Temporal Difference Learning and Q-Learning

In the previous chapter, we covered several reinforcement learning
algorithms including Fitted Q-Iteration and Approximate Policy It-
eration. These methods are sometimes called batch methods or offline
methods because a batch of samples a collected offline, and a fitted
value function (or action-value function) is found by minimizing the
training error for these samples. Offline methods like these make
efficient use of available training data, but are computationally ex-
pensive and suffer from high memory consumption as the number
of samples increases. In this lecture, we present several online tech-
niques that perform an incremental update after each state transition
(x,a,r,x"). Note that in this chapter we have switched from cost

to reward 7, as is common in the reinforcement learning literature.
Hence online methods can learn a policy with relatively low compu-
tational and memory cost because the updates are made based on a
single state transition. Sometimes people refer to the state transition
(x,a,r,x") as an experience.

First, we will present the Temporal-Difference (TD) method for online
policy evaluation. Next, we present another algorithm called SARSA
that extends online policy evaluation to the action-value function.
Finally, we explore Q-learning as a method for finding the action-
value function for the optimal policy, and hence finding the optimal
policy.

In this lecture, we consider the infinite time horizon case and
assume a deterministic policy. Recall that the value function for a
fixed policy 7 is defined as

[e9)

V™ (x) =E [Z fytr(xt,n(xt))] , where xg = x. (0.0.43)
=0

The action-value function for a fixed policy 7 is defined as

o

Y r(x, n(xt))] , where xg = x. (0.0.44)
t=1

Q™(x,a) =r(x,a)+E

42 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

The Bellman Equations in this case,

V(x) = 1(x, 70(x)) + Y E (st () [V (X)]

(0.0.45)
Q™(x,a) = r(x,a) + 7 Ep(w 5,0y [Q7 (¥, 7r(x))].

The Bellman Equations for the the value function V* and action-
value function Q* of the optimal policy 77* are,

v (x) = max (r(x,a) + 7By [V (+)])

Q* (x, 11) = r(x,a) + ’YIEP(X’|x,a) [?eag Q* (x// a/>].

(0.0.46)

Temporal-Difference Learning

Temporal-difference (TD) Learning, is an online method for estimat-
ing the value function for a fixed policy 7. The main idea behind
TD-learning is that we can learn about the value function from every
experience (x, a,r,x') as a robot traverses the environment.

Given an estimate of the value function V7 (x) we would like to
perform an update in order to minimize the squared loss>,

L= % (V*(x) — V”(x))z. (0.0.47)

Since we do not yet know the value function, evaluating this loss
requires evaluating equation (0.0.43). Naively, this method would
require waiting until the end of an episode before updating V7 (x).
Instead, we estimate V" (x) asy = r + v V7(x’) and perform an on-
line update for each experience (x, 7t(x),r, x’). Plugging this estimate
into the loss function we get

(y— V”(x))2 : (0.0.48)

N —

Eapprox =
The gradient of eq. (0.0.48) with respect to V7 is:

VVﬂ(x)Eapprox = (y - Vn(x)) (VVn(x)y — 1) . (0.0.49)

If our state-space is discrete and V™ (x’) and V7 (x) are indepen-
dent, VVn(x)y =0.

V7 (x) = V7 (x) +a (r+ V7 (x") = V7 (x))
— A=)V (x)+a(r+9V7" (). (0.0.50)
The term (r + yV™(x") — V™(x)) is sometimes known as TD error.

By looking at the second line of (0.0.50), one may notice that TD-
learning is also closely related to an exponential moving average.

5 Technically, this squared loss is
still an estimate of the Be112man error
Egn(x[3 (V™ (x) = V7(x))"], where
d™(x) is the probability of a state x
being visit under policy 7.

TEMPORAL DIFFERENCE LEARNING AND Q-LEARNING 43

Algorithm TD
The TD-learning algorithm is shown in Algorithm 15.

Initialize V™

while V7™ not converged do

Initialize x according to a particular starting state
while x is not a terminal state do

apply action a < 7r(x)

receive experience (x, 77(x), 7, x)

update V7 (s)

V() ¢ (1= a) V7 (x) +a (r + 9V ("))

set x + x’
end

end
return V7
Algorithm 14: The TD-learning algorithm.

Grid-World Example

The diagram below shows a grid-based world, where the robot starts
in the upper left (0,0), and the goal is in the lower right (3,3). The
robot gets a reward of +1 if it reaches the goal, and 0 everywhere
else. There is a discount factor of . The policy is for the robot to go
right until it reaches the wall, and then go down.

start = ——b

goal

We start by initializing V™ (x) = 0, Vx € X.

o o oo
o o oo
o o oo

As the robot moves one cell over from the start state (yellow arrow
above), the reward is 0, and the value of both the current state and
the next state is 0, so the approximate gradient used in the update
rule (0.0.50) evaluates to 0 and no update is performed. As the robot
moves into the goal state (red arrow), the reward is 1, so the approx-
imate gradient evaluates to 1. We then update the second-to-last cell
with (0.0.50) and we get:

44 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

V7((3,2) + (1—a)V™((3,2)) + a (1 +9V™((3,3))
=(1—a)x0+ax(1+0)=a.

o o o o
o o o o
o o o o
(=] [R O ©
L

Another iteration of the algorithm gives us:

V7((3,2) + (1—a)V™((3,2)) + a (1 +9V™((3,3))
=(1—-a)xat+ax(1+0)
=a+a(l—a),

VT((3,1)) «+ (1—a)V™((3,1)) + a (1 +9V™((3,2))
=1—a)x0+ax(0+yxa)

=a?y.

0

o’y
a+a(l-a)
0

o o o o
©o o o o
©o o o o

This method is slow, because we have to run the whole policy just
to update the next cell. We will see that SARSA and Q-learning has
similar issues of inefficient usage of experience.

SARSA

SARSA extends the Temporal-Difference method presented in the
previous section to evaluate policies represented by a action-value
functions Q7 (x,). Similar to the TD case, we wish to evaluate a pol-
icy by performing an online update to obtain an estimate, Q" (x, a), of
the true action-value function Q7 (x,a):

Q™ (x,a) =r(x,a) + i YE[r(xs, 7t(x4))] (0.0.51)
=1

As in TD, we seek to minimize the loss

Lapprox = % (y — Q”(x,a))2 (0.0.52)

where y = r(x,a) + yQ7(x/, ©(x')). Following a similar derivation as
used for the TD update, we arrive at the SARSA update rule:

Q" (x,a) = (1 -)Q%(x,a) +a [r(x,0) + 70" (¢, ()] . (0053)

TEMPORAL DIFFERENCE LEARNING AND Q-LEARNING

Algorithm SARSA
The SARSA algorithm is shown in Algorithm 16.

Initialize Q™

while Q7 not converged do

Initialize x according to a particular starting state
while x is not a terminal state do

apply action a < 7(x)

receive experience (x, 7t(x),r, x’', m(x"))

update Q7 (s)

Q" (x,a) « (1-a)Q™(x,a) +a [r(x,a) + 7Q™ (', m(x'))]

set x + x'
end

end
return V7™
Algorithm 15: The TD-learning algorithm.

One may notice that TD-learning and SARSA are essentially ap-
proximate policy evaluation algorithms for the current policy. As a
result of that they are examples of on-policy methods that can only
use samples from the current policy to update the value and Q func-
tion. As we will see later, Q learning, on the contrary, is an off-policy
method that can use samples from any policies to update the Q func-
tion.

Q-Learning

Q-Learning attempts to learn the optimal action-value function
Q*(x,a) from an online stream of experiences. Recall that the Bell-
man Equation for the optmal action-value function Q*(x, a) is,

Q*(x,a) =r(x,a) + 'Y]Ep(x/‘x,a)[ll;l;leag Q*(x/,d")).

Suppose we receive experience (x,a,r1, x!). If the transition model
is deterministic, we would update the action-value function as,

Q*(x,a) + r+ymaxQ*(x,a").
aeA

However, just as in SARSA, this performs poorly when the transition
or reward functions are stochastic. Instead, we update Q* to the
weighted sum,

Q*(x,a) < |7+ ymax Q*(x,a") | +(1—a)Q"(x,a),
a'e

where 0 < & <1 is the learning rate.

45

46 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

One may notice that we do not need the current policy 7t to up-
date Q*. Moreover, Q-learning approximates the optimal action-value
function, the Bellman Equation of which does not depend on the spe-
cific policy that the agent is executing. Therefore, Q-learning is an
off-policy algorithm that can use samples from any policies to update
Q.

Q-learning is guaranteed to converge Q* to the optimal action-
value function Q* as number of iterations k — oo given that the
following conditions hold:

1. Each state-action pair is visited infinite times
2. limy 00 Y Xk =
3. im0 Y2 0‘% < oo,

where «; is the learning rate at iteration k. The latter two conditions
mean that the learning rate « must be annealed over time. Intuitively,
this means that the agent begins by quickly updating Q*, then slows
down to refine its estimate as it receives more experience.

Fitted Q-Learning

Just as the fitted Q-iteration algorithm, we can use a function approx-
imator to approximate the action-value function.

Suppose that we approximate Q* with the function Qy with pa-
rameter 0. Instead of directly updating our action-value function, we
now must update 6 to achieve the desired change in Qy.

To fit 6, we minimize a loss function

L= (- Qlxa)?
that penalizes deviation between the approximate action-value func-
tion Qg(x,a) and the value y = r 4+ ymax, 4 Qq(x’, a’) predicted by
a Bellman backup.
First, we must derive the gradient of £. By applying the chain
rule, we find

VoL = (y — Qo(x,a)) [Voy — VoQp(x,a)]
= (y— Qo(x,a)) [YVeQo(x',a*) — VQp(x,a)]

where a* = argmax, . Qo(x’,a") is the optimal action according to
QY. Unfortunately, it is not possible to obtain an unbiased estimate
of Qp(x,a)VgQq(x',a*) using one sample (x,a,r,x"). We can find the
optimal parameter § by performing gradient descent on £ with the
update rule,

0+ 0—aVyL. (0.0.54)

TEMPORAL DIFFERENCE LEARNING AND Q-LEARNING

Q-learning, however, assumes that y is constant and approximates the
gradient as

VoLl = — (y— Qo(x,2)) VeQo(x,a). (0.0.55)

The complete fitted Q-learning update rule is found by substitut-
ing eq. (0.0.55) into eq. (0.0.54):

0 0+aly—Qols,a)] VQo(x,a)
—O0+af(r—7Qu(x',a*)) — Qo(x,a)] VQq(x,a).

Bellman Residual Method

Fitted Q-learning as described above does not implement gradient
descent and, thus, is not guaranteed to converge to a local minimum.
The Bellman residual algorithm avoids the approximation of eq. (0.0.55)
by estimating the true gradient Vo L.

VoL = (y— Qp(x,a)) (v VeQp(x',a*) — VgQp(x,a)) .

This estimation is only unbiased if we can generate two or more
independent successor states for taking action a in state s. Generating
these samples is trivial if we are able to simulate the system; i.e. have
access to a known or learned transition model. If we do not know
the transition model, then it is only possible to perform a Bellman
residual update if we postpone a backup until the same state-action
pair has been observed two or more times. This is often impossible
when learning on a real system that has a continuous state-action
space.

Exploration Policies

Unlike SARSA, which is an on-policy method, Q-learning is an off-
policy method that can learn from arbitrary (x, a,r, x") experiences,
regardless of what policy was used to generate them. This means that
it is possible to use an exploration policy training that encourages the
agent to visit previously unexplored regions of the state-action space.
Exploration policies guarantee that the agent visits each state an
infinite number of times and ensure convergence when the function
is represented by a look-up table.

Two exploration policies that are commonly used with Q-learning
are:

1. e-Greedy. Choose the greedy action ¢ = argmax,_, Q(x,a) with
probability 1 — €. Otherwise, with probability €, choose an action
uniformly at random a ~ uniform(A). Higher values of € encour-
age more exploration. Usually we set € close to 1 as learning starts,
and decay € — 0 as we go along.

47

48 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

2. Boltzmann Exploration. Choose action a with probability

_ exp[BQ(x,a)]
nt(alx) = Ywen exp [BQ(x,)]

which is weighted towards selecting actions with higher Q-values.
Lower values of B encourage more exploration: the exploration
policy with B = 0 is essentially a uniform distribution, as § —
the exploration policy becomes the greedy policy

nt(a|x) = argmaxQ(x,a’).
aeA

Hence, we usually start with § close to 0 and gradually increase B.

Experience Replay

Q-learning and SARSA are computationally efficient, but make inef-
ficient use of data. Unlike batch methods, each sample is only used
exactly once. This means that the agent must observe each transition
((x,a,7,x") for Q-learning and (x,a,r,x’,a’) for SARSA) many times
to propagate the reward backwards in time.

Experience relay allows Q-learning to re-use experience multiple
times by building a database D of experiences under the currently
policy, sometimes called the replay buffer. Once enough data has
been collected, the agent performs a fixed number of Q-learning
or SARSA updates on the batch. This technique bridges the gap
between offline methods and online methods, and can potentially
combine the advantages the two.

Moreover, because Q-learning is an off-policy algorithm, the ex-
periences generated from previous trajectories and policies can be
re-used to update the estimate of action-value functions. Therefore,
we can use a replay buffer across Q-learning updates: every time a
new experience is generated, it is added to the replay buffer, and the
agent performs Q-learning updates using random samples from the
replay bulffer.

Experience relay also helps address the problem of correlated sam-
ples for fitted Q-learning. In the case of online updates, the a expe-
rience is likely to be highly correlated with the previous/next ex-
perience because they are from the same trajectory. This makes the
function approximator easily overfit to the current part of the state
space, but fail to perform well for the entire state space. However,
such correlation is mitigated when we use a batch of samples from
possibly different trajectories to update the function approximator.

