
Policy Improvement

While we saw in the previous notes that value iteration can be used
to find an optimal policy, it can be quite slow to converge. Inter-
estingly, in later rounds of value iteration, the best action at each
state rarely changes. In other words, the policy implicitly defined by
the value function appears to converge more rapidly than the value
function itself. This insight leads to a new approach that attempts
to update the policy rather than the value function, until the policy
converges.

Policy Evaluation

In order to update the policy, we need some way to measure its per-
formance. Fortunately, we have a way to do this: we can simply
compute the value function for a fixed policy. we will use Vp(x, t)
to denote the cost-to-go of a policy p in state x at time t. We can use
the policy evaluation algorithm to tell us how good one policy is
compared to another.

Algorithm Value(x,p,t,T)
if t = T � 1 then

return c(x, p(x, t))
end
else

return c(x, p(x, t)) +
g Â

x02X

p(x0|x, p(x, t))Value(x0, t + 1, T)

end
Algorithm 7: Policy evaluation: a recursive algorithm that computes
the value function for a given policy (same as in Chapter 1)

Recall from Chapter 1 that at t ! •, the value function reaches a
fixed point defined by the Bellman equation

V(x, t) t!•
��! V(x) = min

a

"
c(x, a) + g Â

x0
p(x0|x, a)V(x0)

#

If p is stationary (not a function of time), and if, with probability 1,

38 modern adaptive control and reinforcement learning

p enters a terminal state having zero cost, then as t ! • the value
function converges to the following fixed point

Vp(x, t) t!•
��! Vp(x) = c(x, p(x)) + g Â

x0
p(x0|x, p(x))Vp(x0)

Note that this equation is linear in Vp(x). While this can be solved
via policy iteration, an alternate way to solve this is to write a system
of linear equations.

Let
�!
cp and

�!
Vp be vectors of length |X| listing the cost and cost-to-

go, respectively for 8x 2 X.

�!
Vp = �!c + gPp�!Vp (35)

=)
�!
Vp

� gPp�!Vp = �!c (36)

where Pp is the row stochastic transition matrix (its rows sum to 1)
given the the fixed policy p

Pp =

0

BB@

p(x0|x0, p(x0)) p(x1|x0, p(x0)) . . .
...

...
...

p(x0|xn, p(xn)) p(x1|xn, p(xn)) . . .

1

CCA (37)

The operation of multiplying by Pp is the equivalent of calculating
expectation.

This is a linear equation in
�!
Vp and its solution is

�!
Vp = (I � gPp)�1�!c (38)

For g < 1 this equation always has a solution (the Eigenvalues of Pp

are always less than one, so I � gPp is always invertible). The process
of finding Vp is called policy evaluation.

Policy Improvement

If someone hands you a policy, and you evaluate that policy and
discover that it is not optimal, then it is natural to want to improve
the policy (see Figure 12).

Figure 12: The left image shows a non
optimal policy (green arrows). The
right image shows how the policy could
be improved by changing the action
taken on a state-by-state basis. The new
policy is still not optimal and could be
improved by another round of policy
iteration.

policy improvement 39

The policy can be improved by solving the following equation
8x 2 X:

p0(x) = argmin
a

c(x, a) + gEp(x0 |x,a)[V
p(x0)] (39)

Policy improvement can also be expressed in terms of Qp(x, a), the
quality function, sometimes called the Q-function or action value func-
tion. The Q-function Qp(x, a) is the sum of the cost of performing an
action a at state x and the cost to go from the resulting state under
policy p.

Qp(x, a) = cost(x, a) + gEp(x0 |x,a)[V
p(x0)] (40)

A new policy p0 can, therefore, be formed from an existing policy p

by tweaking the action selected at a state. If p0 is selected such that

p0(x) = argmin
a

Qp(x, a) (41)

then the new policy p0 is guaranteed to be at least as good as p.

Policy Iteration Algorithm

Combining policy evaluation and policy improvement, we can get an
algorithm for finding a good policy from an initial estimate of

�!
Vp .

Start with arbitrary p0

while not converged do
Policy Evaluation: compute Vpk

for 8x 2 X do
pk+1(x) = argmin

a
c(x, a) + g Âx02X p(x0|x, a)Vpk (x0)

end
k ++

end
return pk(x), 8x

Algorithm 8: Policy Iteration. Here the policy evaluation step can
be computed by, e.g. value iteration or solving a linear system.

Almost all dynamic programming algorithms use Value Iteration
or Policy Iteration, and both form a nice basis for approximation
algorithms (as we will see next Chapter).

Policy Iteration Optimality

During the policy iteration, the difference in value of the current
policy p and the optimal value function |Vp(x)� V⇤(x)|, decreases
exponentially. As a result, this algorithm generally requires fewer it-
erations than Value Iteration, but it does require more work on each

40 modern adaptive control and reinforcement learning

iteration. Understanding whether Policy Iteration will converge to
the best policy is not trivial - it is not at all obvious that it will con-
verge. The standard argument, outlined below, uses contradiction to
show that there are no local optima, so, since each step is an improve-
ment, the algorithm will converge to the optimum. To see this we
need to show that:

• The algorithm monotonically improves

• The algorithm reaches a global optimum

Monotonic Improvement

To show that the algorithm montonically improves, we look at the
improvement in the value function between policies. We switch ac-
tions only if (see Figure 14) the policy from that point onwards is an
improvement (if Vpk (xa0) � Vpk (xa)). Value improvement for Step 1
is:

gEp(xo)

h
Ep(x0 |x0,pk+1(x0))[V

pk (x0)]� Ep(x0 |x0,pk(x0))[V
pk (x0)]

i

Value improvement for Step 2 is:

gEppk+1 (x1)

h
Ep(x0 |x1,pk+1(x1))[V

pk (x0)]� Ep(x0 |x1,pk(x1))[V
pk (x0)]

i

: Choosing action a0 in state x0 which max-
imises V(x0), then following pk

: Choosing action a0 in state x1 which max-
imises V(x1), then following pk

Figure 14: Improvement in the value
function: Blue dots denote states, red
arrows denote actions that maximise
the value for a state, blue arrows denote
actions in pk .

Optimality

The difference between value functions can be calculated using the
following lemma.

policy improvement 41

Lemma 1. Performance Difference Lemma:

Vp0

(x0)� Vp(x0) =
•

Â
t=0

gtEpt

h
Vp0 ,pt+1,pt+2,...(x)� Vp,...(x)

i

pt = Pr[xt = x xo, p0]

This lemma implies Vp0

(s0) � Vp(s0) � 0 if the value function,
V(s), is such that:

8 p, Vp(s, t) ! Vp(s, •)

The above equation means that the value function must converge.
Provided that the value function converges, we see that the policy
iteration algorithm climbs uphill.

When policy iteration has stopped making improvements, a local
optimum is reached, i.e.

(pk, Vpk) = (pk+1, Vpk+1)

If this is not a global optimum then:

(p⇤, Vp⇤

) 6= (pk+1, Vpk+1)

The value iteration step in policy iteration is

Vp0

(x) = min
a

c(x, a) + gEp(x0 |x,a)

h
Vp0

(x0)
i

which satisfies the Bellman Equation. Therefore p0 = p⇤ since there
is no non-optimal solution to the Bellman Equation.

Access Models

For different reinforcement learning problems, there may be different
levels of system access. For the Tetris problem assigned as homework
for this class, we can create the exact same state over and over again
while learning (or testing our algorithms). For robotic systems, we
have much less access - we can never create exactly the same state
again. Some common access models include:

1. Full Probabilistic Description

In this model, we have access to the cost function and the transi-
tion function for every action Pa. A downside of having this kind
of model is that it can become so large as to be computationally
intractable for any non-trivial problem.

2. Deterministic Generative Model

42 modern adaptive control and reinforcement learning

This is the model that we have for the upcoming Tetris assignment.
In this case, we have a function that maps f (x, a) ! x0, determinis-
tically. Deterministic can mean that we have access to the random
seed in a computer program, so we can recreate the same system
including the randomness.

3. Generative Model

In this model, we have programmatic access. We can put the sys-
tem into any state we want.

4. Reset Model

In this model, we can execute a policy or roll out dynamics any
time we want, and we can always reset to some known state or
distribution over states. This is a good model for a robot in the lab
that can be reset to stable configurations.

5. Trace Model

This is the model that best describes the real world. One good
quote words it as "life is like a solo violin performance where
you’re learning how to play the violin".

Implementation Notes

Most people use Modified Policy Iteration in practice. Modified Policy
Iteration warm-starts the policy evaluation step with the value func-
tion from the previous step and then does a single iteration of policy
evaluation. Since the expensive part of policy iteration is the policy
evaluation step, this warm-start can greatly speed up the algorithm.

Value iteration is expensive if the state space is too large. It can be
used in its closed form (solving a linear system) if the value function
is sparse. Otherwise the value function can be approximated by
using:

• Linear function approximator V(x) = wTf(x)

• Nearest Neighbour - for any x find the closest x0 (in the sampled
space) and return that value.

	Markov Decision Problems
	Markov Decision Processes
	Solving MDPs
	Related Reading

	LQR: The Analytic MDP
	The Linear Quadratic Regulator
	Value Iteration for Linear Quadratic MDPs
	LQR Tracking
	Iterative LQR (iLQR) (for non linear systems)
	Differential Dynamic Programming (DDP)

	Policy Improvement
	Policy Iteration Optimality
	Implementation Notes

	Approximate Dynamic Programming
	Introduction
	Approximate Value Iteration
	Challenges when using Fitted Q-Iteration

