
1
Markov Decision Problems

1.1 Markov Decision Processes

Overview

We require a formal model of decision making to be able to syn-
thesize and analyze algorithms. In general, making an “optimal”
decision requires reasoning about the entire history previous obser-
vations, even with perfect knowledge of how an environment works.

A powerful notion that comes to us from the physical sciences
is the idea of state — a sufficient statistic to predict the future that
renders it independent of the past. In classical mechanics, the phase
space of positions and momenta forms that state: together with the
knowledge of an isolated rigid body (it’s inertia) and any torques ap-
plied, we can predict the future pose of the object without knowledge
of the past.

A Markov Decision Process (MDP) is a mathematical framework
for modeling decision making under uncertainty that attempts to
generalize this notion of a state that is sufficient to insulate the entire
future from the past. MDPs consist of a set of states, a set of actions,
a deterministic or stochastic transition model, and a reward or cost
function, defined below. Note that MDPs do not include observations
or an explicit observation model as the environment is assumed to be
fully observable at all times: in other words, an agent can observe the
state of the world.

The acronym MDP can also refer to a Markov Decision Problem
where the goal is to find an optimal policy that describes how to act
in every state of a given a Markov Decision Process. A Markov De-
cision Problem includes a discount factor that can be used to calculate
the present value of future rewards and an optimization criterion. In
finite-horizon problems, MDPs also include a horizon time that specifies
when the problem ends. Strategies for minimizing cost or maximiz-
ing reward vary, and should be time-dependent in finite horizon

2 bagnell and boots

systems.
The key property – indeed the eponymous property – of an MDP

is that it is Markov. That is, the probability of observing future states
given the past depends (and given a fixed sequence of actions) only
the most recent state and is conditionally independent of the full
history. We make that more precise after we introduce notion below.

Definitions

1. State: x ∈ X or s ∈ S. In robotics, examples of state include
the pose of a rover or the configuration of a robot arm. There is
typically an initial state, defined x0 and possibly a terminal state
that ends the problem if entered. State is meant to invoke the
notion of a full description (like position and velocity in classical
mechanics) of the system under consideration that makes the
previous trajectory irrelevant to the prediction of the future.

2. Action: a ∈ A or u ∈ U. Examples of actions include moving to a
discrete neighboring state or torques applied to a joint or wheel.

3. Transition Model: For stochastic systems, we represent the tran-
sition model as the probability of an action a, taken from state x,
leading to state x′, denoted x′ ∼ T (x, a). Here T can be a prob-
ability mass function in case of systems with discrete set of states
or a probability density function if the system has a continuous
set of states. In deterministic systems, we often explicitly denote
the transition model as a deterministic function, i.e., x′ = T (x, a).
Note, however, that it is also possible to realize deterministic sys-
tems with a stochastic model with the Dirac delta distribution. In
an MDP this distribution is well defined, and independent of the
past: p(x′|x, a, history of all previous x’s and a’s) = T (x, a).

4. Reward or Cost Function: The reward r(x, a) or cost c(x, a) of tak-
ing an action a at a state x. The reward and the cost function can
be used interchangeably: we can get the same solution if we define
the cost function as the negative of a given reward function and
switch the max (as for reward) to min (as for cost) during opti-
mization. In some situations, the cost or reward can be a function
of only the state s, i.e., r(x) or c(x), or a function of the next state
x′ after executing action a, r(x, a, x′) or c(x, a, x′), or some even
more complicated combinations like being also a function of time,
i.e., r(x, a, x′, t), or can itself be a random variable (i.e., with distri-
bution p(r | x, a, x′, t)). The last form is the most general form that
obeys the Markov property and enables efficient computation.

5. Horizon: T ∈ N. The process is considered ended after T steps.

draft: modern adaptive control and reinforcement learning 3

This often encodes the number of steps that we care/are able to
execute the policy. See Objective Function below. 1 1 If T = 1, optimal control can be

reduced to a greedy search, that is
choosing the action with the highest
reward. If 0 < T < ∞, then one must
reason T steps ahead to determine
the optimal policy starting from the
initial state. Often there is no discount
factor and the optimal policy may vary
wildly as a function of time. The case
where T = ∞ is typically more likely to
converge, as a discount factor γ is used
to dampen the effects of oscillation or
any time-dependent properties.

6. Discount Factor: 0 ≤ γ ≤ 1. It determines the current value of
future costs or rewards. The intuition is that rewards are more
valuable if they happen soon, so if a reward is received n steps in
the future, it’s only worth γn as much right now.

7. Policy:π ∈ Π : π(x, t) = a. A function that maps states (and an
optional time step) into actions. This specifies how to act in any
state. 2

2 In the simplest case, a policy is simply
a map from the current state to an
action, but policies can be much more
general and include information about
the transition model or information
about the history of previous states
(π : {x0, ..., xt} × T → A). We can
show that if a decision problem is
Markovian, an optimal policy need only
be a function of state and time, rather
than further history.

8. Value Function: Vπ(x, t). A function used to measure the ex-
pected discounted sum of rewards from following a specific policy
π from state x. The optimal value function, denoted V∗(x, t), is the
value function of the optimal policy π∗, i.e. the policy that yields
the highest value for each state x.

9. Objective Function: An optimization criteria for a Markov Deci-
sion problem.3 Expected cumulative reward is a common objective

3 Note that optimizing such an objective
function does not require the Markov
property – that property helps us find
policies efficiently.

function in reinforcement learning:

E

[
T−1

∑
t=0

γt r(xt, at)

]
Other examples include expected infinite discounted reward:

E

[
∞

∑
t=0

γt r(xt, at)

]
and immediate reward:

E [r(x0)]

The goal is to choose a policy that will minimize (if we’re using
cost functions) or maximize (if we’re using reward functions) our
objective function. Remember that the policy function just describes
the action we take at each time step, so we’re effectively finding the
best (on average) sequence of actions to complete our task.

To disambiguate some of the notation, from this point on states
will be referred to as x, transition models as T , and horizon as T.
Because we are pessimistic academics, we will deal in costs c, not
rewards.

Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

4 bagnell and boots

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k × 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x′ will
be given the current state x and the action a. Solving deterministic
MDPs is often traditionally posed as a search problem. There are
many approaches to solving deterministic MDPs using search, many
of which are much more efficient than generic MDP approaches.
Here are three flavors of approach that one might try:

1. The Greedy Approach: choose the action at the current time that
minimizes the immediate cost.

draft: modern adaptive control and reinforcement learning 5

2. Naive Exhaustive Search: explore every possible action for every
possible state and choose the series of actions that minimizes the
total cost.

3. Pruning: Search possible actions, but remember only the cheapest
series of actions, ignoring the previously discovered paths with
higher cost.

A naive exhaustive search is often computationally ineffective as its
complexity is O(exp(T)).

An exhaustive search can produce the optimal policy at the ex-
pensive of high computational (and sample complexity) cost. While
the greedy approach is often cheap to compute, it may sometimes
produce policies that are not remotely good. The pruning approach
balances the computational cost and the quality of the resulting poli-
cies. Often it can produce a reasonably good policy in a much shorter
time compared to the exhaustive search algorithms. However, if we
care to find the optimal policy, then we need to consider all policies.

Non-deterministic problems, where the next system state is not
known with certainty, naturally suggest considering the expectation
of future rewards for any given action. One strategy, called Value It-
eration,4 discussed in the later section, calculates the expected sum of 4 The Value Iteration algorithm is also

applicable to deterministic MDPs.
In fact, we will see how to use Value
Iteration to solve deterministic MDPs in
the next section.

discounted rewards for each state under the optimal policy (the value
of that state, denoted V∗, also known as the optimal value function)
without explicitly computing the optimal policy. An optimal policy
can then just act, by greedily selecting the action with the highest
value. Some alternatives will be covered later in the course, such
as Policy Iteration and Q-Learning. Policy iteration evaluates a given
policy then improves upon the policy and repeats the process. Q-
learning does not require a transition model, and uses samples of
state-action pairs to compute the optimal action from any state.

1.2 Solving MDPs

Scenario

Let’s consider the case where a robot is traversing a maze-like envi-
ronment from a start location to a goal location. The environment
is discretized into a 2D grid. Actions are movements in the cardinal
directions. The cost is +1 for being in every state except for the goal
state where the cost is 0. The goal is a terminal “absorbing” state,
so once we are in the goal state, we cannot leave – we have achieved
nirvana and the suffering is over. Our task is to choose a sequence
of actions that take the robot from the start state to the goal state
while minimizing the expected total cost. In other words, we want to

6 bagnell and boots

minimize

E

[
T−1

∑
t=0

c(xt, at)

]
We’ll first look at a deterministic problem where the robot will move
to the adjacent cell in the direction of the action if the cell is free:
there may be obstacles or walls in the grid, in which case the robot
is unable to transition into those states. In this simple deterministic
problem, with the cost for each state except for the goal being 1,
the optimal value at each state is simply the minimum number of
states traversed to get from that state to the goal. The optimal policy
returned at each cell is then the direction the robot should travel to
minimize the number of steps needed to reach the goal.

Figure 1.2.1: Discrete World,
Start (S), Goal (G). Obstacles are
denoted by the black squares

Recursive Formulation for Solving Deterministic MDPs

Time T− 1:
We can write this in a straightforward recursive formulation of this

problem, we start at the last timestep, t = T − 1. Here, the optimal
policy is just choosing the action with the minimal cost and the value
function at each state is the minimum cost of all actions from a given
location.

π∗(x, T − 1) = argmin
a

c(x, a)

V∗(x, T − 1) = min
a

c(x, a)

Figure 1.2.2: Optimal Value
Function for each state at time
T − 1

Time T− 2:
Now the values at the last timestep are the same everywhere ex-

cept at the goal. Next, consider the next-to-last step t = T − 2. Sup-
pose that we are at state x and we take action a, the total cost would
be the value of the next state x′ = T (x, a) at the last timestep T − 1

draft: modern adaptive control and reinforcement learning 7

plus the immediate cost of taking action a in our current state x.
Therefore, we should simply choose an action a that minimizes the
sum these two terms. The optimal value of each state is then the
minimum of the cost of the action a at current state x and plus the
optimal value of the next state x′ at the last timestep T − 1.

π∗(x, T − 2) = argmin
a

[
c(x, a) + V∗(x′, T − 1)

]
V∗(x, T − 2) = min

a

[
c(x, a) + V∗(x′, T − 1)

]

Figure 1.2.3: Optimal Value
Function for each state at time
T − 2

Time T− 3 and below
We can define a general recursion to calculate the optimal value

and optimal policy functions. For any given time t ≤ T − 2, we have:

π∗(x, t) = argmin
a

[c(x, a) + V∗(T (x, a), t + 1)]

V∗(x, t) = min
a

[c(x, a) + V∗(T (x, a), t + 1)]

Figure 1.2.4: Final value func-
tion after T steps of Value
Iteration

Figure 1.2.5: Action at each
location using the final policy.

Following the equations above, we can write recursive algorithms
that produce the optimal value and the optimal policy for any state,
at any time t, considering a T-length time horizon. Algorithm 1 be-
low describes the recursive method that computes the best value
function (cost-to-go) for a given state x starting at time t and stop-

8 bagnell and boots

ping at time T − 1.

Algorithm OptimalValue(x, t, T)
if t = T − 1 then

return min
a

c(x, a)

end
else

return min
a

c(x, a) + OptimalValue(T (x, a), t + 1, T)

end
Algorithm 1: Recursive algorithm for computing the optimal
value function

How do we compute the best policy? One important concept we
can observe from the algorithms above is that if we use the optimal
value function we never need to explicitly compute the optimal pol-
icy. Policy and value are not the same, but if the optimal value func-
tion is given, the optimal policy can be easily recovered, as shown
below:

π∗(x, t) = argmin
a

[c(x, a) + V∗(T (x, a), t + 1)] .

But what if we want to get the optimal policy while computing the
optimal value? Let’s first define an auxiliary algorithm that returns
the value function with time horizon T for a given policy π, starting
at state x. This is called policy evaluation and is described in Algo-
rithm 2.

Algorithm Value(x, π, t, T)
if t = T − 1 then

return c(x, π(x, t))
end
else

return c(x, π(x, t)) + Value(T (x, π(x, t)), π, t + 1, T)
end

Algorithm 2: Policy evaluation: a recursive algorithm that com-
putes the value function for a given policy

The above can, of course, be implemented as an in-place dynamic
program by starting from the last time-step as in Algorithm 3.

We can also extract via a dynamic program (backwards induction)
that proceeds from the last time step Algorithm 2 to compute the

draft: modern adaptive control and reinforcement learning 9

optimal policy π∗(x, t) for all states and time steps:

Algorithm OptimalPolicy(x, t, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

π∗(x, t) = argmin
a

c(x, a)

end
else

π∗(x, t) =
argmin

a
c(x, a)+Value(T (x, a), π∗, t + 1, T)

end
end

end
Algorithm 3: Algorithm for computing the optimal policy

Note that the complexity of computing the value function via
dynamic programming is O(|X||A|T2). However, because we are
repeatedly calculating many of these function calls, we can memoize
previously computed value functions (i.e. from future time steps)
resulting in an algorithm with complexity O(|X||A|T). Below, we’ll
explictly use backwards induction to create Value Iteration, the "indus-
try standard" efficient means to compute the optimal value function
rather than rely on ad-hoc memoization.

It is worth noting that when a decision problem has a finite hori-
zon, the value function is also a function of time. This scenario is
similar to a hockey game, in which a team’s actions may vary widely
depending on the time remaining. If a team is losing and there are
seconds left, they may choose to pull their goalie off the ice and
have an extra scoring player. At the start of the game, even if losing,
pulling the goalie is generally a very unwise decision.

Backwards Induction Formulation for Solving General MDPs

Consider now non-deterministic MDPs– that is, problems with uncer-
tainty in the transition model. Here we will consider optimizing the

10 bagnell and boots

expectation over the optimal value function:

π∗(x, t) = argmin
a

[
c(x, a) + E

[
V∗(x′, t + 1)

]]
= argmin

a

[
c(x, a) + ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
,

V∗(x, t) = min
a

[
c(x, a) + E

[
V∗(x′, t + 1)

]]
= min

a

[
c(x, a) + ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
.

Applying backwards induction (dynamic programming) instead of
a recursive formulation, we get what is known as Value Iteration:

Algorithm OptimalValue(x, t, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + ∑
x′∈X

p(x′|x, a)V(x, t + 1)

end
end

end
Algorithm 4: Dynamic Programming Value Iteration for comput-
ing the optimal value function.

This approach now has complexity O(|X|2|A|T). However, since
we often don’t have to sum over all x ∈ X as the probability of
transitioning to those states may be 0, this typically reduces to
O(k|X||A|T), where k is the average number of neighbouring states.
In a deterministic problem, of course k = 1. If our environment is
continuous, the sums above become integrals as we are integrating
over the state space.

Infinite Horizon Problems

Recall that when we have a finite horizon, both the optimal value
function and the optimal policy are functions of time. However, as
T approaches infinity, we expect that the optimal value function
and the optimal policy no longer have such dependence on time.
Consider, for example, the maze problem above: we would expect
the value function to stabilize as the horizon T gets large. Similarly,
it would seem surprising to alter our policy at different time steps
when there is no time limit (imagine a game that lasts forever). Exercise: Construct examples that lead

to value function divergence. Relate
to the classical convergence criteria
for series in sequences in college-level
calculus.

draft: modern adaptive control and reinforcement learning 11

In some cases, the value function (optimal, or for a given policy)
will not converge in the infinite horizon case. Typically, failure of
convergence for the infinite horizon problem is caused by divergence
(for example, when the goal is unreachable), but oscillation of the
value function can also prevent the value function from converging.
A simple example of the oscillation problem is shown below:

Figure 1.2.6: Value Function
Oscillation

If the value function does converge, we are assured a stationary
feedback policy that is optimal. 5 5 Exercise: Why? Make the argument.

Rewards and Discount Factors

Thus far, we have only talked about cost functions in our examples.
Instead, imagine using a reward function, where the robot gets zero
points for each move, unless it moves into the goal, in which case it
receives 100 points. You can see that there is very little urgency for
the robot to move towards the goal, as it can spend as many steps as
it wants wandering the state space before reaching the goal while still
receiving the same 100 points.

In order to avoid situations like this, we can apply the discount fac-
tor mentioned above. Since discount factors value obtaining rewards
sooner rather than later, they require the robot to move to the goal as
quickly as possible to be optimal. Discount factors can alternatively
be thought of as a way of contending with the possibility of death.
Under this interpretation, at each time step, the robot lives with prob-
ability γ, and dies with probability (1 − γ) (goes to an absorbing
state that has 0 reward or value). The optimal value function then
becomes:

V∗(x, t) = min
a

[
c(x, a) + ∑

x′

[
γ
[
p(x′|a, x)V∗(x′, t + 1)

]
+ (1− γ)× 0

]]

= min
a

[
c(x, a) + γ ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
The fixed point version of the above equation (i.e., what we would
expect to hold as the finite horizon value function to converge as
T → ∞) is called the Bellman equation.

V∗(x) = min
a

[
c(x, a) + γ ∑

x′
p(x′|a, x)V∗(x′)

]
We will explore this equation in more detail below.

12 bagnell and boots

Convergence and Optimal Solutions

If γ < 1, we can guarantee that the sum of rewards achieved by the
agent is finite with probability 1 (assuming the reward is as well for
each state and time) and that the optimal value function will con-
verge. For many special cases, the value function will also converge
for γ = 1, but this is not generally true for the reasons we discussed
above.

It is important to bear in mind that once the value converges, it–
and the optimal policy– becomes invariant with relation to the time.6 6 Exercise: Convince yourself this must

be true.

V∗(x, t) t→∞−−→ V∗(x) = min
a

[
c(x, a) + γ ∑

x′
p(x′|x, a)V∗(x′)

]
And the same happens for the optimal policy:

π∗(x, t) t→∞−−→ π∗(x) = argmin
a

[
c(x, a) + γ ∑

x′
p(x′|x, a)V∗(x′)

]
There are two iterative approaches for finding this convergence value.

Approach 1 In this approach, we define a small threshold ε (this
could be interpreted as a as a confidence level) and we will run the
algorithm for a time horizon that is sufficiently large so that the error
in that value will be of magnitude O(ε). Choosing T such that γT =

O(ε), i.e. T = O(log(1
ε)), ensures that our error is O(ε). We then

simply run Algorithm 4 for T time-steps, use execute the resulting
(time-varying!) policy. 7 7 It’s unclear what to do in this ap-

proach when the policy executes T or
more steps. Cycling the policy again
could be a reasonable procedure but
is ad-hoc. Of course, theoretically it
doesn’t matter because times larger
than T, by construction, are exponen-
tially damped in their significance.

Algorithm OptimalValue(x, t, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + γ ∑
x′∈X

p(x′|x, a)V(x, t + 1)

end
end

end
Algorithm 5: Dynamic Program for creating an optimal value
function on the infinite horizon by finite horizon approximation

Approach 2 Alternately one can use an iterative, in-place method,
based on the Bellman equation, where the result obtained in one step

draft: modern adaptive control and reinforcement learning 13

is plugged back into the equation until it converges.

for x ∈ X do
V(x) = min

a
c(x, a)

end
while does not converge do

for x ∈ X do
Vnew(x) = min

a
c(x, a) + γ ∑

x′∈X

p(x′|x, a)Vold(x′)

end
Vold(x)← Vnew(x), ∀x

end
return Vnew(x), ∀x

Algorithm 6: Iterative approximation algorithm

Both algorithms will return the optimal value function for all
states as the number of iterations tends to infinity. As mentioned
earlier, once the value function is known, it is possible to obtain the
policy. Thus, these algorithms also allow us to obtain the optimal
policy for every state.

Approach 1 can be demonstrated to have theoretically stronger
performance bounds if we execute the time-varying policy that re-
sults rather than keeping only the value and policy computed at
t = 0, perhaps intuitively as it is actually the optimal solution for the
finite horizon problem.8 Approach 2 is not the optimal solution for 8

any specific problem (it is an approximate iterative method). Never-
theless, Approach 1 can be costly: it requires a considerable amount
of extra memory, since it keeps track of all future values for each
given time step. Approach 2 initializes the value function V and it-
eratively finds better approximations of that value by plugging its
current value into the solution equation. Compared with the first
approach, this approach has a slower convergence rate as a function
of the number of iterations in the worst case, but requires a smaller
amount of memory. One can also consider simple variants (covered
in [Puterman, 1994]) that maintain a single value functions and up-
date data in place.9 9 Similar to a Gauss-Seidel method.

1.3 Related Reading

[1] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. Cambridge, MA: MIT, 2005. Ch 14, pp 499-502 for most
relevant material.

[2] Andrew Moore’s slides: http://www.autonlab.org/tutorials/
mdp.html

http://www.autonlab.org/tutorials/mdp.html
http://www.autonlab.org/tutorials/mdp.html

14 bagnell and boots

[3] Boumaza, A. How to design good Tetris players, Tech Report,
University of Lorraine, LORIA, 2014.

[4] Puterman, M. Markov Decision Processes: Discrete Stochastic
Dynamic Programming, 2005.

2
Bibliography

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, 1994.

	Markov Decision Problems
	Markov Decision Processes
	Solving MDPs
	Related Reading

	Bibliography

