalizes the deviation from the nominal trajectory and R penalizes
either the deviation from the nominal controls or is just a penalty on
the control (e.g. lots of actuation is bad).

Expanding the term corresponding to state error in the cost func-
tion:

T T
(xr—x)TQ(xs —x7) =2 Qs+ x7 ' Qxf — 2x/'Q «x
—— N——
constant at time t constant at time ¢

= x; Qu +d; —2q x4,

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

30 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

where d; = x;‘Tsz‘ and q; = Qx;. Next, we choose a Q; defined as:

~ Q —qt

Q= l_th d;] ,
such that the state error term of the cost function can be formulated
as ftT Q;%;, where % is the homogeneous coordinates in (2.3.6). Note
that d; is a constant, which only shifts the cost function in an uninter-
esting way.

For cost functions with the control error term of the form (u; —
uf) "R(ur — uf), let ii; = (uy — uf). Then the corresponding term of
the cost function can be modified as ﬁtT Rii;. In order to use ii; instead
of u; in the cost function defined as in Eq. 2.3.8, the dynamics needs
to be modified as follows:

A off Biu* B
Bpy1 = Ot Xt 41 tH T+ 0 ily. (2.3.10)
The modified cost function is:
ct(%4, iy) = %) Q% + 11 Rily. (2.3.11)

Solving the LOR for the system using the above cost function

ﬁt = —Ktxt.

Subsequently u; is obtained as u; = i; 4 uj.

2.4 Iterative LOR (iLQR)

So far, we have seen how to use LQR to solve problems with linear
(or affine) dynamics and quadratic costs. However, real world sys-
tems will only rarely be close to linear. *°

Differential Dynamic Programming (DDP) ™' is a general approach
to using quadratic approximations of the value function to solve a
broader class of control problems than merely linear-Gaussian. It-
erative LQR (iLQR) is a simplified variant of DDP, an approach that
repeatedly solves LQR (actually affine!) problems to solve for a lo-
cally optimal change to a trajectory and a controller around that. The
idea of iLQR is very closely related to Newton’s method (where we
first approximate the objective function to a quadratic function, mini-
mize it, and iterate until convergence). In iLQR, we first approximate
the dynamics with an affine model and approximate the cost func-
tion with a quadratic function. Crudely speaking, we then solve the
LQR problem for the resulting approximate problem, and iterate the
process until convergence.

* There is a well-known saying among

control theorists,
Classifying systems as linear
and nonlinear is like classify-
ing the Universe as bananas
and non-bananas.

D. H. Jacobson and D. Q. Mayne.

Differential Dynamic Programming.
Elsevier, 1970

The algorithm
The general iLQR strategy is as follows:
1. Propose some initial (feasible) trajectory {x¢, u;}])

2. Linearize the dynamics, f about trajectory:

_ of
- At/ @

&)

Jx = Bi

ut

Xt
Linearization can be obtained by three methods:

(a) Analytical: either manually or via auto-diff, compute the correct
derivatives.

(b) Numerical: use finite differencing.

(c) Statistical: Collect data under fixed control sequence, fit linear
model.

3. Compute second order Taylor series expansion the cost func-
tion ¢(x, u) around x; and u; and get a quadratic approximation
cr (%,) = J?;—Qtft + ﬁ;rRﬁt where the %, il; variables represent
changes in the proposed trajectory in homogenous coordinates. ™

4. Given {Ay, By, Oy, Rt}tT;Ol, solve an affine quadratic control prob-
lem and obtain the proposed feedback matrices (on the homoge-
neous represenation of x).

5. Forward simulate the full nonlinear model f(x, u) using the com-
puted controls {ut}th_Ol that arise from feedback matrices applied
to the sequence of states {xt}th_Ol that arise from that forward sim-
ulation.

6. Using the newly obtained {x;,u;}/ " repeat steps from 2.

Issues with iLQR

¢ Q and R can be indefinite when the actual cost function is not
convex. Hacks that are typical in the literature include:

- Projection: Q = U Py U'. Formally, this
~—~—
set negative Eigenvalues to 0
can be shown as finding the closest (in L, sense cost matrix that

actually is PSD.

- Regularize: Increase the diagonal values until Q becomes posi-
tive definite: Q = Q + AI

¢ Trust regions: Sometimes the approximation of the cost function
is poor and in such cases its a good idea to restrict the step size
(deviation from the trajectory of the previous iteration) while

LQR: THE ANALYTIC MDP 31

> We haven't derived using homoge-
neous coordinates in control; it’s essen-
tially equivalent to simply completing
the square and finding a “nominal”
control, and the appendix to these notes
presents the general derivation.

32 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

executing the control. This can be accomplished in the following
ways:

— interpolate between the control at current iteration and the
previous iterations

- Modify cost to penalize derivation from the trajectory of the
previous iteration:

¢ = ¢+« - (penalty for deviation from the previous trajectory in controls or states)

These last known as control and state damping are extremely com-
mon in implementions.

¢ Some notes:
LOR recieved significant practical criticism in the 1970s as it was
difficult to prevent the resulting synthesized controllers from ex-
citing dynamics that were under-modeled. Without care, LQOR
(particularly using filtered estimates of the true state, rather than
“oracle” access to the true state) will often generate, “stiff”, high
frequency controls that are not robust. To damp high frequency
control from being generated we can do some simple modifica-
tions:

— Penalize changes in control from previous control. This is to
ensure that the control is smooth. Higher order of smoothness
can be obtained by passing the control signal through a filter,
modeled in the system dynamics, and then using the output of
that as effective control input for the system.

— More generally, we can implement a filter on the execute control
dynamics by storing previous controls in the state vector and
penalizing any linear operation ont hese.

It’s often useful to model latency by a simple "loading" controls
into states by including that delay in the dynamics:

)l AR) e
Up_1q Ut Ut—1

This method for modeling delay is crude but effective. More so-

A B
0 0

phisticated approaches include providing an immutable region of
controls are used used in receeding horizon control.

2.5 Differential Dynamic Programming (DDP)

The original, fancier version of linearizing value iteration for linear
quadratic systems is called differential dynamic programming (DDP).

LQR: THE ANALYTIC MDP 33

iLQR and DDP are very similar, the difference being that iLQR as-
sumes a simpler linear model for the system dynamics, while DDP
uses a full quadratic model and then truncates any terms that are
higher than second order in the value function expansion. The result
is that DDP provides a correct-to-second-order expansion of the value
function. iLQR is slightly simpler to implement than DDP and often
provides similar or better results empirically for less computation.

/ Figure 2.5.1: Funnels can be a
metaphor for controllers, and

\

you can think of composing
funnels that cover different
parts of the space of states.

DDP (or iLQR) builds a second order approximation of the value
function, giving a quadratic bowl] at every timestep. This ends up
acting like a series of funnels [2]. When you are in the area covered
by a funnel, you are pulled toward the optimum. You can think of
composing funnels such that one funnel dumps you out into another
funnel. If you cover the entire space with funnels, then you can imag-
ine that each one is a controller that is good in a certain section of
the space (See Figure 2.5.1). With iLQR, we built a quadratic value
function about a particular trajectory, but you can imagine starting
somewhere else. If you can get from that starting point into the re-
gion covered by your value function, then you already know what to
do from there. Chris Atkeson wrote a classic paper on this subject,
in which he looks at covering the state space with DDP policies [3].
Imagine an inverted pendulum: there will be some controller that is
good for the near-vertical case. One can then have other controllers
covering other parts of the space, and each controller gets closer to
the set of states it knows how to handle, funneling states towards the
goal.

LQR with Stochastic Dynamics

The treatment of the Linear Quadratic Control problem up until
now has assumed that the dynamics of the system are deterministic:

34 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

the next state of the system can be determined precisely from the
previous state and the control input.

Xt41 = Axt + Buy (2.5.1)

It is not at all clear, however, that the policy built for the deter-
ministic case is the policy that you would follow if you knew there
was noise. For example, imagine a robot in a grid world (See Figure
2.5.2). The robot is positioned on the opposite side of two obstacles
from the goal (pot of gold). Hitting an obstacle is catastrophic for the
robot, but there is just enough space for the robot to drive between
the two obstacles to reach the goal. If the robot’s motion is determin-
istic, then the best policy is to drive between the obstacles. But if the
robot’s motion is stochastic, and with a 10% probability, the robot
moves in a random direction instead of the commanded direction,
then the best policy is to avoid walking the tightrope between the
dangerous obstacles, and to instead go around the obstacles.

We can extend LOR to handle a simple case of stochastic dynamics
and derive the optimal policy for this case. We will assume that at
each time step, a zero mean Gaussian perturbation affects the state *3.

Xpy1 = Axt + Buy + g (2.5.2)

where ¢, ~ N (0,%). x;41 can also be written as
X411 ~ N (Axt + Buy, X) (2.5.3)

Recall that for the deterministic case, the optimal policy at time £,
ntf, is given by finding the action that minimizes the sum of action
cost and cost-to-go from the resulting state

;= argminc(xy, ug) + J*(xpqq, £+ 1) (2.5.4)
ut
The problem is that in the stochastic case, the next state x;, can
not be predicted exactly. As with value iteration, the solution is to
replace the optimal cost-to-go [* by the expected value of [* given
the previous state and selected action. The expression for 7} thus

Figure 2.5.2: Robot in grid
world showing optimal pol-
icy for deterministic (red) vs.
stochastic (green) motion.

3 Note that the noise that we are
adding is motion model noise. We are
not considering a non-trivial observa-
tion model here.

becomes
rtf = argminc(xg, ut) + E [J*(xp41,t +1)] (2.5.5)

ut

The expectation term in this expression is the integral

E U* (Xt+1, t+ 1)] = /X XL1W+1Xt+1N(Xt+1; Axy + Bug, Z) dxt+1
(2.5.6)
This integral belongs to a class of integrals called Gaussian Integrals
and has a simple closed form solution.

/(x —) P(x — BN (x; 11, E) dx = (3 — b) TP(— b) + Tt [PX] (2.5.7)
substituting we get

E [J*(xt41,t +1)] = (Axt + BMt)TVtJrl(Axt + Bug) + Tr [V 1 Z]

(2.5.8)
or, since J*(x;,t) = xtTVtxt,

E[J*(xt41,t +1)] = J*(Axt + Bug, t + 1) + Tr [Vi1 2] (2-5.9)

Thus using the expectation of the optimal cost-to-go in the stochastic
case gives almost the same expression as using the value of cost-to-
go in the deterministic case. The only difference is the trace term
which is a constant when X is fixed or depends only on ¢. Since all
the values under the argmin are shifted by the same constant value,
the policy will remain unchanged by the presence of noise, even
though the value function has changed. The new trace term added to
the cost-to-go can be considered the cost incurred due to uncertainty.

It should be emphasized that this analysis only holds when X is
independent of the control u. In many real settings, this does not
hold. For example, on a robot, the larger the motion the larger the
induced uncertainty in position is.

2.6 Related Reading

[1] Y Tassa, T Erez, E Todorov. “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization.” IEEE/RS]
International Conference on Intelligent Robotcs and Systems, 2012

[2] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors.” International
Journal of Robotics Research, 18(6):534-555, June 1999.

[3] C.G. Atkeson, “Using Local Trajectory Optimizers to Speed Up
Global Optimization”, Proceedings of Neural Information Process-
ing Systems, December 1993.

LQR: THE ANALYTIC MDP

35

36 DRAFT: MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

2.7 Appendix: Derivation of the General ILQR Backup steps

The following provides a detailed derivation of the iLQR approach.
At each iteration of the algorithm, we execute a proposed current
policy to get a trajectory. That we compute the dynamic program
below to provide an update to that policy. This is iterated until con-
vergence.

Given the true dynamics F, we can find the Taylor expansion around a proposed trajectory (xx, tiy%):

Xp1q1 = A(xp — xp%) + B(up — upx) + F(opx, up*)
= xp1 — Xpp1x = A(xe — xp%) + B(up — upx)
zp41 = Az + Boy

where we define z; = x; — xyx as the change to the state trajectory and vy = u; — usx as the change to the control
trajectory.
Similarly, given the true cost function C, the second order taylor expansion is:

) = = o= [| 07 e
= —[(x¢ — xt*)T, (up — ut*)T} [ET II; ((fli : zt:(; + [gz,gg} ((fli : ftig + C(xp*, upx)

NI~ NI

1
(xr — xp%)TQ(xp — xp) + (xp — %) TP (us — upx) + E(ut —) TR (up — upx) + g1 (xp — xp%) + g8 (up — wpk) + ¢

and thus that we can right down a cost function in the changes to state/action as:

1 1
= c(z1,v1) = EZtTta + z} Pos + EvtTth + ¢tz +glvp+ ¢

Dynamic Programming (Value-Iteration) Backup

Assume we have now a control policy of the form of a “feedforward” update term k; and feedback term Kr that is a
linear controller response to “errors” in z:

vr = Krzp + k1, (2.7.1)

Inductively, we assume the next-state value function (i.e. of the future timestep) can be written in the form,

1
Jr1 = 52T+1VT+1ZT+1 +Gry1zrer + Wrar (2.7.2)
Since
zr41 = Azt + Bop (2.73)

= Azr + B(Krzr + k7) (2.7.4)
= (A + BKy)zT + Bk, (2.7.5)

LQR: THE ANALYTIC MDP 37

we can write, J41 as:

1
Jr1 = 5 ((A+BKr)zr + Bkr) Vi1 ((A+ BKr)z1 + Bkr) + Gra1((A + BK7)z7 + Bkp) + Wiy

1 1
- Ez%(A + BK1)TVr i1 (A 4 BKy)zr + Ek%BTVTHBkT + kIBTVr (A + BKy)z1

+ Gry1(A + BKr)z1 + Gry1 Bk + Wr g

1
— Ez%(A + BK7)"Vr 1 (A + BKr)zr + (k%BTVTH(A + BK7) + G (A + BKT)) zr

1
+ Gry1Bkr + Ek%BTVT-HBkT + Wria
Additionally, we can write the cost cr(zr, vT) as:

1 1
cr = EZ%QZT +z1Por + EU%RUT +glzr+ghor +c+ Jr

1 1
= EZ%QZT + Z%P(KTZT +kr)+ E(KTZT + kT)TR(KTZT +kr)+ g;ZT + gZ;(KTZT +kr)+c
1 1 1
= Ez%QzT +2zEPKrzp + kEPTzp + §z§K%RKTzT + Ek%RkT + kIRKyzT + glzr
+gZ;KTZT +g$kT +c

1 1
=57 (Q 4 2PKy + K%RKT) zr + (k%PT +KIRKy + g7 + gZKT) 2 + 5KFRkr + gikr + ¢

(2.7.6)

(2.7.7)
(2.7.8)
(2.7.9)

(2.7.10)

(2.7.11)
(2.7.12)

(2.7.13)

(2.7.14)

Then, we can write 7 = cr(zr,v7) + JT41 = %Z%VTZT + GrzT + Wt by combining like terms from above, where

Vr = Q + 2PKy 4+ KERKt + (A + BK7)TVry (A + BKy)
Gr = kFPT + kKERKy + g7 + gl Ky + kFBT V1 (A + BK7) + Gry1(A + BKy)
1 1
Wr = Ek%RkT +gTkr + ¢+ Gry1Bkr + Ek%BTVTHBkT + Wri1
We find the control policy by minimizing |7 with respect to v7.
or =mincr + J74
ur
1 1
= zLPor + E’U%RUT + glor + 3 (Azr + Bop)'Vr 1 (AzT + Bor) + Gryq (Azr + Bor)
1
= <Z%:P + Z%ATVT+1B> vr + (Gry1B+ gz:)ZJT + EU% (R + BTVT_HB) oT

Taking the derivative with respect to v and setting equal to o, we get,
0= (PT + BTVT+1A> zr+ (BTGl +&u) + (R + BTVT+1B) oT

I (R + BTVTHBf1 (PT + BTVT+1A> zr — (R + BTVT+1B)71 (B"Gsq +8u)

= Krzr + k7

where Kr = — (R+BTVr,1B) ' (PT + BTVr 1 A) and kr = — (R+ BTV 1B) " (BTGL,, + gu).

(2.7.15)
(2.7.16)

(2.7.17)

(2.7.18)
(2.7.19)

(2.7.20)
(2.7.21)

(2.7.22)

(2.7.23)
(2.7.24)

Plugging this resulting policy back in to the expression for V1, Gt and Wt completes the dynamic programming by

providing us a quadratic form for the value function. (Note that Wy and ¢ are actually irrelevant as they are constants

in the optimization)

