An Online Spectral Learning Algorithm for Partially Observable Nonlinear Dynamical Systems

Byron Boots and Geoffrey J. Gordon

AAAI 2011

Select Lab Carnegie Mellon University

Dynamical System = A recursive rule for updating state based on observations

we would like to learn a model of a dynamical system

we would like to learn a model of a dynamical system

today I will focus on Spectral Learning Algorithms for Predictive State Representations

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

at each time step can predict:

 $P(o \mid x_t, \operatorname{do}(a_t)) = e^{\top} M_{a_t, o} x_t$

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

at each time step can predict:

$$P(o \mid x_t, \operatorname{do}(a_t)) = e^{\top} M_{a_t, o} x_t$$

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

at each time step can predict:

$$P(o \mid x_t, \operatorname{do}(a_t)) = \underline{e^{\top}} M_{a_t, o} x_t$$

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

at each time step can predict:

$$P(o \mid x_t, \operatorname{do}(a_t)) = e^{\top} M_{a_t, o} x_t$$

and update state:

$$x_{t+1} = M_{a_t,o_t} x_t / P(o_t \mid x_t, \operatorname{do}(a_t))$$

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

at each time step can predict:

$$P(o \mid x_t, \operatorname{do}(a_t)) = e^{\top} M_{a_t, o} x_t$$

and update state:

$$x_{t+1} = M_{a_t,o_t} x_t / P(o_t \mid x_t, \operatorname{do}(a_t))$$

comprised of:

set of actions Aset of observations Oinitial state $x_1 \in \mathbb{R}^d$ set of transition matrices $M_{ao} \in \mathbb{R}^{d \times d}$ normalization vector $e \in \mathbb{R}^d$

at each time step can predict:

$$P(o \mid x_t, \operatorname{do}(a_t)) = e^{\top} M_{a_t, o} x_t$$

and update state:

$$x_{t+1} = M_{a_t,o_t} x_t / P(o_t \mid x_t, \operatorname{do}(a_t))$$

parameters are only determined up to a similarity transform $S \in \mathbb{R}^{d \times d}$

if we replace $M_{ao} \rightarrow S^{-1}M_{ao}S$ $x_1 \rightarrow S^{-1}x_1$ $e \rightarrow S^{\top}e$

the resulting PSR makes exactly the same predictions as the original one

e.g.
$$P(o \mid x_t, do(a_t)) = e^{\top} S S^{-1} M_{a_t, o} S S^{-1} x_t$$

Learning PSRs

can use fast,

statistically consistent,

spectral methods

to learn PSR parameters

If bottleneck = rank constraint, then get a spectral method

Why Spectral Methods?

There are many ways to learn a dynamical system

- Maximum Likelihood via Expectation Maximization, Gradient Descent, ...
- Bayesian inference via Gibbs, Metropolis Hastings, ...

In contrast to these methods, spectral learning algorithms give

- No local optima:
 - Huge gain in computational efficiency
- Slight loss in statistical efficiency

Spectral Learning for PSRs

moments of directly observable features

- $\Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}}$ "trivariance" tensor of features of the future, present, and past
 - $\Sigma_{\mathcal{T},\mathcal{H}}~$ covariance matrix of features of the future and past
- $\Sigma_{\mathcal{AO},\mathcal{AO}}$ covariance matrix of features present

Spectral Learning for PSRs

moments of directly observable features

- $\Sigma_{T,AO,H}$ "trivariance" tensor of features of the future, present, and past
 - $\Sigma_{\mathcal{T},\mathcal{H}}~$ covariance matrix of features of the future and past
- $\Sigma_{AO,AO}$ covariance matrix of features present
 - U left d singular vectors of $\Sigma_{\mathcal{T},\mathcal{H}}$

sense learn act

Spectral Learning for PSRs

moments of directly observable features

 $\Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}}$ "trivariance" tensor of features of the future, present, and past

 $\Sigma_{\mathcal{T},\mathcal{H}}$ covariance matrix of features of the future and past

 $\Sigma_{AO,AO}$ covariance matrix of features present

U left d singular vectors of $\Sigma_{\mathcal{T},\mathcal{H}}$

 $S^{-1}M_{ao}S := \Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}} \times_1 U^{\top} \times_2 \phi(ao)^{\top} (\Sigma_{\mathcal{AO},\mathcal{AO}})^{-1} \times_3 (\Sigma_{\mathcal{T},\mathcal{H}}^{\top}U)^{\dagger}$

the other parameters can be found analogously

sense learn act

Spectral Learning for PSRs

Spectral Learning Algorithm:

- Estimate $\Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}}$, $\Sigma_{\mathcal{T},\mathcal{H}}$, and $\Sigma_{\mathcal{AO},\mathcal{AO}}$ from data
- Find \widehat{U} by SVD
- Plug in to recover PSR parameters
- Learning is Statistically Consistent
- Only requires Linear Algebra

For details, see:

B. Boots, S. M. Siddiqi, and G. Gordon. *Closing the learning-planning loop with predictive state representations*. RSS, 2010.

Infinite Features

- Can extend the learning algorithm to infinite feature spaces
 Kernels
- Learning algorithm that we have seen is linear algebra
 - works just fine in an arbitrary RKHS
 - Can rewrite all of the formulas in terms of Gram matrices
 - Uses kernel SVD instead of SVD

Result: Hilbert Space Embeddings of Dynamical Systems

- handles near arbitrary observation distributions
- good prediction performance

For details, see:

sense

learn

act

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. J. Smola. *Hilbert* space embeddings of hidden Markov models. ICML, 2010.

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. J. Smola. *Hilbert space embeddings of hidden Markov models*. ICML, 2010.

sense learn act

Batch Methods

- Bottleneck: SVD of Gram or Covariance matrix
 - ► G: (# time steps)²
 - C: (# features × window length) × (# time steps)

- E.g., 1 hr video, 24 fps, 300×300, features of past and future are all pixels in 2 s windows
 - ► G: (3600 × 24) × (3600 × 24) ≈ 10¹⁰

sense learn act

Making it Fast

- Two techniques
 - online learning
 - random projections
- Neither one new, but combination with spectral learning for PSRs is, and makes huge difference in practice

Online Learning

U left d singular vectors of $\Sigma_{\mathcal{T},\mathcal{H}}$

 $S^{-1}M_{ao}S := \Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}} \times_1 U^{\top} \times_2 \phi(ao)^{\top} (\Sigma_{\mathcal{AO},\mathcal{AO}})^{-1} \times_3 (\Sigma_{\mathcal{T},\mathcal{H}}^{\top}U)^{\dagger}$

Online Learning

U left d singular vectors of $\Sigma_{\mathcal{T},\mathcal{H}}$

 $S^{-1}M_{ao}S := \Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}} \times_1 U^{\top} \times_2 \phi(ao)^{\top} (\Sigma_{\mathcal{AO},\mathcal{AO}})^{-1} \times_3 (\Sigma_{\mathcal{T},\mathcal{H}}^{\top}U)^{\dagger}$

- With each new observation, rank-1 update of:
 - SVD (Brand)
 - inverse (Sherman-Morrison)
- *n* features; latent dimension *d*; *T* steps
 - space = O(*nd*): may fit in cache!
 - time = $O(nd^2T)$: bounded time per example

Random Projections

U left d singular vectors of $\Sigma_{\mathcal{T},\mathcal{H}}$

 $S^{-1}M_{ao}S := \Sigma_{\mathcal{T},\mathcal{AO},\mathcal{H}} \times_1 U^{\top} \times_2 \phi(ao)^{\top} (\Sigma_{\mathcal{AO},\mathcal{AO}})^{-1} \times_3 (\Sigma_{\mathcal{T},\mathcal{H}}^{\top}U)^{\dagger}$

- With each new observation, rank-1 update of:
 - SVD (Brand)
 - inverse (Sherman-Morrison)
- *n* features; latent dimension *d*; *T* steps
 - ▶ space = O(*nd*): may fit in cache!
 - time = $O(nd^2T)$: bounded time per example
- **Problem**: no rank-1 update of kernel SVD!
 - can use random projections [Rahimi & Recht, 2007]

sense learn act

Experiment (Revisited)

Conference Room

Conference Room

- online+random: 100k features, 11k frames, limit = avail. data
- offline: 2k frames, compressed & subsampled, compute-limited

Conference Room

- online+random: 100k features, 11k frames, limit = avail. data
- offline: 2k frames, compressed & subsampled, compute-limited

00 steps

Conference Room

- online+random: 100k features, 11k frames, limit = avail. data
- offline: 2k frames, compressed & subsampled, compute-limited

Conference Room

- online+random: 100k features, 11k frames, limit = avail. data
- offline: 2k frames, compressed & subsampled, compute-limited

Conference Room

- online+random: 100k features, 11k frames, limit = avail. data
- offline: 2k frames, compressed & subsampled, compute-limited

final embedding (colors = 3rd dim)

Paper Summary

- We present spectral learning algorithms for PSR models of partially observable nonlinear dynamical systems.
- We show how to update parameters of the estimated PSR model given new data
 - efficient online spectral learning algorithm
- We show how to use random projections to approximate kernel-based learning algorithms