
policy gradients 67

Policy Gradient Methods

TODO: currently in this section s is used to denote states
Q-learning and SARSA use information from every transition

(s, a, r, s0) in every trajectory, while black-box policy optimization
methods only look at the total reward of the trajectories. Why should
we not use the state and the action data already encoded in the tra-
jectories to update the policy directly? Doing so leads to policy gradi-
ent methods.

As we have seen in the previous lecture, if the environment model
and the reward function are known, we can compute the policy gradi-
ent conveniently using the back-propagation algorithm. However, in
reinforcement learning, we often care about the case when we don’t
have access to the environment model and/or the reward function.
Policy gradient methods seek to estimate the policy gradients from tra-
jectories without access to the environment model and the reward
function.

Before we dive in to the details, we should consider whether a
gradient exists for a certain policy class. This can be interpreted as
a continuity condition of the mapping from the parameters in the
policy class to the trajectories. This is nontrivial to show for discrete
action spaces and deterministic policies, since an infinitesimally
small change in parameters can drastically change the policy and
hence the trajectories. Therefore, in this lecture, we consider a class
of stochastic policies parameterized by q, pq : s 7! pq(a|s). Under
mild assumptions about the environment, we can safely assume that
the policy gradient always exists for this policy class since stochastic
policies “smooth out” the problem.

Let x denote a trajectory of states and actions, x = (s0, a0, . . . , sT , aT).
We define the total reward of the trajectory x as,

R(x) =
T�1

Â
t=0

r(st, at).

Our goal is to find the parameters that produce the policy that
maximizes the expected total reward of the trajectories,

J(q) = Ep(x|q)[R(x)] = Ep(x|q)

"
T�1

Â
t=0

r(st, at)

#
,

where p(x|q) is the probability of the trajectory x given the policy
parameterized by q, which, we will see later, is also dependent on the
transition model of the environment.

To find the optimal policy, we compute the policy gradient by

68 modern adaptive control and reinforcement learning

taking the derivative with respect to q.

rq J = rqEp(x|q) [R(x)]

= rq Â
x2X

p(x|q) R(x),

where X denotes the set of all possible trajectories. In the case when
the state and/or action space is continuous, the sum should be re-
placed by an integral. The derivation will remain the same for inte-
grals, although some steps would require additional justification11. 11 For example, dominated convergence

theorem need to be invoked in order
to swap the integral with the gradient
operator in the next step.

Since R(x) is the total reward of a given trajectory x, it has no
dependence on q. Therefore,

rq J = Â
x2X

(rq p(x|q)) R(x). (0.0.88)

However, we cannot compute the gradient with eq. (0.0.88) be-
cause it requires us to evaluate the gradient for all possible trajec-
tories. Instead, we want to obtain at least an estimate of the policy
gradient using samples of trajectories. Therefore, we want to express
the gradient as an expectation over probability p(x|q) – the moment
we do that, we can use the law of large numbers to draw samples
from the distribution and estimate the expectation. Therefore, we use
a simple trick,

rq J = Â
x2X

p(x|q)
p(x|q)

(rq p(x|q)) R(x)

= Ep(x|q)

rq p(x|q)

p(x|q)
R(x)

�
.

By the chain rule, we have, rq log (p(x|q)) = rq p(x|q)
p(x|q) . So, we have

an elegant expression of the policy gradient as an expectation,

rq J = Ep(x|q) [rq log (p(x|q)) R(x)] . (0.0.89)

This is sometimes called the likelihood ratio policy gradient. The likeli-
hood ratio policy gradient can be interpreted as increasing the (log)
probability of the trajectories with high reward and decreasing the
(log) probability of the trajectories with low reward. To see this,
consider a single trajectory x. Imagine that R(x) is a large positive
number, then if we do gradient ascent with respect to the total re-
ward J, we are in some sense doing gradient ascent with respect to
log (p(x|q)) according to eq. (0.0.89). Conversely, if R(x) is a large
negative number, we are performing gradient descent with respect to
its log probability in some sense.

Note, however, that we still can not compute the policy gradi-
ent using the above equation because it requires us to evaluate

policy gradients 69

rq log p(x|q) in the expectation, yet we do not know the transition
model p(st+1|at, st).

However, we will see that it is not a problem for policy gradient
methods. If we assume the Markov property, we have,

p(x|q) = p(s0)

T�2

’
t=0

p(st+1|at, st)

!
T�1

’
t=0

pq(at|st)

!
.

Then, we have,

rq log p(x|q) = rq log p(s0) +

T�2

Â
t=0
rq log p(st+1|at, st)

!

+

T�1

Â
t=0
rq log pq(at|st)

!
.

However, log p(s0) and log p (st+1|st, at) do not depend on q, so
the gradients with respect to these terms are zero. Hence,

rq J = Ep(x|q)

"
T�1

Â
t=0
rq log pq (at|st)

!
R(x)

#
.

Notice that we don’t know and can’t control the system dynamics,
but by formulating the problem this way, we don’t need to – we have
control over the policy class we choose, and thus can easily compute
gradients. For example, we can use the back-propagation algorithm
that we saw last week to compute the gradient rq log pq (at|st).

As mentioned earlier, we can now use the law of large numbers to
estimate this expectation,

erq J =
1
N

N

Â
i=1

"
T�1

Â
t=0
rq log pq

⇣
a(i)

t |st

⌘!
R(x(i))

#
. (0.0.90)

By the law of large number, we know that the estimated gradient
in eq. (0.0.90) is an unbiased estimate of the true policy gradient.
Therefore, we can run stochastic gradient ascent with this estimated
gradient. This forms the basis of the REINFORCE (Algorithm 18)

70 modern adaptive control and reinforcement learning

algorithm (version 1, we will show some improvements soon).

Start with an arbitrary initial policy pq

while not converged do
Run simulator with pq to collect {x(i)}N

i=1
Compute estimated gradient

erq J =
1
N

N

Â
i=1

"
T�1

Â
t=0
rq log pq

⇣
a(i)

t |st

⌘!
R(x(i))

#

Update parameters q q + a erq J
end
return pq

Algorithm 17: The REINFORCE algorithm.

In step 1, we run the simulator using the current policy to collect
training sequences. In step 2, we approximate the expectation by the
sample mean. Step 3 is the update rule of the algorithm with a being
the step size. The algorithm is then repeated until convergence or
until you are bored.

An example: Tetris

We will use Tetris as an example to show how you might choose your
policy function pq(a|s) and how you would compute rq log pq(a|s).
Suppose we have some features representing the state-action pair of
the Tetris game. For instance f1 =the number of “holes” after the
placement, f2 =the height of the highest column after the placement,
etc. Due to the log in eq. (0.0.90), a convenient stochastic policy is,

pq(a|s) =
exp

�
q> f (s, a)

�

Â
a0

exp
�
q> f (s, a0)

� .

This is sometimes called the Boltzmann distribution or Gibbs
distribution.

The gradient of the probability distribution can be computed by
any method, e.g. using back-propagation. However, it is fairly simple
to solve analytically:

rq log pq(a|s) = rq

"
q> f (s, a)� log Â

a0
exp

⇣
q> f (s, a0)

⌘#

= f (s, a)�
Âa0 f (s, a0) exp

�
q> f (s, a0)

�

Âa0 exp
�
q> f (s, a0)

�

= f (s, a)�Â
a0

f (s, a0) pq
�
a0|s
�

= f (s, a)� Epq(a0 |s)
⇥

f (s, a0)
⇤

(0.0.91)

policy gradients 71

This is essentially computing the difference between the feature
at state s and action a versus the expectation over all actions for that
state that we could have chosen, in a way the “average” feature. As-
sume that we observe that feature i for action a is larger than the
average over all actions. According to eq. (0.0.91), if performing ac-
tion a at state s produces a trajectory that has high reward, we will
increase the value of qi to upweight this particular feature. Because
it seems that this feature is “helpful” for getting high rewards. On
the other hand, if this state-action pair produces low reward trajec-
tories, we may conclude that feature i is “harmful”. So we make the
corresponding parameter qi to be small or negative to reflect this
observation.

Reducing Variance

Although the estimated gradient in eq. (0.0.90) can in theory pro-
vide an unbiased estimate, it suffers from high variance. In order to
see this, recall that the likelihood ratio policy gradient increases the
probability of the trajectories with high reward and decreases the
probability of the trajectories with low reward. However, imagine
when every trajectory has a very high reward – although some are
higher than others. Then, since we only has finite number of samples
at each iteration, the estimated gradient will push the probability
of all these trajectories higher (if possible) since the total reward is
high (and hence make the probability of other trajectories lower).
However, the algorithm has no idea about the reward of trajectories
compared to other trajectories. Therefore, we can imagine that the esti-
mated gradients are pointing in different directions at each iteration.
In fact, without making the modifications introduced in this part, the
REINFORCE algorithm performs poorly compared to “black-box"
approaches.

One simple modification to reduce the variance is to take advan-
tage of causality – the actions selected now cannot affect past re-
wards.

Figure 0.0.29: A trajectory of
states, actions and rewards. We
consider changing the action at
time t in order to get a better
expected future reward.

72 modern adaptive control and reinforcement learning

If we consider a trajectory of states and rewards, we want to
change the action at time t to maximize expected reward. Intuitively,
we know that changing the action at time t cannot affect the rewards
obtained in the past, since we have already received them. Thus, we
can represent our expected reward as only the future reward.

rq J = Ep(x|q)

"
T�1

Â
t=0

rq log pq(at|st)

t�1

Â
t0=0

r(st0 , at0) +
T�1

Â
t0=t

r(st0 , at0)

!!#

= Ep(x|q)

"
T�1

Â
t=0

rq log pq(at|st)

T�1

Â
t0=t

r(st0 , at0)

!#
,

(0.0.92)

where ÂT�1
t0=t r(st0 , at0) is sometimes called future reward or reward-to-go.

We can use this idea to remove the dependence of past rewards from
the calculation of our gradient.

One can reduce the variance even further by introducing base-
lines for the expected total rewards. Recall that one of the reasons
for the high variance is that the algorithm does not know how well
the trajectories perform compared to other trajectories. Therefore, by
introducing a baseline for the total reward (or reward to go), we can
update the policy based on how well the policy performs compared
to a baseline. The variance can hopefully be reduced if the baseline
approximates the average performance of the trajectories. But how do
we know that whether the estimated gradient still makes sense?

Let’s first take a look at the expectation Ep(x|q)[rq log p(x|q)b]. We
have,

Ep(x|q)[rq log p(x|q) b] = Â
x2X
rq p(x|q) b

= rq

Â
x2X

p(x|q)

!
b

= (rq 1) b = 0.

(0.0.93)

Therefore, the estimated policy is still unbiased if we introduce
a baseline for the total reward (or reward to go). Note here that the
above equation holds as long as b does not depend on q, hence b
can potentially be a function of the state, i.e. b = b(st).12 In fact, a 12 However, some additional effort is

needed to show that a time-dependent
baseline actually works, including
expanding p(x|q) in the expectation as
a product of the transition probability
and the policy.

common choice of baseline is the value function or some estimate of
the value function.

Putting everything together, we can generate another policy gradi-
ent expression,

rq J = Ep(x|q)

"
T�1

Â
t=0

rq log pq(at|st)

T�1

Â
t0=t

r(st0 , at0)� b(st)

!!#
,

(0.0.94)

policy gradients 73

We estimate the above policy gradient as

erq J =
1
N

N

Â
i=1

T�1

Â
t=0

rq log pq(a(i)

t |s(i)
t)

T�1

Â
t0=t

r(s(i)
t0 , a(i)

t0)� b(s(i)
t)

!!
.

(0.0.95)

This can give us an unbiased estimate of the policy gradients with
lower variance.

76 modern adaptive control and reinforcement learning

The Policy Gradient Theorem

The REINFORCE algorithm calculates the gradient using expected
future reward as determined by a trajectory.

rq J = Ep(x|q)

"
T�1

Â
t=0
rq log pq(at|st)

T�1

Â
t0=t

r(st0 , at0)

#

We can instead replace the the estimate of future reward ÂT�1
t0=t r(st0 , at0)

with the action value Qpq , which by definition gives us the expected
future reward.

rq J = Ep(x|q)

"
T�1

Â
t=0
rq log pq(at|st) Qpq (st, at)

#

We can update the gradient rule to take the expectation over the
distribution of states rather than the expectation over the trajectories,
this leads to the Policy Gradient Theorem.

rq J = Es⇠dpq (s), a⇠pq(a|s) [rq log pq(a|s)Qpq (s, a)] (0.0.96)

Here, dpq (s) is the distribution of states under policy pq , i.e., the
fraction of time spent in state s,

dpq (s) =
1
T

T�1

Â
t=0

ppq (s, t),

where ppq (s, t) is the probability that state s is visited at step t under
policy pq .

The policy gradient theorem states that the gradient of average
reward under a policy pq parametrized by q is given by

rq J = Edpq (s)Epq(a|s) [rq log(pq(a|s) Qpq (s, a)] (0.0.97)

The expectations are with respect to the distribution dpq (s) of
states given a policy pq and the actions taken under the policy pq

given the state s. We can prove that, for the value function Vpq (s) is
only a function of the state s, it can viewed as a baseline as we saw
above. Thus, Eq. 0.0.97 is equal to:

rq J = Edpq (s)Epq(a|s)
⇥
rq log(pq(a|s) (Qpq (s, a)�Vpq (s))

⇤
, (0.0.98)

where Apq (s, a) = Qpq (s, a)�Vpq (s) is referred to as the advantage of
action a at state s under policy pq . So why is this true?First, consider
the inner expectation. Because Vpq does not depend on a, this is
equivalent to,

Epq(a|s) [rq log(pq(a|s)Vpq (s)] = Vpq (s) Epq(a|s) [rq log(pq(a|s)] .
(0.0.99)

policy gradients 77

That leaves rq log(pq(a|s) in the expectation. Intuitively that must
be equal to zero because the probability distribution pq must sum
to one, so the sum over all changes must be equal to zero. We show
more explicitly below that this is indeed the case. We expand (Eq.
0.0.99) into sums over the states and actions. We can show that,

Epq(a|s) [rq log(pq(a|s)] = Â
a2A

pq(a|s)rq log(pq(a|s))

= Â
a2A

pq(a|s)
rqpq(a|s)

pq(a|s)

= Â
a2A

rqpq(a|s)

= rq

Â
a2A

pq(a|s)

!
= rq 1 = 0.

(0.0.100)

Through linearity of expectation, we have,

Edpq (s)Epq(a|s)
⇥
rq log(pq(a|s)Vpq (s)

⇤

=Edpq (s)

h
Vpq (s) Epq(a|s)

⇥
rq log(pq(a|s)

⇤i

=Edpq (s) [Vpq (s) · 0] = 0.

(0.0.101)

Finally,

rq J = Edpq (s)Epq(a|s)
⇥
rq log(pq(a|s)Qpq (s, a)

⇤

= Edpq (s)Epq(a|s)
⇥
rq log(pq(a|s) (Qpq (s, a)�Vpq (s))

⇤

= Edpq (s)Epq(a|s)
⇥
rq log(pq(a|s)Apq (s, a)

⇤
(0.0.102)

Intuitively, this shows that the algorithm wants the advantage of
the action to be high, and wants to choose actions that are correlated
with the advantage being high. It adjusts the policy by making small
changes towards Q values that are higher than the average.

The policy gradient theorem connects estimating the gradient rq J
with estimating Qpq or Apq . For example,we can estimate Qpq with
some parameterized function Qpq

f using Approximate Dynamic Pro-
gramming methods like Fitted Q-Iteration or an advantage estimator
Apq

f , to approximate the advantage function Apq (s, a). Also, we can
use samples trajectories under policy pq to estimate the expectation
in Eq. (0.0.102), which results in an estimated policy gradient,

erq J =
1
N

N

Â
i=1

⇣
rq log pq(ai|si) Apq

f (si, ai)
⌘

. (0.0.103)

This leads to a class of methods called Actor–Critic Methods. Actor–
Critic methods learn a actor (the policy) and a critic simultaneously.

78 modern adaptive control and reinforcement learning

The critic produces the estimate of some value function (e.g., state-
value function, action-value function, advantage function, etc.) for
bootstrapping (updating the value function estimate for a state from
the estimated values of other states). By introducing the critic, the
variance of the gradient estimate can be further reduced. Many pop-
ular policy gradient algorithms, including TRPO, PPO and DDPG,
adopt the actor–critic architecture.

Examples

Let us consider a simple example of the actor-critic algorithm. Say we
have two actions that we can take from a given state and one feature
for the state s. One of our actions a0 is bad, while the other one a1 is
good.

We use the Boltzmann distribution that we have seen in the previ-
ous example,

pq(a|s) =
exp[q> f (s, a)]

Âa0 exp[q> f (s, a)]
.

Suppose that the features of our state and the two actions are
f (s, a0) = 3 and f (s, a1) = 1.

Let’s say our current value of the parameter q is q = 1. Then, the
probabilities for taking each action are,

pq(a0|s) =
exp[q> f (s, a0)]

exp[q> f (s, a0)] + exp[q> f (s, a1)]
=

e3

e3 + e
=

e2

e2 + 1
⇡ 0.88,

pq(a1|s) =
exp[q> f (s, a1)]

exp[q> f (s, a0)] + exp[q> f (s, a1)]
=

e
e3 + e

=
1

e2 + 1
⇡ 0.12,

where e ⇡ 2.71828 is the base of the natural logarithm
We then get an estimate of the future reward, possibly through our

critic: Qp(s, a0) = 1 and Qp(s, a1) = 100.
We have already seen previously that we can compute the deriva-

tive of the log probability as follows:

rq log pq(a|s) = f (s, a)� Epq(a0 |s)[f (s, a0)],

where,
Ep(a0 |s)[f (s, a0)] ⇡ 0.88⇥ 3 + 0.12⇥ 1 = 2.76.

We can just compute the gradient estimate15, 15 Note that this is an estimate because
we are not taking expectation over state

erq J = Ea⇠pq(a|s) [rq log pq(a|s)Qp(s, a)]

= pq(a0|s)rq log pq(a0|s)Qp(s, a0)

+ pq(a1|s)rq log pq(a1|s)Qp(s, a1)

⇡ 0.88⇥ (3� 2.76)⇥ 1 + 0.12⇥ (1� 2.76)⇥ 100

⇡ �20.79

policy gradients 79

Thus the policy gradient algorithm tells us to decrease the value
of q since the higher feature value seems to result in lower future
reward. This makes the probability of choosing a1 at s higher than
the previous iteration.

Highly Correlated Features

Gradient ascent/descent methods depend greatly on the parameteri-
zation of the policy. To see this, consider the two parameterizations of
Tetris.

Parameterization 1: f1 = # of Holes after the placement, f2 =

Height after the placement. We use q to denote the parameter for this
parameterization.

Parameterization 2: g1 = . . . = g100 = # of Holes after the place-
ment, g101 = Height after the placement. We use f to denote the
parameter for this parameterization

Then, for Parameterization 1, we have,

q> f (x, a) = q1 ⇥ # of Holes(x, a) + q2 ⇥Height(x, a).

While for Parameterization 2, we have,

f>g =

100

Â
i=1

fi

!
⇥ # of Holes(x, a) + f101 ⇥Height(x, a).

When we take the policy gradient, we have,

rqi J = Ep(x|q)

"
T�1

Â
t=0

⇣
fi(s, a)� Epq(a0 |s)[fi(s, a0)]

⌘
Qpq (st, at)

#

rfi J = Ep(x|f)

"
T�1

Â
t=0

⇣
gi(s, a)� Epf(a0 |s)[gi(s, a0)]

⌘
Qpf(st, at)

#

Hence, we have rf1 J = . . . = rf100 J = rq1 J. The policy gradient
algorithm takes a 100 larger step for the actual weight corresponding
to the number of holes using Parametrization 2 than in Parametriza-
tion 1!

Gradient ascent (or steepest ascent) poses the problem of finding
maxDq J(q + Dq) such that dq is small. Gradient ascent measures
“small” as the l-2 norm kDqk2 =

p
Âi(Dqi)2 e. However this

version of measuring "small" depends on the parameterization of
our policy. Ideally, we want the descent to measure “small” based on
changes in our policy and not depend on the parameterization of the
policy. We will address this problem in the next lecture.

80 modern adaptive control and reinforcement learning

Related Reading

[1] McNamara, A., Treuille, A., Popović, Z. and Stam, J., Fluid control
using the adjoint method, ACM Transactions On Graphics (TOG)
2004.

[2] Krizhevsky, A., Sutskever, I. and Hinton, G.E., ImageNet Classifica-
tion with Deep Convolutional Neural Networks, NIPS 2012.

[3] Le, Quoc V, Building high-level features using large scale unsupervised
learning, Acoustics, Speech and Signal Processing (ICASSP), 2013.

policy gradients 81

Natural Policy Gradient

In the general formulation of steepest descent, as given by Eq. (0.0.104),
there are many size metrics that can be utilized.

max
Dq

J(q + Dq) s.t. ||Dq|| e (0.0.104)

The gradient descent algorithm comes about when we choose the
metric || · || to be the l2 norm over the parameters (

p

Dq>Dq). In
policy gradient methods such as REINFORCE, this definition of the
metric can cause the algorithm to fail, if utilizing highly correlated
features. This is due to the fact that the l2 norm defines a “small”
change in the gradient direction as depending on the cumulative sum
in parameter change, which may have varying degrees of correla-
tion with actual policy change. Instead, we would like to define the
size metric such that the notion of “small” encompasses changes in
the parameterized policy, not simply the changes in the parameters
themselves. This leads to two questions.

Q1) What does steepest descent look like given other metrics?

Q2) What metric captures the fact that we would like our metric to
be tied to the difference between the pq(a|s) and pq+Dq(a|s), and
not just q and q + Dq?

Q1 – What does steepest descent look like under other metrics?

For small changes in the parameters, we can think of the metric as
some quadratic function of the parameters, as evidenced by the
Taylor expansion. The steepest descent optimization problem then
becomes

max
Dq

J(q + Dq) s.t. Dq>G(q)Dq e (0.0.105)

where G(q) defines the specific metric. In general, G is a distance
metric and thus is symmetric positive semidefinite16. This matrix 16 Being pedantic, it is actually a pseu-

dometric if it has nontrivial nullspacedefines the notion of distance in the parameter space locally around
q and, in some cases, can be constant; if this is true, the metric is
referred to as flat. Intuitively, a flat metric entails that distance is
measured the same everywhere in the parameter space. While a
flat metric can be helpful, in the general case it will not accurately
capture the true notion of distance on the parameter manifold.

However, we don’t always want to use flat metrics because it does
not always precisely reflect what does “small” means in our partic-
ular situations. For example, one change of parameters Dq at q1 can
result in a very minor change of our policy, while the same Dq can
result in a large change at q2. We want our metric G(q) to reflect that.

82 modern adaptive control and reinforcement learning

We can solve this new optimization problem (Eq. (0.0.105)) for the
parameters using the technique of Lagrange multipliers. This convert
the constrained optimization problem (0.0.105) to unconstrained
optimization problem with respect to the Lagrangian of the system,

max
Dq

L(Dq, l) = J(q + Dq)� l
h
Dq>G(q)Dq � e

i
, (0.0.106)

where l � 0 is the Lagrange multiplier.
The theory says that there exists a choice of l � 0 such that the

constraint optimization problem (0.0.105) and the unconstrained
optimization problem (0.0.106) has the same solution. But we won’t
worry about that in this lecture because we just want e to be small in
general, rather than care about the exact value of e. Therefore, we just
take l to be a fixed scalar and solve for Dq.

Because we are only considering small steps in Dq, we can approx-
imate (0.0.106) by using the first-order Taylor expansion of J:

L(Dq, l) ⇡ J(q) + Dq> rq J � l
h
Dq>G(q)Dq � e

i .
= L̃l(Dq).

(0.0.107)
Here we use the notation L̃l(Dq) to emphasize that we are taking

l as a constant and hence L̃l is a function of Dq.
Note that the approximated Lagrangian L̃ is quadratic in Dq. To

find the solution, we can simply take the partial derivative of the
approximated Lagrangian L̃ with respect to the change in parameters
and set it to zero:

∂L̃l

∂Dq
= rq J � 2 l G(q) Dq = 0. (0.0.108)

If G(q) is nonsingular, the solution for the change in parameters is
thus:

Dq =
1

2 l
G�1(q)rq J. (0.0.109)

Intuitively, we are taking the gradient and multiplying it by the
inverse of the metric that defines what it means to be large, and then
taking a step in that direction. However, it may still be the case that
G(q) is singular, or very close to singular, due to two features being
very highly correlated. For example, if we are using two features that
are exactly the same, the metric should look something like

G(q) =

"
1 1
1 1

#
.

In this case, if we make change Dq = [Dq1 Dq2]> to the parameters,

policy gradients 83

the size of this change measured by metric G(q) is thus,

Dq>G(q)Dq =
h
Dq1 Dq2

i "1 1
1 1

"
Dq1
Dq2

#

= Dq2
1 + 2Dq1Dq2 + Dq2

2

= (Dq1 + Dq2)
2

This means that changes in any of the features, or any combination
of the features should be the same if they add up to be the same
because they effectively act on the same feature. Because this matrix
is singular, there exists a space in which we can move, and it will not
change the policy at all (the nullspace of G(q)). For eample, we can
add d to the first parameter and subtract the second by d, and the
plicy is still the same. In this case, the most natural thing to do is use
the pseudo-inverse, denoted as G†(q), in place of the inverse, which
means that we not trying to do anything in the nullspace, only the
space in which we can actually affect things.

Q2 – What metric do we want to use for policy gradients?

Despite now knowing how to change and solve the optimization
problem for different metrics, we are still left with the question of
what the metric should be. It turns out that there is a canonical an-
swer for probability distributions, given by Chentsov’s theorem. This
theorem effectively says that there is a unique metric such that dis-
tance is invariant to a class of changes to the problem, such as label
switching, for parametric family of distributions; this metric is known
as the Fisher Information Metric (Eq. 0.0.110).

G(q) = Epq

h
rq log(pq)rq log(pq)

>

i
(0.0.110)

Another way to come to this same result is to consider the Kullback–
Leibler divergence, or K-L divergence, of two probability distribu-
tions. Given two probability distributions p and q,

KL(p||q) = Â
x2X

p(x) log
✓

p(x)
q(x)

◆
. (0.0.111)

It turns out that the change in parameters measured by the Fisher
Information Metric is exactly the second order approximation of the
K-L divergence of the probability distributions before and after the
change,

KL(pq+Dqkpq) ⇡ Dq>G(q)Dq,

KL(pqkpq+Dq) ⇡ Dq>G(q)Dq.
(0.0.112)

84 modern adaptive control and reinforcement learning

In general, the second-order approximation of any obvious metric
on probability distributions will result in the Fisher Information
Metric.

For the specific problem of policy optimization, we take the Fisher
Information Metric on trajectories as our metric (Eq. 0.0.113). This is
because we want to essentially measure the distance between trajecto-
ries (distributions of states) given changes in parameters.

G(q) = Edpq (s),pq(a|s)

h
rq log pq(a|s)rq log pq(a|s)>

i
, (0.0.113)

Recall that dpq (s) is the distribution of states, or the fraction of time
spent in states, under policy pq .

In practice, G(q) can be estimated as a running average of the
states experienced (Eq, 0.0.114), and its inclusion makes an enormous
difference in the success of algorithms such as REINFORCE.

G̃(q) =
1
N

N

Â
i=1

h
rq log pq(ai|si)rq log pq(ai|si)

>

i
(0.0.114)

Intuitively, from a Machine Learning perspective, this algorithm is
attempting to move in the direction that improves the performance
the most, subject to changing the distribution of input examples as
little as possible. This is also very similar to whitening of data, a
natural normalization technique in Machine Learning.

In the general case, where we are just doing steepest descent with
a distance metric, the algorithm is referred to as the covariant gra-
dient method. In the special case shown above when you are mea-
suring is distance between probability distributions, the algorithm is
known as the natural gradient method.

Then, we can combine this estimated policy gradient with the
natural gradient method, which gives us the update rule,

Dq =
1

2l
G̃�1(q) erq J. (0.0.115)

This is known as the Natural Policy Gradient method. Note that
Eq. (0.0.115) requires inverting the estimated Fisher information
matrix, which can be computationally expensive when the number of
parameters is large. One solution is to solve for Eq. (0.0.115) through
iterative methods, e.g., Conjugate Gradient method, and terminate
early. This in practice gives us reasonably good estimates of the natu-
ral policy gradient.

policy gradients 85

Conservative Policy Iteration

REINFORCE is essentially like a soft policy iteration, trying to
change the probability of actions so that they are correlated with
things that have high Q values. However, REINFORCE does not suf-
fer from the disadvantages of policy iteration, because it makes small
changes.

We can modify approximate policy iteration to avoid the problems
caused by making big changes at each time step. We can make the
policy iteration stochastic, by choosing to follow the old policy with
probability a, and taking action argmaxa Q̃(s, a) with probability
1� a. This algorithm, known as conservative policy iteration, essentially
makes a small change to the probability distribution over trajectories,
but by choosing actions to go the steepest direction uphill.

	Markov Decision Problems
	Markov Decision Processes
	Solving MDPs
	Related Reading

	LQR: The Analytic MDP
	The Linear Quadratic Regulator
	Value Iteration for Linear Quadratic MDPs
	LQR Tracking
	Iterative LQR (iLQR) (for non linear systems)
	Differential Dynamic Programming (DDP)

	Policy Improvement
	Policy Iteration Optimality
	Implementation Notes

	Approximate Dynamic Programming
	Approximate Value Iteration
	Challenges when using Fitted Q-Iteration
	Approximate Policy Iteration
	Related Reading

	Temporal Difference Learning and Q-Learning
	Temporal-Difference Learning
	SARSA
	Q-Learning
	Experience Replay

	Black-Box Policy Optimization
	How to find a good parameter set ?
	Related Reading

	Policy Gradients
	Back-propagation
	System Examples
	Rederiving LQR with Back-propagation
	Policy Gradient Methods
	Reducing Variance
	Eligibility Traces
	REINFORCE
	The Policy Gradient Theorem
	Highly Correlated Features
	Related Reading
	Natural Policy Gradient
	Conservative Policy Iteration

	Iterative Learning Control
	Model-based Reinforcement Learning
	Iterative Learning Control
	The Theory
	Related Reading

	Response Surface Methods
	Optimization with Response Surface Methods
	Fitting the response surface: Gaussian Process Regression
	Choosing the next point to evaluate

	Bibliography

