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Abstract
A central problem in artificial intelligence is to choose actions to maximize re-

ward in a partially observable, uncertain environment. To do so, we must obtain
an accurate environment model, and then plan to maximize reward. However, for
complex domains, specifying a model by hand can be a time consuming process.
This motivates an alternative approach: learning a model directly from observations.
Unfortunately, learning algorithms often recover a model that is too inaccurate to
support planning or too large and complex for planning to succeed; or, they re-
quire excessive prior domain knowledge or fail to provide guarantees such as statis-
tical consistency. To address this gap, we propose spectral subspace identification
algorithms which provably learn compact, accurate, predictive models of partially
observable dynamical systems directly from sequences of action-observation pairs.
Our research agenda includes several variations of this general approach: spectral
methods for classical models like Kalman filters and hidden Markov models, batch
algorithms and online algorithms, and kernel-based algorithms for learning mod-
els in high- and infinite-dimensional feature spaces. All of these approaches share
a common framework: the model’s belief space is represented as predictions of ob-
servable quantities and spectral algorithms are applied to learn the model parameters.
Unlike the popular EM algorithm, spectral learning algorithms are statistically con-
sistent, computationally efficient, and easy to implement using established matrix-
algebra techniques. We evaluate our learning algorithms on a series of prediction
and planning tasks involving simulated data and real robotic systems.
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Chapter 1

Introduction

Many problems in machine learning and statistics involve collecting high-dimensional multivari-
ate observations or sequences of observations, and then hypothesizing a compact model which
explains these observations. An appealing representation for such a model is a latent variable
model that relates a set of observed variables to an additional set of unobserved or hidden vari-
ables. Examples of popular latent variable models include latent tree graphical models and dy-
namical system models, both of which occupy a fundamental place in engineering, control the-
ory, economics as well as the physical, biological, and social sciences. Unfortunately, to discover
the right latent state representation and model parameters, we must solve difficult structural and
temporal credit assignment problems.

Prior to the work described in this thesis, research on learning latent variable models and dy-
namical systems has predominantly relied on likelihood maximization and local search heuristics
such as expectation maximization (EM); these heuristics often lead to a search space with a host
of bad local optima, and may therefore require impractically many restarts to reach a prescribed
training precision.

This thesis will focus on two complementary ideas: predictive representations and spectral
learning algorithms. These models and algorithms hold the promise of overcoming the problems
inherent in previous approaches: unlike standard latent variable models, predictive representa-
tions can be naturally written in terms of observable quantities; and unlike the EM algorithm,
spectral methods for learning predictive representations are computationally efficient, statisti-
cally consistent, and have no local optima; in addition, they can be simple to implement, and
have state-of-the-art practical performance for many interesting learning problems.

1.1 Main Contributions
This thesis included the following major contributions:

• We develop a novel spectral algorithm for learning constant-covariance Kalman filters.
While we are not the first to develop spectral approaches to learning Kalman filters, we
developed this method specifically to demonstrate how spectral algorithms for learning
Kalman filters are similar to spectral algorithms for learning nonlinear dynamical system
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models. We also develop a novel method for enforcing the stability of learned linear dy-
namical system models, an important consideration when learning models for practical
applications.

• We develop spectral learning algorithms for discrete-observation discrete-action Predictive
State Representations (PSRs) which are an expressive class of controlled dynamical sys-
tem models that includes well-known models like Hidden Markov Models and Partially
Observable Markov Decision Processes. One of the advantages of PSRs is that they are
very compact models that have the ability to represent very large discrete state spaces with
low-dimensional representations. We demonstrate the power and utility of our learning
algorithm by proving that it can learn Hidden Markov Models efficiently, by showing that
we can learn a compact model of simulated robotic agent that supports planning, and by
improving least squares temporal difference learning.

• We extend spectral learning algorithms for discrete PSRs to use continuous features of
actions and observations. We show how to generalize Bayes’ rule to feature spaces, and
leverage this to create a very general dynamical system model and an efficient spectral
learning algorithm. This is an important advance, in that it makes learning complicated
non-linear models significantly easier and more data-efficient. We link these feature-based
spectral algorithms to non-parametric dynamical system models and spectral approaches
to learning models embedded in reproducing kernel Hilbert spaces.

• We show how spectral learning algorithms can be leveraged to problems beyond dynamical
system learning like range-only simultaneous localization and mapping and robot system
identification. The approaches developed may be adapted to future problems in robot
vision, mapping, and dynamical system learning.

The combination of predictive representations and spectral learning algorithms is an exciting new
area of research within machine learning. Since original publication, many of the novel ideas
and algorithms in this thesis have been embraced and extended by the machine learning research
community, and many of the core principles are starting to be applied to problems outside of dy-
namical system learning. Much of the research includes extensions and theoretical contributions
to the algorithms and theory in this thesis [4, 7, 33, 68, 106]. Additionally, several researchers
have gone beyond learning models of dynamical systems to develop predictive representations
and associated spectral learning algorithms for learning graphical models [1, 74, 100, 101], latent
Dirichlet allocation [2], and probabilistic context free grammars [5, 25, 26].

1.2 Organization

The remainder of the thesis is organized as follows:

Part I: Spectral Learning Algorithms for Predictive Representations We develop a family
of spectral learning algorithms for learning predictive representations of dynamical systems.
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Chapter 2 We introduce a spectral learning algorithm for a simple class of linear dynamical
systems with constant-covariance Gaussian noise. The algorithm proceeds by building covari-
ance matrices of observable quantities and then leverages linear algebra to learn the model pa-
rameters. The goal of this chapter is to introduce the general spectral learning approach on a
simple well-known dynamical system.

Chapter 3 We generalize this approach to learning dynamical systems to a much more ex-
pressive class of models called Predictive State Representations (PSRs) which include familiar
models like Hidden Markov Models and Partially Observable Markov Decision Processes as spe-
cial cases. Unlike Kalman filters, these models have non-linear dynamics and assume discrete
action, observation, and state spaces.

Chapter 4 We proceed to expand upon the work in Chapter 3 by developing a learning algo-
rithm based on continuous features of action and observation spaces. This allows us to learn
models even in the presence of complicated dynamical systems with very high cardinality dis-
crete state, action, and observation spaces. The basic learning algorithms presented in Chapter 3
and Chapter 4 are the core contributions of this thesis.

Chapter 5 We use recent developments in Hilbert space embeddings of distributions to ex-
tend our learning algorithms to cover dynamical systems with continuous action and observation
spaces. The learning algorithms in this chapter are qualitatively similar to those in previous chap-
ters but leverage infinite-dimensional feature-spaces and use the kernel trick durning learning.

Chapter 6 We provide efficient batch and online learning algorithms that use a number of
linear algebra tricks to learn from massive quantities of data.

Part II: Spectral Learning Algorithms in Practice The second part of this thesis focuses
on extensions to the basic algorithms described in Part I to handle practical problems in system
identification, reinforcement learning, robotics, and related fields.

Chapter 7 We look at the problem of learning back parameters of stable Kalman filters with
small quantities of training data. Although we may know that the dynamics of the system are
stable a priori, this is not enforced in the spectral learning algorithm. We provide a way of
enforcing stability.

Chapter 8 We look at the problem of planning in a learned Predictive State Representation.
We demonstrate the advantages of this approach over previous methods and show that one can
indeed learn a model of an environment and plan in the learned model.
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Chapter 9 We use theory from the first part of the thesis to link temporal difference learning
to spectral system identification. Using these insights we are able to build a novel temporal-
difference learning algorithm that outperforms previous methods on difficult policy learning
problems.

Chapter 10 We use insights from spectral system identification to develop a novel spectral
learning approach to range-only simultaneous localization and mapping.

Part III: Conclusions We summarize the main contributions of this thesis. We finally conclude
with a discussion of open problems and directions for future research.

Part IV: Appendices Contains the appendices for the chapters in Parts I and II.
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Part I

Spectral Learning Algorithms for
Predictive Representations
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Chapter 2

A Spectral Learning Algorithm for
Constant-Covariance Kalman Filters

Many problems in machine learning involve sequences of real-valued multivariate observations.
To model the statistical properties of such data, it is often sensible to assume each observation to
be correlated to the value of an underlying latent variable, or state, that is evolving over the course
of the sequence. In the case where the state is real-valued and the noise terms are assumed to be
Gaussian, the resulting model is called a linear dynamical system (LDS). LDSs are an important
tool for modeling time series in engineering, controls and economics as well as the physical and
social sciences. In this chapter we define a LDS and describe some of the inference and learning
algorithms as well as review the property of stability as it relates to the LDS transition model,
which will be relevant in Chapter 7. More details on LDSs and algorithms for inference and
learning LDSs (including spectral learning algorithms) can be found in several canonical papers
and standard references [35, 48, 51, 62, 117].

2.1 The State Space Equations
The evolution of a stochastic linear time-invariant dynamical system (LDS) can be described by
the following two equations:

x(ht+1) = Ax(ht) + wt wt ∼ N (0, Q) (2.1a)
yt = Cx(ht) + vt vt ∼ N (0, R) (2.1b)

Time is indexed by the discrete1 variable t. Here ht is a history of observations up to time t,
x(ht) denotes the hidden states in Rn, yt the observations in Rm, and the parameters of the
system: the dynamics matrix A ∈ Rn×n and the observation model C ∈ Rm×n. The variables wt
and vt describe zero-mean normally distributed process and observation noise respectively, with
covariance and cross-covariance matrices

E
[[

wt
vt

] [
wT
s vT

s

]]
=

[
Q S
ST R

]
δts (2.2)

1In continuous-time dynamical systems, the derivatives are specified as functions of the current state. They can
be converted to discrete-time systems.
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Figure 2.1: Graphical representation of the deterministic-stochastic linear dynamical system. See
text for details.

where δts is the Kronecker delta, Q ∈ Rn×n is non-negative definite, and R ∈ Rm×m is positive
definite, and S ∈ Rn×m is the cross-covariance, which must satisfy R − SQS> ≥ 0. Inputs can
be incorporated into the LDS model via a simple modification of Equations 2.1. See [11] for
details.

2.1.1 Inference

In this section we describe the forwards and backwards inference algorithms for LDS. More
details can be found in several sources [51, 62, 117].

Given a known model, the distribution over state at time t, P [Xt | y1:T ], can be exactly com-
puted in two parts: a forward and a backward recursive pass. The forward pass, which is de-
pendent on the initial state x(h1) and the observations y1:t, is known as the Kalman filter, and
the backward pass, which uses the observations from yT to yt+1, is known as the Rauch-Tung-
Striebel (RTS) equations. The combined forward and backward passes are together called the
Kalman smoother. It is worth noting that the standard LDS filtering and smoothing inference
algorithms [48, 82] are instantiations of the junction tree algorithm for Bayesian Networks on
the dynamic Baysian network described in Figure 2.1 (see, for example, Murphy [70]).

The Forward Pass (Kalman Filter)

Let the mean and covariance of the belief state estimate P [Xt | y1:t] at time t be denoted by x̂(ht)
and P̂t respectively. The estimates x̂(ht) and P̂ (ht) can be predicted from the previous time step
and the previous observation by Equations 2.3a–f. First we estimate the next state and next state
covariance without correcting for an observation:

x̄(ht+1) = Ax̂(ht) (2.3a)

P̄ (ht+1) = AP̂ (ht)A
> +Q (2.3b)

Equation 2.3a can be thought of as applying the dynamics matrixA to the mean to form an initial
prediction of x̂(ht). Similarly, Equation 2.3b can be interpreted as using the dynamics matrix A
and error covarianceQ to form an initial estimate of the belief covariance P̂ (ht+1). The estimates
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are then adjusted:

x̂(ht+1) = x̄(ht+1) +Ktet (2.3c)

P̂t+1 = P̄t+1 −KtCP̄t+1 (2.3d)

where the error in prediction at the previous time step (the innovation) et−1 and the Kalman gain
matrix Kt−1 are computed as follows:

et = yt − Cx̄(ht) (2.3e)

Kt = (P̄ (ht)C + S)>(CP̄ (ht)C
T +R)−1 (2.3f)

The weighted error in Equation 2.3c corrects the predicted mean given an observation, and Equa-
tion 2.3d reduces the variance of the belief by an amount proportional to the observation covari-
ance. Taken together, Equations 2.3a-f define a specific form of the Kalman filter known as the
forward innovation model.

2.2 The Constant-Covariance Kalman Filter
In this chapter we will be focussing on learning the parameters A, C, and K of the constant-
covariance Kalman filter. As mentioned in the previous section, the Kalman filter is given by
the forward innovation model (Equations 2.3a-f). We make the additional assumption that the
covariance of this Kalman filter, P (ht), does not vary with time t, and we assume that the linear
dynamical system has a stationary covariance

ΣX,X
def
= E

[
x(ht)x(ht)

>] (2.4)

where ΣX,X is independent of time t. Additionally, we define the following output covariances:

Λ
def
= E

[
yty
>
t

]
= E

[
(Cx(ht) + vt)(Cx(ht) + vt)

>]
= CE

[
x(ht)x(ht)

>]C> + E
[
vtv
>
t

]
= CΣX,XC

> +R (2.5)

and

G
def
= E

[
x(ht+1)y>t

]
= E

[
(Ax(ht) + wt)(Cx(ht) + vt)

>]
= AE

[
x(ht)x(ht)

>]C> + E
[
wtv

>
t

]
= AΣX,XC

> + S (2.6)

The fact that the constant state covariance P (ht) = ΣXX implies that the Kalman gain K =
(G− APtC>)(Λ− CPtC>)−1 [117] can be written

K = (G− APtC>)(Λ− CPtC>)−1

= (G− AΣXXC
>)(Λ− CΣXXC

>)−1

= SR−1 (2.7)
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Learning the Kalman filter from data involves finding the parameters θ = {A,C, S,R} that
explain the observed data. In principle, the maximum likelihood solution for these parameters can
be found through the iterative EM algorithm; but in practice the EM algorithm often fails due
to local optima [35]. An alternative approach is to use subspace system identification methods
to compute an asymptotically unbiased solution in closed form. In practice, subspace identifica-
tion is faster, more computationally robust, and easier to implement than maximum likelihood
approaches [35]; so that is what we consider here.

Subspace methods calculate the parameters of an LDS by using tools from linear algebra
including the oblique projection and the singular value decomposition (SVD) [39] to find Kalman
filter estimates of the underlying state sequence in closed form. We discuss a novel subspace
identification algorithm here. (See [117] for variations.)

2.2.1 Observable Representations
The key insight to spectral system identification is that the parameters of a LDS can be written
solely in terms of observable quantities. In this section we will show how to write down an
observable representation of a Kalman filter and in Section 2.3 we will design a spectral learning
algorithm that leverages this observable representation.

We begin by defining infinite “matrices” of observations. Let Y0|NP be defined as:

Y0|NP
def
=


y0 y1 · · ·
y1 y2

. . .
...

... . . .
yNP yNP+1 · · ·


m·NP×∞

(2.8)

We will use H to denote a matrix of past observations or histories. We can think of this matrix
as consisting of columns of NP -length histories ht. Specifically, we define

H
def
= Y0|NP = [h1 h2 . . .]

Similarly, let F, F+ denote matrices of “future” observations and the one-step shifted future
respectively. We can think of these matrices as consisting of columns of NF -length future se-
quences of observations ft. These are defined as

F
def
= YNP+1|NP+NF = [f1 f2 . . .] F+ def

= YNP+2|NP+NF+1 = [f2 f3 . . .]

Note that the matrices H,F and F+ all have the same form: in each matrix, each block of rows
is equal to the previous block but shifted by a constant number of columns. Such matrices are
called block Hankel matrices and play an important role in spectral system identification [62].
Finally, let

X = [x(h1) x(h2) . . .] ∈ Rn×∞ (2.9)

be a set of Kalman filter state estimates derived from the same set of observations. These state
estimates are, by definition, an expected set of features given a history that are sufficient to predict
future observations.
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Thus, if the observations arise from an LDS, then, by the forward innovation model (Equa-
tion 2.1):

E [F | X] =


Cx(h1) Cx(h2) · · ·
CAx(h1) CAx(h2) · · ·
CA2x(h1) CA2x(h2) · · ·

...
... . . .

CANF−1x(h1) CANF−1x(h2) · · ·


m·NF×∞

(2.10)

Next we define several matrices that will eventually let us learn the parameters of a LDS. Let Γ
(sometimes called the extended observability matrix) be defined:

Γ
def
=


C
CA
CA2

...
CANF−1


m·NF×n

(2.11)

Γ allows one to compute the expected future given state: e.g. E[f1 | h1] = Γx(h1). And, the
rows of Γ allow us to compute the expectation of current and future observations: e.g. E[yNP+1 |
h1] = Γ1:mx(h1).

Next we define the covariance of states and NP -length histories ΣX,H ∈ Rn×NP :

[ΣX,H]i,j
def
= E

[
Xi,tH

>
j,t

]
= E

[
E[Xi,t | ht]E[H>j,t | ht]

]
= E[xi(ht)E[H>j,t | ht]]

=⇒ ΣX,H = E[x(ht)E[H>t | ht]] (2.12)

Although we cannot directly estimate this matrix from data, it plays a central role in our deriva-
tions below. In particular, if we define a matrix

[ΣH,H]i,j
def
= E

[
Hi,tH

>
j,t

]
=⇒ ΣH,H = E

[
HtH

>
t

]
(2.13)

it can be used in conjunction with ΣX,H to find the Kalman filter state estimate at time t by
orthogonal projection onto history [48]:

x(ht) = ΣX,HΣ−1
H,Hht (2.14)

The Kalman filter state estimate is optimal linear predictor xt from history ht, an observation
that Kalman made in his seminal paper [48]. The derivation of Equation 2.14 is somewhat
complicated, but the complete proof in the context of spectral system identification can be found
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in [117]. Equation 2.14 also implies that the state covariance ΣX,X = E[x(ht)x(ht)
>] can be

found from ΣX,H and ΣH,H:

ΣX,X = E[x(ht)x(ht)
>]

= E
[
ΣX,HΣ−1

H,Hhth
>
t Σ−1
H,HΣ>X,H

]
= ΣX,HΣ−1

H,HE
[
hth

>
t

]
Σ−1
H,HΣ>X,H

= ΣX,HΣ−1
H,HΣ>X,H (2.15)

This fact is used in our derivations below.

The two fundamental matrices that allow us to define observable version of the parameters A
and C for a LDS are ΣF ,H and ΣF+,H. First we define ΣF ,H ∈ RNF×NP , a covariance matrix of
past and future sequences of observations:

[ΣF ,H]i,j
def
= E

[
Fi,tH

>
j,t

]
= E

[
E
[
Fi,tH

>
j,t | ht

]]
= E [E [Fi,t | ht]E [Hj,t | ht]]
= E [ΓiAx(ht)E [Hj,t | ht]]
= ΓiAE [x(ht)E [Hj,t | ht]]
= ΓiAΣX,Hj

=⇒ ΣF ,H = ΓAΣX,H (2.16)

Equation 2.16 tells us that the rank of ΣF ,H is no more than n, since its factors Γ and ΣX,H each
have rank no more than n. At this point we can define a sufficient set of histories and futures: it
is a set of histories for which the rank of ΣF ,H is equal to n.

Next we define ΣF+,H ∈ RNF×NP , a covariance matrix of past and one-step shifted futures:

[ΣF+,H]
i,j

def
= E

[
F+
i,tH

>
j,t

]
= E

[
E
[
F+
i,tH

>
j,t | ht

]]
= E

[
E
[
F+
i,t | ht

]
E [Hj,t | ht]

]
= E

[
ΓiA

2x(ht)E [Hj,t | ht]
]

= ΓiA
2E [x(ht)E [Hj,t | ht]]

= ΓiA
2ΣX,Hj

=⇒ ΣF+,H = ΓA2ΣX,H (2.17)

Just like ΣF ,H, ΣF+,H has rank at most n due to Γ and ΣF ,H.
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Finally, we need one additional covariance matrix in order to estimate the Kalman gain:

[ΣF+,y]i,j
def
= E

[
F+
i,ty
>
j,t

]
= E

[
E
[
F+
i,ty
>
j,t | ht+1

]]
= E

[
E
[
F+
i,t | ht+1

]
E [yj,t | ht+1]

]
= E [ΓiAx(ht+1)E [yj,t | ht+1]]

= ΓiAE [x(ht + 1)E [yj,t | ht+1]]

= ΓiAΣX+,Yj

=⇒ ΣF+,H = ΓAΣX+,Y (2.18)

where ΣX+,Y
def
= E [x(ht + 1)E [yt | ht+1]]. We are now in position to define the parameters of

a Kalman filter in terms of observable covariance matrices. The key to this approach is that,
for linear dynamical systems, there are many possible equivalent representations for the same
system. That is, two LDSs are said to be equivalent if the second order statistics of the output
generated by the models is the same, i.e. the covariance sequence of the output is identical [117].2

This means that the Kalman filter is only defined up to a similarity transform: the predictions
made from any of these systems is the same. For example, given a linear transform S, we can
define parameters Ã def

= SAS−1, C̃ def
= CS−1, K̃ def

= SK, and x̃(ht)
def
= Sx(ht). Predictions

from the transformed system are the same as the original system, e.g. C̃x̃(ht) = CS−1Sx(ht) =
Cx(ht). Filtering and simulating from the filter are similarly equivalent. See Equations 2.20
below for more details.

Practically, the equivalence of transformed LDSs means that we can pick an additional ma-
trix U ∈ RNF×n such that U>Γ is invertible and we can work with parameters transformed by
U>ΓA.3 A natural choice for U is the leading left singular vectors of ΣF ,H, although a randomly
generated U will work with probability 1 (but will typically result in slower learning). We now
define the parameters A and C of an LDS in terms of the observable matrices ΣF ,H, ΣF+,H,
and U , and simplify the definitions using Equations 2.19, to show that our parameters are only a

2The definition of equivalence is that the entire PDF of observation sequences is the same. But it turns out that
all we need to check is second order stats, since the joint distribution is Gaussian.

3We assume without loss of generality that A is full rank, therefore, the transform U>ΓA is invertible since both
U>Γ and A are assumed to be invertible.
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similarity transform away from the original LDS parameters:

x̃(ht)
def
= U>ΣF ,HΣ−1

H,Hht

= (U>ΓA)ΣX,HΣ−1
H,Hht

= (U>ΓA)x(ht) (2.19a)

Ã
def
= U>ΣF+,H(U>ΣF ,H)†

= U>ΓA2ΣX,H(U>ΣF ,H)†

= (U>ΓA)A(U>ΓA)−1(U>ΓA)ΣX,H(U>ΣF ,H)†

= (U>ΓA)A(U>ΓA)−1 (2.19b)

C̃
def
= U1:mÃ

−1

= U1:m((U>ΓA)A(U>ΓA)−1)−1

= U1:m(U>ΓA)A−1(U>ΓA)−1

= Γ1:mAA
−1(U>ΓA)−1

= Γ1:m(U>ΓA)−1

= C(U>ΓA)−1 (2.19c)

Here we used the fact that the first m rows of Γ are C from the definition of Γ (Equation 2.11).
In order to filter the system or to simulate from the system we additionally need to find the
observation covariance matrix R and the Kalman gain K. The Kalman gain can be found given
R and a similarity transform of S by a modification of Equation 2.7:

R
def
= Λ− C̃U>ΣF ,HΣ−1

H,HΣ>F ,HUC̃
>

= Λ− C̃(U>ΓA)ΣX,HΣ−1
H,HΣ>X,H(U>ΓA)>C̃>

= Λ− C(U>ΓA)−1(U>ΓA)ΣX,HΣ−1
H,HΣ>X,H(U>ΓA)>(U>ΓA)−TC>

= Λ− CΣX,HΣ−1
H,HΣ>X,HC

>

= Λ− CΣX,XC
> (2.19d)

S̃
def
= U>ΣF+,Y − U>ΣF+,HΣ−1

H,HΣ>F ,HUC̃
>

= (U>ΓA)ΣX+,Y − (U>ΓA)AΣX,HΣ−1
H,HΣ>F ,HUC̃

>

= (U>ΓA)ΣX+,Y − (U>ΓA)AΣX,HΣ−1
H,HΣ>X,HC

>

= (U>ΓA)ΣX+,Y − (U>ΓA)AΣX,XC
>

= (U>ΓA)(ΣX+,Y − AΣX,XC
>)

= (U>ΓA)S (2.19e)

K̃
def
= S̃R−1

= (U>ΓA)SR−1

= (U>ΓA)K (2.19f)
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We have now defined a Kalman filter in terms of only observable quantities. Given Equa-
tions 2.19(a–f), the state update equations for our transformed Kalman filter are

yt = C̃x̃(ht)

= C(U>ΓA)−1(U>ΓA)x(ht))

= Cx(ht) (2.20)

x̃(ht+1) = Ãx̃(ht) + K̃(yt − C̃x̃(ht))

= (U>ΓA)A(U>ΓA)−1(U>ΓA)x(ht) + (U>ΓA)K(yt − C(U>ΓA)−1(U>ΓA)x(ht))

= (U>ΓA)Ax(ht) + (U>ΓA)K(yt − Cx(ht))

= (U>ΓA)(Ax(ht) +K(yt − Cx(ht))) (2.21)

The fact that our Kalman filter is defined in terms of observable quantities means that developing
a learning algorithm is straightforward.

2.3 A Spectral Learning Algorithm

Our learning algorithm works by building empirical estimates Σ̂F ,H, Σ̂F+,H, Σ̂H,H, Σ̂F+,Y , and
Λ̂ of the matrices ΣF ,H,ΣT +,H,ΣH,HΣF+,Y , and Λ defined above. To build these estimates,
we repeatedly sample a history ht from the distribution ω and record the resulting observations.
This data gathering strategy implies that we must be able to arrange for the system to be in a state
corresponding to ht ∼ ω.

In practice, reset is often not available. In this case we can estimate Σ̂F ,H, Σ̂F+,H, Σ̂H,H, Σ̂F+,Y ,
and Λ̂ , by dividing a single long sequence of action-observation pairs into subsequences and pre-
tending that each subsequence started with a reset. We are forced to use an initial distribution
over histories, ω, equal to the steady state distribution of the system.

Once we have computed Σ̂F ,H, we can generate Û by singular value decomposition of Σ̂F ,H.
We can then learn the LDS parameters by plugging Û , Σ̂F ,H, Σ̂F+,H, Σ̂H,H, Σ̂F+,Y , and Λ̂ into
Equations 2.19(a–f).

As we include more data in our averages, the law of large numbers guarantees that our esti-
mates Σ̂F ,H, Σ̂F+,H, Σ̂H,H, Σ̂F+,Y , and Λ̂ converge to the true matrices ΣF ,H,ΣT +,H,ΣH,HΣF+,Y ,
and Λ. So by continuity of the formulas above, if our system is truly a LDS of finite rank, our
estimates Â, Ĉ, R̂, and K̂ converge to the true parameters up to a linear transform—that is, our
learning algorithm is consistent.4

Below we discuss some of the important design choices and extensions to the above learning
algorithm that are often important for learning dynamical system models in practice.

4The pseudoinverses are continuous at the true parameters, since the matrices to be pseudoinverted have full
rank. The matrix of n left singular vectors Û may not be a continuous function of Σ̂F,H (in case of repeated
singular values); to deal with this possibility, we can either fix Û (say, as the left singular vectors of our estimated
Σ̂F,H after some fixed amount of data), or we can make a slightly more complex argument based on the fact that the
column span of Û is a continuous function of Σ̂F,H near ΣF,H (since the nth singular value of ΣF,H is nonzero,
and is therefore separated from the (n+ 1)st, which is zero).
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Figure 2.2: Sunspot data, sampled monthly for 200 years. Each curve is a month, the x-axis is
over years. Below the graph are the first two principal components of Oi where Yf and Yp each
consist of 1-observation Hankel matrices and 12-observation Hankel matrices. The 1-observation
Hankel matrices do not contain enough observations to recover a state which accurately reflects
the temporal patterns in the data, while the 12-observation Hankel matrices do.

2.3.1 Learning from Sequences of Observations

Having multiple observations per column in F is particularly important when the underlying
dynamical system is not completely observable. For example, Figure 2.2 shows 200 years of
sunspot numbers, with each month modeled as a separate variable. Sunspots are known to have
two periods, the longer of which is 11 years. When spectral learning is performed using Hankel
matrices with i = 12, the first two principal components of Σ̂T ,H resemble the sine and cosine
bases, and the corresponding state variables are the coefficients needed to combine these bases so
as to predict 12 years of data. This is in contrast to the bases obtained by SVD on a 1-observation
Yf and Yp, which reconstruct just the variation within a single year. Thus, with i = 1 the state
estimate will not converge to the true Kalman filter state estimate even if j →∞.

2.3.2 Stability

Stability is a property of dynamical systems defined in terms of equilibrium points. If all solu-
tions of a dynamical system that start out near an equilibrium state xe stay near or converge to
xe, then the state xe is stable or asymptotically stable respectively (see Figure 2.3.2). A linear
system x(ht) = Ax(ht) is internally stable if the matrix A obeys the Lyapunov stability criterion
(see below). The standard algorithms for learning linear Gaussian systems do not enforce stabil-
ity; when learning from finite data samples, the spectral learning solution may be unstable even
if the true system is stable, due to the sampling constraints, modeling errors, and measurement
noise. A dynamics matrix A is said to be asymptotically stable in the sense of Lyapunov if, for
any given positive semi-definite symmetric matrix Q there exists a positive-definite symmetric
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Figure 2.3: System equilibria. (A) Unstable equilibrium. The state vector will rapidly move
away from the equilibrium point when perturbed. (B) Asymptotically stable equilibrium. The
state vector will return to the original equilibrium point when perturbed. (C.) Stable equilibrium.
No “resistance;” a perturbed state vector will oscillate forever around the equilibrium point. Note
that the notion of asymptotic stability is stronger than stability.

matrix P that satisfies the following Lyapunov criterion:

P − APAT = Q (2.22)

An LDS is said to be asymptotically stable in the sense of Lyapunov if its dynamics matrix A is.
Thus, the Lyapunov criterion can be interpreted as holding for an LDS if, for a given covariance
matrix, there exists a belief distribution where the predicted belief over state is equivalent to the
previous belief over state, that is, if there exists an equilibrium point. Below we will relate stable
in the sense of Lyapunov to stability and asymptotic stability

It is interesting to note that the Lyapunov criterion holds iff the spectral radius ρ(A) ≤ 1.
Recall that a matrix M is positive semi-definite iff zMzT ≥ 0 for all non-zero vectors z. Let λ
be an left eigenvalue of A and ν be a corresponding eigenvector, giving us νA = νλ, then

νQνT = ν(P − ATPA)νT = νPνT − νλPλνT = νPνT(1− |λ|2) (2.23)

Since νPνT ≥ 0, it follows that |λ| ≤ 1 is equivalent to νQνT ≥ 0, and therefore to Equation
2.23. When ρ(A) < 1, the system is asymptotically stable. To see this, suppose DΛD−1 is the
eigen-decomposition of A, where Λ has the eigenvalues of A along the diagonal and D contains
the eigenvectors. Then,

lim
k→∞

Ak = lim
k→∞

DΛkD−1 = D
(

lim
k→∞

Λk
)
D−1 = 0 (2.24)

since it is clear that limk→∞ Λk = 0. If Λ = I , then A is stable but not asymptotically stable
and the state oscillates around xe indefinitely. However, this is true only under the assumption
of zero noise. In the case of an LDS with Gaussian noise, a dynamics matrix with unit spectral
radius would cause the state estimate to move steadily away from xe. Hence such an LDS is
asymptotically stable only when ρ(A) is strictly less than 1.

Stability is a desirable characteristic for linear dynamical systems, but it is often ignored by
algorithms that learn these systems from data. When the amount of training data is small, the
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learned system is often unstable ρ(A) > 1. In Chapter 7 and [88] we propose a novel method
for learning guaranteed stable linear dynamical systems: we formulate an approximation of the
problem as a convex program, start with a solution to a relaxed version of the program, and
incrementally add constraints to improve stability. We show that this approach can drastically
increase the performance and utility of learned Kalman filters in practice.

2.4 Conclusions
In this chapter we presented a spectral learning algorithm for constant-covariance Kalman filters.
This algorithm is novel, though quite similar to previous subspace identification algorithms for
linear dynamical systems [51, 117]. Additional experimental results using this algorithm (in the
context of learning stable Kalman filters) can be found in Chapter 7.

Several ideas that are featured in this chapter feature prominently in our contributions to
learning the more general algorithms discussed in the next several chapters. In particular, we
exploit the fact that dynamical systems can often be written in terms of observable covariance
matrices and states can be viewed as predictive statistics. When this is the case, the state space
of the dynamical system can be found by a spectral decomposition of the covariance of past
and future observations. Finally, the state update can be found via application of a (potentially
generalized) version of Bayes’ rule.
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Chapter 3

Spectral Learning Algorithms for
Predictive State Representations

3.1 Introduction

In the previous chapter we looked the problem of learning a Kalman filter directly from data.
In this case we assumed a latent variable model with linear transition and observation functions
and Gaussian noise. For many systems, these assumptions are overly restrictive. In this chapter
we will consider learning models of dynamical systems where the transitions are nonlinear, the
states are discrete, and the noise model is assumed to be multinomial. With a large number of
states, these dynamical systems can be very expressive.

Two well-known multinomial dynamical system models are Hidden Markov Models (HMMs) [79]
and Partially Observable Markov Decision Processes (POMDPs) [22, 97]. Here we will focus on
a general multinomial-distributed dynamical system model called a Predictive State Represen-
tation (PSR) [61] which inlcudes HMMs and POMDPs as special cases. PSRs and the closely
related Observable Operator Models (OOMs) [44] are compact and complete descriptions of
a dynamical system. PSRs can be viewed as generalizations of POMDPs that have attracted
interest because they both have greater representational capacity than POMDPs and yield repre-
sentations that are at least as compact [31, 93]. In contrast to the latent-variable representations
of POMDPs, PSRs and OOMs represent the state of a dynamical system by tracking occur-
rence probabilities of a set of future events (called tests or characteristic events) conditioned
on past events (called histories or indicative events). Because tests and histories are observable
quantities, it has been suggested that learning PSRs and OOMs should be easier than learning
POMDPs.

In this chapter we develop a spectral learning algorithm for PSRs (and thus POMDPs) that
shares the advantages of spectral learning algorithms for linear dynamical systems: the algo-
rithm is statistically consistent and easy to implement with simple linear algebra operations. The
chapter is organized as follows. In Section 3.2 we will present the PSR model for dynamical
systems. Then in Section 3.3 we will describe the observable representation of PSRs. Finally, in
Section 3.4 we will leverage the observable representation to develop a simple spectral learning
algorithm for PSRs.
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a set of tests T
a single test in T τi
the observations in test τi τOi
the actions in test τi τAi
the prediction of a test τi at time t P

[
τOi,t | τAi,t, ht

]
the prediction vector of all tests τ at time t P

[
τOt | τAt , ht

]
shorthand for the prediction of test τi at time t τi(ht)
shorthand for the prediction of all test outcomes at time t τ(ht)

Table 3.1: Notation for Tests.

3.2 Predictive State Representations

3.2.1 Tests and PSR Notation
PSRs represent state as a set of predictions of observable experiments or tests that one could
perform in the system. The notation for tests is summarized in Table 3.1. Specifically, a test of
length NF is an ordered sequence of future action-observations pairs τi = a1, o1, . . . aNF , oNF
that can be executed and observed at any time t. Likewise, a history is an ordered sequence of
actions and observations ht = a1, o1, . . . , at−1, ot−1 that has been executed and observed prior to
a given time t. We will often work with sets of tests; therefore, let T = {τi} be a set of d tests.
A test τi is said to be executed at time t if we intervene to take the sequence of actions specified
by the test τAi = a1, . . . , aNF . It is said to succeed at time t if it is taken and if the sequence
of observations in the test τOi = o1, . . . , oNF matches the observations generated by the system.
The prediction for test i at time t is the probability of the test succeeding given a history ht and
given that we take it:

P
[
τOi,t | do

(
τAi,t
)
, ht
]

= P[o1 | a1, ht]

NF∏
i=2

P [oi | a1:i, o1:i−1, ht] (3.1)

We write τ(ht) for the prediction vector of success probabilities for the tests τi ∈ T given a
history ht, with elements:

τi(ht) = P
[
τOi,t | do

(
τAi,t
)
, ht
]

The key idea behind a PSR is that if we know the expected outcomes of executing all possible
tests, then we also know everything there is to know about the state of a dynamical system [93].

Knowing the success probabilities of some tests may allow us to compute the success prob-
abilities of other tests. That is, given a test τl and a prediction vector τ(ht), there may exist a
prediction function fτl such that P

[
τOl | do

(
τAl
)
, ht
]

= fτl (τ(ht)). In this case, we say τ(ht) is
a sufficient statistic for P

[
τOl | do

(
τAl
)
, ht
]
.

3.2.2 Linear Predictive State Representations
Formally, a PSR is a tuple 〈O,A,Q,F , x1, 〉. O is the set of possible observations and A is the
set of possible actions. Q is a core set of tests, xi ∈ Q i.e., a set whose prediction vector x(ht) is
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a sufficient statistic for the prediction of all tests τl at time t. F is the set of prediction functions
fτl for all tests τl (which must exist sinceQ is a core set), and x1 = x(h1) is the initial prediction
vector after seeing the empty history h1. In this work we will restrict ourselves to linear PSRs,
in which all prediction functions are linear: fτl(x(ht)) = g>τlx(ht) for some vector gτl ∈ Rd.

Since x(ht) is a sufficient statistic for all tests, it is a state for our PSR: i.e., for each time
t we can remember just x(ht) instead of the history ht itself. After taking action a and seeing
observation o, we can update x(ht) recursively by extending to a joint probability distribution
of the current observation and the next state and then conditioning on the probability of the
observation.

To see how this works, consider the following example. In a linear PSR we can predict the
success of any test τl at time t + 1 extended at the beginning by an action a and an observation
o, which we call aoτl, as a linear function of our core test predictions x(ht):

P
[
τOl,t+1, ot = o | do

(
τAl,t+1, at = a

)
, ht
]

= g>aoτlx(ht) (3.2)

If we write Mao for the matrix with rows g>aoxl for each test xl ∈ Q, then we can write the joint
probability of the next state and current observation as:

P
[
xOt+1, ot = o | do

(
xAt+1, at = a

)
, ht
]

= Maox(ht) (3.3)

Additionally, given a normalization vector x∞ ∈ Rd, defined by

x>∞P
[
xOt | do

(
xAt
)
, ht
]

= 1 (∀t)
=⇒ x>∞x(ht) = 1 (∀t) (3.4)

the PSR predicts that observation o will occur at time t with probability

P [ot = o | do (at = a) , ht] = x>∞P
[
xOt+1, ot = o | do

(
xAt+1, at = a

)
, ht
]

= x>∞Maox(ht) (3.5)

Note that here the normalization vector is marginalizing out the probability of the state from
the joint probability P

[
xOt+1, ot = o | do

(
xAt+1, at = a

)
, ht
]
. After seeing observation o, Equa-

tions 3.3 and 3.5 allow us to implement the conditioning step and update x(ht) recursively using
Bayes’ Rule:

x(ht+1) = P
[
xOt+1 | do

(
xAt+1

)
, ht+1

]
= P

[
xOt+1 | do

(
xAt+1, at = a

)
, ot = o, ht

]
=

P
[
xOt+1, ot = o | do

(
xAt+1, at = a

)
, ht
]

P [ot = o | ht, at = a]

=
Maox(ht)

x>∞Maox(ht)
(3.6)

We note that PSR parameters are only determined up to a similarity transform: let S ∈ Rd×d be
invertible. Then, if we replace Mao → SMaoS

−1, x(h1) → Sx(h1), and x∞ → S−>x∞, the
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Figure 3.1: A simple 3-state 2-observation HMM. An example of a set of indicative events (a
mutually exclusive and exhaustive partition of histories) for this HMM is H = {o1o2, o1o1, o2}.
(E.g., o1o2 means that the observation at time t− 1 is o1, and the one at time t is o2.) An example
of a set of tests for this HMM is T = {o1o2, o1o1, o2o1, o2o2}. (In this case, o1o2 means that the
observation at time t+ 1 is o1, and the one at time t+ 2 is o2.)

resulting PSR makes exactly the same predictions as the original one. (The pairs S−1S cancel in
Equations 3.5 and 3.6)

An important advantage of PSRs is that they are a natural match for fast, statistically consis-
tent, spectral learning algorithms. In particular, we can relate a PSR’s parameters to moments
of directly-observable statistics, and prove bounds on the ranks of matrices of these moments.
These facts suggest a simple algorithm: estimate the moments from a sample, enforce the rank
constraints by projection, and then solve for estimates of the PSR parameters. Based on this intu-
ition, we give here a spectral algorithm for learning PSRs based on an observable representation
of a PSR, which we now define.

3.3 Observable Representations

Specifying a PSR involves first finding a core set of tests Q, called the discovery problem, and
then finding the parameters Mao, x∞, and x1 for these tests, called the learning problem. A core
set Q for a linear PSR is said to be minimal if the tests in Q are linearly independent [44, 93],
i.e., no one test’s prediction is a linear function of the other tests’ predictions. Historically, the
discovery problem was usually solved by searching for linearly independent tests by repeatedly
performing Singular Value Decompositions (SVDs) on matrices of observations from collections
of tests [123]. The learning problem was then solved by regression.

We introduce a new learning algorithm based on an observable representation of a PSR, that
is, one where each parameter corresponds directly to observable quantities. This representation
depends on a core set of tests T (not necessarily minimal). It also depends on a setH of indicative
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events, that is, a mutually exclusive and exhaustive partition of the set of all possible histories.
We will assume H is sufficient (defined below). Both |T | and |H| may be arbitrarily larger than
|Q|; this property makes it easier to pick T andH satisfying our conditions, since we are free to
choose sets that we believe to be large enough and varied enough to exhibit the types of behavior
that we wish to model. Figure 3.1 illustrates an example of tests and histories in a simple HMM.

For purposes of gathering data, we assume that we can sample from some sufficiently diverse
distribution ω over histories; our observable representation depends on ω as well. We will define
“sufficiently diverse” below, but for example, ω might be the steady-state distribution of some
exploration policy. Note that this assumption means that we cannot estimate x1, since we don’t
have multiple samples of trajectories starting from x1. So, instead, we will estimate x∗, an
arbitrary feasible state, which is enough information to enable prediction (assuming the process
mixes at a reasonable rate). If we make the stronger assumption that we can repeatedly reset our
PSR to its starting distribution, a straightforward modification of our algorithm will allow us to
estimate x1 as well.

We define several observable matrices in terms of T ,H, and ω. After each definition we show
how these matrices relate to the parameters of the underlying PSR. These relationships will be
key tools in designing our learning algorithm and showing its consistency. The first observable
matrix is PH ∈ R|H|, containing the probabilities of every event Hi ∈ H when we sample a
history h according to ω:

[PH]i
def
= P [Hi]

def
= Pω [h ∈ Hi]

=⇒ PH = P [H] (3.7a)

Here we have defined P[H] to mean to mean the vector whose elements are P[Hi] for Hi ∈ H.
Next we define PX,H, the joint probability matrix of states and indicative events:

[PX,H]i,j
def
= Eω [x(ht)P [Hj,t | ht]]

=⇒ PX,H = Eω
[
x(ht)P

[
H>t | ht

]]
(3.7b)

We cannot directly estimate PX,H from data, but this matrix plays a fundamental role in our
derivations and will appear as a factor in several of the matrices that we define below. One of the
key functions of PX,H is that it can be simply related to x∗ and PH when h ∼ ω. The following
relations will be important for some of our derivations below:

P>H = E
[
H> | ht

]
= E

[
x>∞x(ht)H

> | ht
]

= x>∞E
[
x(ht)H

> | ht
]

= x>∞PX,H

and

x∗ = PX,H1
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where 1 ∈ R|Q| is the vector of 1s that marginalizes out indicative events. This definition works
because it sets x∗ to be the mean prediction given any history.

The next observable matrix is PT ,H ∈ R|T |×|H|, a covariance matrix whose entries are joint
probabilities of tests τi ∈ T and indicative events Hj ∈ H when we sample ht ∼ ω and take
actions τAi,t:

[PT ,H]i,j
def
= E

[
τOi,tHj,t

∣∣ do
(
τAi,t
)]

= E
[
P
[
τOi,t, Hj,t | ht, do

(
τAi,t
)]]

= E
[
P
[
τOi,t | ht, do

(
τAi,t
)]

P
[
H>j,t | ht

]]
= E [τi(ht)P [Hj,t | ht]]
= E

[
g>τix(ht)P [Hj,t | ht]

]
= g>τiE [x(ht)P [Hj,t | ht]]
= g>τiPX,Hj

=⇒ PT ,H = ΓPX,H (3.7c)

Here the vector gτi lets us compute the probability of test τi given the state, and Γ ∈ R|T |×|Q| is
the matrix with rows g>τi . Equation (3.7c) tells us that the rank of PT ,H is no more than |Q|, since
its factors Γ and PX,H each have rank at most |Q|. At this point we can define a sufficient set of
indicative events and a sufficiently diverse sampling distribution as promised: they are a set of
indicative events and a sampling distribution for which the rank of PT ,H is equal to |Q|.

The final observable matrices are PT +,ao,H ∈ R|T |×|H|, one matrix for each action-observation
pair. Entries of PT +,ao,H are probabilities of triples of an indicative event, the next action-
observation pair, and a subsequent test, if we execute a:

[PT +,ao,H]
i,j

def
= E

[
τOi,t+1I(ot = o)Hj,t

∣∣ do
(
at, τ

A
i,t+1

)]
= E

[
P
[
τOi,t+1, ot, Hj,t | ht, do

(
at, τ

A
i,t+1

)]]
= E

[
P
[
τOi,t+1, ot | ht, do

(
at, τ

A
i,t+1

)]
P [Hj,t | ht]

]
= E

[
P
[
τOi,t+1 | ht, ot, do

(
at, τ

A
i,t+1

)]
P [ot | ht, at]P [Hj,t | ht]

]
= E [τi(ht+1)P[ot | ht, at]P [Hj,t | ht]]
= E

[
g>τix(ht+1)P[ot | ht, at]P [Hj,t | ht]

]
= g>τiE

[
Maox(ht)

x>∞Maox(ht)
P[ot | ht, at]P [Hj,t | ht]

]
= g>τiE [Maox(ht)P [Hj,t | ht]]
= g>τiMaoE [x(ht)P [Hj,t | ht]]
= g>τiMaoPX,Hj

=⇒ PT +,ao,H = ΓMaoPX,H (3.7d)

Here we use Equation 3.6 and the fact that P [ot | ht, at] = x>∞Maox(ht). Just like PT ,H, the
matrices PT +,ao,H have rank at most |Q| due to their factors Γ and PX,H.
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Recall from Section 3.2.2 that PSRs are only defined up to a similarity transform. This
means that we can learn any similarity transform of the PSR parameters. To exploit this fact we
assume that we are given an additional matrix U ∈ R|T |×|Q| such that U>Γ is invertible. (Or,
equivalently given our assumptions above, such that U>PT ,H has full row rank.) A natural choice
for U is the leading left singular vectors of PT ,H, although a randomly-generated U will work
with probability 1 (but will typically result in slower learning). We can think of the columns of
U as specifying a core set Q′ of linear combinations of core tests Q which define a state vector
for our PSR.

We now define a PSR in terms of the observable matrices PH, PT ,H, PT +,ao,H and U , and
simplify the definitions using Equations 3.7(a–c) to show that our parameters are only a similarity
transform away from the original PSR parameters:

b∗
def
= U>PT ,H1

= U>ΓPX,H1

= (U>Γ)x∗ (3.8a)

b>∞
def
= P>H (U>PT ,H)†

= x>∞PX,H(U>PT ,H)†

= x>∞(U>Γ)−1(U>Γ)PX,H(U>PT ,H)†

= x>∞(U>Γ)−1 (3.8b)

Bao
def
= U>PT +,ao,H(U>PT ,H)†

= U>ΓMaoPX,H(U>PT ,H)†

= U>ΓMao(U
>Γ)−1(U>Γ)PX,H(U>PT ,H)†

= (U>Γ)Mao(U
>Γ)−1 (3.8c)

To get b1 = (U>Γ)x1 instead of b∗ in Equation 3.8a, replace PT ,H1, the vector of expected
probabilities of tests for ht ∼ ω, with the vector of probabilities of tests for ht = h1.

Given the parameters in Equations 3.8a–c, we can calculate the probability of observations
o1:t, given that we start from state x1 and intervene with actions a1:t. Here we write the product
of a sequence of transition matrices as Mao1:t = Ma1o1Ma2o2 . . .Matot .

P[o1:t | do(a1:t)] = x>∞Mao1:tx1

= x>∞(U>Γ)−1(U>Γ)Mao1:t(U
>Γ)−1(U>Γ)x1

= b>∞Bao1:tb1 (3.9)

In addition to the initial PSR state b1, we define normalized conditional internal states bt. We
define the PSR state at time t+ 1 as:

bt+1
def
=

Bao1:tb1

b>∞Bao1:tb1

(3.10)

We can define a recursive state update from time t ≥ 1 to t + 1 as follows (using the above

25



definition of b1 as the base case):

bt+1
def
=

Bao1:tb1

b>∞Bao1:tb1

=
BatotBao1:t−1b1

b>∞BatotBao1:t−1b1

=
Batotbt
b>∞Batotbt

(3.11)

If we only have b∗ instead of b1, then initial probability estimates will be approximate, but the
difference in predictions will disappear over time as our process mixes. The linear transform
from bt to a PSR internal state x(ht) is given by x(ht) = (U>Γ)−1bt. If we chose U by SVD,
then the prediction of tests τ(ht) at time t is given by Ubt = UU>Γx(ht) = Γx(ht) (since by the
definition of SVD, U is orthonormal and the row spaces of U and Γ are the same).

3.4 Learning Predictive State Representations

Our learning algorithm works by building empirical estimates P̂H, P̂T ,H, and P̂T +,ao,H of the
matrices PH, PT ,H, and PT +,ao,H defined above. To build these estimates, we repeatedly sample
a history ht from the distribution ω, execute a sequence of actions from one of our tests, and
record the resulting observations. This data gathering strategy implies that we must be able to
arrange for the system to be in a state corresponding to ht ∼ ω; for example, if our system has a
reset, we can take ω to be the distribution resulting from executing a fixed exploration policy for
a few steps after reset.

In practice, reset is often not available. In this case we can estimate P̂H, P̂T ,H, and P̂T +,ao,H
by dividing a single long sequence of action-observation pairs into subsequences and pretending
that each subsequence started with a reset. We are forced to use an initial distribution over
histories, ω, equal to the steady state distribution of the policy which generated the data. This
approach is called the suffix-history algorithm [123]. With this method, the estimated matrices
will be only approximately correct, since interventions that we take at one time will affect the
distribution over histories at future times; however, the approximation is often a good one in
practice, especially if we allow the process to mix by executing several steps of the exploration
policy in between interventions.

If we know or can estimate the exploration policy, we can avoid making any interventions,
and instead use importance weighting [16] to produce samples whose expectations are the true
test outcome probabilities. We summarize this trick here for the special case of an open-loop
randomized exploration policy. Write τA1 , τ

A
2 , . . . for the action sequences mentioned in our

tests. For simplicity, assume these sequences are distinct (if not, we can merge duplicates). Let
ζ1, ζ2, . . . > 0 be the probabilities of τA1 , τ

A
2 , . . . under the exploration policy. Starting at some

time, suppose the exploration policy actually executes the action sequence τAi . Write δ for the
random variable which is 1 if the corresponding observations match τOi , and 0 if not. Now
construct a sample vector which is zero everywhere except that the ith component is δ/ζi. It is
easy to see that the expected value of our sample vector is correct, i.e., that the expectation of
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the ith component is the true success probability of τi: the probability of selection ζi and the
weighting factor 1/ζi cancel out.

Once we have computed P̂H, P̂T ,H, and P̂T +,ao,H, we can generate Û by singular value de-
composition of P̂T ,H. We can then learn the PSR parameters by plugging Û , P̂H, P̂T ,H, and
P̂T +,ao,H into Equation 3.8(a–c). For reference, we summarize the above steps here:

1. Compute empirical estimates P̂H, P̂T ,H,P̂T +,ao,H.

2. Use SVD on P̂T ,H to compute Û , the matrix of left singular vectors corresponding to the
n largest singular values.

3. Compute model parameter estimates:

(a) b̂∗ = Û>P̂T ,H1,

(b) b̂∞ = (P̂>T ,HÛ)†P̂H,

(c) B̂ao = Û>P̂T +,ao,H(Û>P̂T ,H)†

As we include more data in our averages, the law of large numbers guarantees that our estimates
P̂H, P̂T ,H, and P̂T +,ao,H converge to the true matrices PH, PT ,H, and PT +,ao,H (defined in Equa-
tion 3.7). So by continuity of the formulas above, if our system is truly a PSR of finite rank, our
estimates b̂∗, b̂∞, and B̂ao converge to the true parameters up to a linear transform—that is, our
learning algorithm is consistent.1 Although parameters estimated with finite data can sometimes
lead to negative probability estimates when filtering or predicting, this problem can be avoided
in practice by thresholding the predicted probabilities by some small positive probability.

The learning strategy employed here may be seen as a generalization of Hsu et al.’s spectral
algorithm for learning HMMs [42] to PSRs. Since HMMs and POMDPs are a proper subset
of PSRs, we can use the algorithm in this chapter to learn back both HMMs and POMDPs in
PSR form. However, the problem of learning HMMs and POMDPs in general is hard under
cryptographic assumptions [52, 109]. Therefore, some models will require a large amount of
data (and thus a large amount of computation) to learn exactly. The learning algorithm presented
here embodies a tradeoff: it relinquishes the ability to learn very difficult HMMs with little data
and a lot of computation, but is a very effective learning algorithm for easier HMMs.

Since uncontrolled PSRs are equivalent to OOMs, the learning algorithm presented here can
also be used to efficiently learn OOMs. In fact, the naı̈ve OOM learning algorithm [44] is similar
to our PSR learning algorithm, but uses a fixed subspace rather than employing SVD to choose
a subspace. The more sophisticated efficiency sharpening algorithm [38] is an iterative way to
choose a subspace for OOMs that results in more statistically efficient estimates than the naı̈ve
algorithm.

Finally, note that the learning algorithm presented here is distinct from the TPSR learning
algorithm of [84]. In addition to the differences mentioned above, a key difference between the

1The pseudoinverses are continuous at the true parameters, since the matrices to be pseudoinverted have full
rank. The matrix of n left singular vectors Û may not be a continuous function of P̂T ,H (in case of repeated singular
values); to deal with this possibility, we can either fix Û (say, as the left singular vectors of our estimated P̂T ,H after
some fixed amount of data), or we can make a slightly more complex argument based on the fact that the column
span of Û is a continuous function of P̂T ,H near PT ,H (since the nth singular value of PT ,H is nonzero, and is
therefore separated from the (n+ 1)st, which is zero).
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two algorithms is that here we estimate the joint probability of a past event, a current observa-
tion, and a future event in the matrix P̂T +,ao,H, whereas [84] instead estimate the probability of a
future event, conditioned on a past event and a current observation. To compensate, Rosencrantz
et al. later multiply this estimate by an approximation of the probability of the current observa-
tion, conditioned on the past event. Rosencrantz et al. also derive the approximate probability
of the current observation differently: as the result of a regression instead of directly from em-
pirical counts. Finally, Rosencrantz et al. do not make any attempt to multiply by the marginal
probability of the past event, although this term cancels in the current work. In the absence of es-
timation errors, both algorithms would arrive at the same answer, but taking errors into account,
they will typically make different predictions. The difficulty of extending the Rosencrantz et al.
algorithm to handle real-valued features stems from the difference between joint and conditional
probabilities: the observable matrices in Rosencrantz et al. are conditional expectations, so their
algorithm depends on being able to condition on discrete indicative events or observations.
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Chapter 4

Learning Predictive State Representations
with Features

In this chapter we generalize our observable representation of PSRs in Chapter 3, which were
built from joint probabilities of discrete observations, to expectations of continuous features.
In data gathered from complex real-world dynamical systems, it may not be possible to find a
reasonably-sized core set of discrete tests T or sufficient set of indicative eventsH. When this is
the case, we can generalize the PSR learning algorithm and work with features of test outcomes
and histories, which we call characteristic features and indicative features respectively. Simi-
larly, if we have a large number of discrete observations and actions, the number of parameters in
the PSR can become large enough to make learning practically impossible. When this is the case,
we can generalize the PSR to recursively update state based on observation features through a
matrix representation of Bayes’ rule.

We will discuss features in two steps. First we will define PSRs in terms of moments of ob-
servable features of tests and histories. This extension has important practical consequences: we
often have domain knowledge that allows us to choose features that “make sense” for the system
we are trying to model, and, choosing a small set of features usually means that the learning al-
gorithm converges at a faster rate in practice. Second, we generalize the PSR Bayes’ rule update
to features of observations. In this chapter we will focus on learning PSRs that contain a large but
finite number of discrete actions, observations, and features. We will generalize to continuous
actions and observations, and infinite feature spaces, in Chapter 5.

4.1 Characteristic and Indicative Features

4.1.1 Characteristic Features

We can generalize the notion of a test from Section 3.2.1 to a characteristic feature, a feature of
the future that is a linear combination of several tests sharing a common action sequence. These
features are called characteristic because the expectation of the features fully characterizes the
distribution of the future. For example of a characteristic feature: if τ1 and τ2 are two tests with
τA1 = τA2

def
= τA, then we can make a feature φ = 3τ1 + τ2. This feature is executed if we
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intervene to do(τA), and, if it is executed, its value is 3I(τO1 ) + I(τO2 ), where I(o1 . . . oi) stands
for an indicator random variable, taking the value 0 or 1 depending on whether we observe the
sequence of observations o1 . . . oi. The prediction of φ given ht is φ(ht)

def
= E

[
φ | ht, do

(
τA
)]

=
3τ1(ht) + τ2(ht).

While linear combinations of tests may seem restrictive, our definition is actually very ex-
pressive: we can represent an arbitrary function of a finite sequence of future observations. We
could also allow convergent limits of features (i.e., take the closure of the set of features), mean-
ing that we could represent many functions of the entire infinite sequence of future observations.
Another view of this is that we could approximate a feature of the infinite sequence arbitrarily
closely. To build a feature, we take a collection of tests, each of which picks out one possi-
ble realization of the sequence, and weight each test by the value of the function conditioned
on that realization. For example, if our observations are integers 1, 2, . . . , 10, we can write the
square of the next observation as

∑10
o=1 o

2I(o), and the mean of the next two observations as∑10
o=1

∑10
o′=1

1
2
(o+ o′)I(o, o′).

The restriction to a common action sequence is necessary: without this restriction, all the
tests making up a feature could never be executed at once. Once we move to feature predictions,
however, it makes sense to lift this restriction: we will say that any linear combination of fea-
ture predictions is also a feature prediction, even if the features involved have different action
sequences.

Action sequences raise some problems with obtaining empirical estimates of means and co-
variances of features of the future: e.g., it is not always possible to get a sample of a particular
feature’s value on every time step, and the feature we choose to sample at one step can restrict
which features we can sample at subsequent steps. In order to carry out our derivations without
running into these problems repeatedly, we will assume for the rest of the chapter that we can re-
set our system after every sample, and get a new history independently distributed as ht ∼ ω for
some distribution ω. (With some additional bookkeeping we could remove this assumption [16],
but this bookkeeping would unnecessarily complicate our derivations.)

Furthermore, we will introduce some new language, again to keep derivations simple: if we
have a vector of features of the future φT , we will pretend that we can get a sample φTt in which
we evaluate all of our features starting from a single history ht, even if the different elements of
φT require us to execute different action sequences. When our algorithms call for such a sample,
we will instead use the following trick to get a random vector with the correct expectation (and
somewhat higher variance, which doesn’t matter for any of our arguments): write τA1 , τ

A
2 , . . .

for the different action sequences, and let ζ1, ζ2, . . . > 0 be a probability distribution over these
sequences. We pick a single action sequence τAa according to ζ , and execute τAa to get a sample
φ̂T of the features which depend on τAa . We then enter φ̂T /ζa into the corresponding coordinates
of φTt , and fill in zeros everywhere else. It is easy to see that the expected value of our sample
vector is then correct: the probability of selection ζa and the weighting factor 1/ζa cancel out.
We will write E

[
φT | ht, do(ζ)

]
to stand for this expectation.
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4.1.2 Indicative Features

Just as we generalized the notion of test to characteristic features, we can generalize the notion
of a history to indicative features. Such features are called indicative because they indicate what
has already happened. An indicative feature is a function of the history ht. We have already seen
a specific type of indicative feature in Section 3.3, an indicative event, which is one of a set of
mutually exclusive and exhaustive partitions of history. Other indicative features might reference
the number of times we saw o1 in the past three steps; or, in a domain with actions, indicative
features can reference past actions: e.g., the number of times we did action a1 in the past three
steps.

4.2 Defining PSRs with Characteristic and Indicative Features

Let Q be a minimal core set of tests for a dynamical system, with cardinality d = |Q| equal
to the linear dimension of the system. Then, let T be a larger core set of tests (not necessarily
minimal, and possibly even with |T | countably infinite). And, let H be the set of all possible
histories. (|H| is finite or countably infinite, depending on whether our system is finite-horizon
or infinite-horizon.)

We write φHt ∈ R`H for a vector of indicative features of history at time t, and write φTt ∈ R`T

for a vector of characteristic features of the future at time t. Since T is a core set of tests, by
definition we can compute any test prediction τi(ht) as a linear function of the tests in T . And,
since feature predictions are linear combinations of test predictions, we can also compute any
feature prediction E

[
φTt | do(ζ), ht

]
as a linear function of the tests in T . We define the matrix

ΦT ∈ R`×|T | to embody our predictions of future features: that is, an entry of ΦT is the weight
of one of the tests in T for calculating the prediction of one of the features in φT .

Below we define several matrices, µH, ΣT ,H, and ΣT +,ao,H, in terms of characteristic and
inidicative features φTt and φHt and discrete actions and observations at, and ot, and show how
these matrices relate to the parameters of the underlying PSR.

These matrices are the analog of the matrices PH, PT ,H, and PT +,ao,H in Equations 3.7,
but will no longer contain probabilities, but rather expected values of features or products of
features. For the special case of features that are indicator functions of test outcomes and sets of
histories, we recover the probability matrices from Section 3.3. And, just as in Section 3.3, we
can estimate expected values from repeated trials, or from one long sequence; and, we can use
importance sampling to avoid having to make any interventions.

We need to require a version of sufficiency for our sets of features, as we did for tests and in-
dicative events above. The updated definition of sufficiency is analogous to our earlier definitions
of core tests and sufficient indicative events: we require that the rank of ΣT ,H (defined below in
Equation 4.1c) is equal to the linear dimension of the system. The advantage of working with
features instead of events is that, in practice, it seems to be easier to ensure sufficiency with a
moderate number of features.
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We begin by defining the analog of PH from Equation 3.7a:

[µH]i
def
= E

[
φHi,t
]

=⇒ µH = E
[
φHt
]

(4.1a)

Next we define ΣX,H, the cross covariance of states and features of histories. Let

ΣX,H
def
= E

[
xtφ

H
t

>
]

= E
[
x(ht)E

[
φHt
> | ht

] ]
(4.1b)

Like PX,H in Equation 3.7b, we cannot directly estimate ΣX,H from data, but this matrix will
appear as a factor in several of the matrices that we define below. We can see that ΣX,H is related
to µH:

x>∞ΣX,H = x>∞E
[
x(ht)E

[
φHt
> | ht

]]
= E

[
x>∞x(ht)E

[
φHt
> | ht

]]
= E

[
E
[
φHt
> | ht

]]
= E

[
φHt
>
]

= µH
>

Next we define ΣT ,H, the cross covariance matrix of the features of tests and histories:

[ΣT ,H]i,j
def
= E

[
φTi,tφ

H
j,t

∣∣ do(ζ)
]

= E
[
E
[
φTi,tφ

H
j,t | do (ζ) , ht

]]
= E

[
E
[
φTi,t | do (ζ) , ht

]
E
[
φHj,t | ht

]]
= E

 |T |∑
l=1

ΦTi,lτl(ht)E
[
φHj,t | ht

]
=

|T |∑
l=1

ΦTi,lE
[
τl(ht)E

[
φHj,t | ht

]]
=

|T |∑
l=1

ΦTi,lE
[
g>τlx(ht)E

[
φHj,t | ht

]]
=

|T |∑
l=1

ΦTi,lg
>
τl
E
[
x(ht)E

[
φHj,t | ht

]]
= ΦTi ΓE

[
x(ht)E

[
φHj,t | ht

]]
= ΦTi ΓΣX,Hj

=⇒ ΣT ,H = ΦT ΓΣX,H (4.1c)
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As in Chapter 3, the vector gτl is the linear function that specifies the probability of the test
τl given the probabilities of tests in the core set Q, and the matrix Γ has all of the gτl vectors
as rows. The state vector x(ht) contains the probabilities of all tests in Q given history ht.
The above derivation shows that, because of our assumptions about the linear dimension of the
system, the matrix ΣT ,H has factors ΦT Γ ∈ R|T |×n and ΣX,H ∈ Rn×`. Therefore, the rank of
ΣT ,H is no more than d, the linear dimension of the system.

Finally, we define ΣT +,ao,H, a set of matrices, one for each action-observation pair, that rep-
resent the covariance between features of history before and after taking action a and observing
o. In the following, I(ot = o) is an indicator variable for whether we see observation o at step t.

[ΣT +,ao,H]
i,j

def
= E

[
φTi,t+1I(ot = o)φHj,t

∣∣ do(at, ζ
+)
]

= E
[
E
[
φTi,t+1I(ot = o)φHj,t | do

(
at, ζ

+
)
, ht
]]

= E
[
E
[
φTi,t+1I(ot = o) | do

(
at, ζ

+
)
, ht
]
E
[
φHj,t | ht

]]
= E

[
E
[
φTi,t+1 | do

(
at, ζ

+
)
, ht, ot

]
P [ot | ht, do (at)]E

[
φHj,t | ht

]]
= E

 |T |∑
l=1

ΦTi,lτl(ht+1)P [ot | ht, do(at)]E
[
φHj,t | ht

]
=

|T |∑
l=1

ΦTi,lE
[
τl(ht+1)P [ot | ht, do(at)]E

[
φHj,t | ht

]]
=

|T |∑
l=1

ΦTi,lE
[
g>τlx(ht+1)P [ot | ht, do(at)]E

[
φHj,t | ht

]]
=

|T |∑
l=1

ΦTi,lg
>
τl
E
[
x(ht+1)P [ot | ht, do(at)]E

[
φHj,t | ht

]]
= ΦTi ΓE

[
x(ht+1)P [ot | ht, do(at)]E

[
φHj,t | ht

]]
= ΦTi ΓE

[
Maox(ht)

x>∞Maox(ht)
P [ot | ht, do(at)]E

[
φHj,t | ht

]]
= ΦTi ΓE

[
Maox(ht)E

[
φHj,t | ht

]]
= ΦTi ΓMaoE

[
x(ht)E

[
φHj,t | ht

]]
= ΦTi ΓMaoΣX,Hj

=⇒ ΣT +,ao,H = ΦT ΓMaoΣX,H (4.1d)

Our goal is now to define a PSR in terms of the above moments of characteristic and indicative
features. Similar to our approach in Chapter 3, we will need a matrix U such that U>ΦT Γ is
invertible (i.e. U>ΣT ,H has full row rank); we can take U to be the left singular values of ΣT ,H.
We also assume that we have a vector e s.t. φHt

>
e = 1 (∀ t). The existence of e means that the

ones vector 1> must be in the row space of φH. Since φH is a matrix of features, we can always
ensure that this is the case by requiring one of our features to be a constant.

The parameters of the PSR (b∗, b∞, and Bao) are now defined as follows in terms of the
matrices µH, ΣT ,H, ΣT +,ao,H, and U . After each definition we simplify the expressions using
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Equations 4.1a–d to show that our parameters are only a similarity transform away from the
original PSR parameters:

b∗
def
= U>ΣT ,He

= U>ΦT ΓΣX,He

= (U>ΦT Γ)x∗ (4.2a)

b>∞
def
= µ>H(U>ΣT ,H)†

= x>∞ΣX,H(U>ΣT ,H)†

= x>∞(U>ΦT Γ)−1(U>ΦT Γ)ΣX,H(U>ΣT ,H)†

= x>∞(U>ΦT Γ)−1 (4.2b)

Bao
def
= U>ΣT +,ao,H(U>ΣT ,H)†

= U>ΦT ΓMaoΣX,H(U>ΣT ,H)†

= U>ΦT ΓMao(U
>ΦT Γ)−1(U>ΦT Γ)ΣX,H(U>ΣT ,H)†

= (U>ΦT Γ)Mao(U
>ΦT Γ)−1 (4.2c)

Just as in Section 3.4 where we estimate Û , P̂H, P̂T ,H, and P̂T +,ao,H, we can estimate Û , Σ̂H,
Σ̂T ,H, and Σ̂T +,ao,H from data, and then plug the estimates into Equations 4.2(a–c). And, just
as before, our estimation equations are continuous near the true values of U , ΣH, ΣT ,H, and
ΣT +,ao,H.1 Thus we see that if we work with characteristic and indicative features, and if our
system is truly a PSR of finite rank, our estimates b̂∗, b̂∞, and B̂ao again converge to the true PSR
parameters up to a linear transform.

If we are trying to model a dynamical system with a small number of discrete actions and
observations, then the above approach to learning a PSR can be very effective. Characteristic
and indicative features are especially useful when we want to summarize a large set of tests and
history (and, therefore, increase the likelihood that this set is core). However, if the number of
possible observations and actions are very large, and we only receive a few or no training points
for each action-observation pair, then the transition parameters Mao can be very difficult to learn.
When this is the case we use observation features.

4.3 Observation Features and Bayes’ Rule
In this section, we extend the above definitions and algorithms to handle a large observation set
O by extending our use of features to features of observations conditioned on actions. Suppose
that |O| is finite, but large enough that we cannot hope to see each observation more than a
small number of times. Then the representations of ΣT ,H and ΣT +,ao,H in terms of PSR param-
eters (Equations 4.1(a–d)) are still valid, but we cannot gather enough data to estimate ΣT +,ao,H
accurately unless we make additional assumptions.

Therefore we generalize observations to observation features, a feature of the present that
is a linear combination of observations conditioned on taking a common action. In this way,

1Again, with the same caveat about the SVD.
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observation features are very similar to characteristic features: they must be designed so that the
expectation of observation features fully characterizes the probability distribution of observations
at time t for each action. When obtaining empirical estimates of expectations of observation fea-
tures we must pay close attention to actions in a manner similar to estimating expectations of
characteristic features. We incorporate actions into the observation features by parameterizing
the features with actions. That is, we assume that we know m features of observations condi-
tioned on actions, φAOk,t for k = 1 . . .m at each time t. We can decompose

φAOk,t = ΦAOk,: eatot (4.3)

where each element of the matrix ΦAO ∈ Rk×|A|·|O| contains the value of a feature given that we
take the action and observe the observation that indexes that element. The indicator vector eao
picks out the column of ΦAO corresponding to the particular action and observation at time t.
Entries of ΦAO that require a particular action are set to zero for other actions. This implies that
ΦAO is block diagonal.

To estimate observation features from data, we will pretend we get a sample φAOt in which
we evaluate all of our observation features, even if different elements of φAO depend on different
actions. To get such a sample, we can pick a single action a according to our policy given ht and
receive a sample observation o. We then compute the coordinates that we can, multiply by an
importance weight, and fill in zeros everywhere else:

φ̂AOk,t =
ΦAOk,: eatot

P[at = a | ht]
(4.4)

The expected value of our sample vector is correct, since the probability of selecting our action
P[at = a | ht] cancels with the weighting factor 1

P[at=a|ht] .
Defining PSRs in terms of observation features is more involved than extending the definition

to characteristic and indicative features. In particular we have to be careful that extending to fea-
tures does not interfere with the Bayes’ rule update for the PSR state. In Section 4.3.1 we review
how PSRs implement Bayes’ rule and we provide a matrix algebra equation for implementing
Bayes’ rule. In Section 4.3.2 we show how to implement Bayes’ rule when we are dealing with
observation features. Finally, in Section 4.4 we define a PSR in terms of characteristic, indicative,
and observation features.

4.3.1 Bayes’ Rule with Discrete Observations

Recall from Section 3.2.2 that at each time step t = 1, 2, . . ., a PSR predicts the joint probability
of observation o and next state conditioned on action a

P [x(ht+1), ot = o | ht, at = a] = Maox(ht) (4.5)

Then, the normalization vector m∞ marginalizes out the next state, giving just the probability of
observation ot

P [ot | ht, at] = m>∞Maox(ht) (4.6)
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and combining these two equations, the next PSR state is found by Bayes’ Rule

x(ht+1) = Maox(ht)/m
>
∞Maox(ht) (4.7)

As we will see shortly, it can be useful to write the Bayes’ rule update as a set of matrix opera-
tions. If we define:

PX+,AO|ht =
[
Ma1o1x(ht) . . .Ma|A|o|O|x(ht)

]
(4.8)

PAO,AO|ht =

 m>∞Ma1o1x(ht) 0
. . .

0 m>∞Ma|A|o|O|x(ht)

 (4.9)

then we can write the next state as a linear function of an indicator vector of the current observa-
tion:

PX+,AO|htP
−1
AO,AO|hteao (4.10)

where eao is an indicator vector that when multiplied by PX+,AO|htP
−1
AO,AO|ht , selects the column

containing the correct Bayes’ rule update x(ht+1) = Maox(ht)/m
>
∞Maox(ht) at time t.

In Section 4.3.2 below, we generalize Equations 4.8, 4.9, and 4.10 to work with features of
observations while still preserving the underlying Bayes’ rule for updating the state of a PSR.

4.3.2 Bayes’ Rule with Observation Features

In this section we generalize PX+,AO|ht to the cross covariance of next state and features of
observations conditioned on history ΣAO,AO|ht and we generalize PAO,AO|ht to the covariance of
features of observations conditioned on history ΣAO,AO|ht . More specifically:

[
ΣAO,AO|ht

]
i,j

def
=

|A|×|O|∑
ao=1

ΦAOi,aoP[ot = o | at = a, ht]Φ
AO
j,ao

>

= ΦAOPAO,AO|htΦ
AO> (4.11)
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Next we define the covariance matrix of observations and expected next state conditioned on
history:

[
ΣX+,AO|ht

]
i,j

def
=

|A|×|O|∑
ao=1

P
[
xOi,t+1, ot = o | ht, at = a, do(xAt+1)

]
ΦAOj,ao

>

=

|A|×|O|∑
ao=1

xi(ht, ot = o, at = a)P [ot = o | ht, at = a] ΦAOj,ao
>

=

|A|×|O|∑
ao=1

[Mao]i,:x(ht)

m>∞Maox(ht)
P [ot = o | ht, at = a] ΦAOj,ao

>

=

|A|×|O|∑
ao=1

[Mao]i,:x(ht)Φ
AO
j,ao

>

= [PX+,AO|ht ]i,:Φ
AO
j,:

>
(4.12)

If rank
(
ΦAO

)
≥ |A| × |O|, then ΦAO

†
ΦAO = I: the features uniquely characterize the obser-

vations conditioned on actions. This implies that that the Bayes’ rule update from Equation 4.10
is preserved:

ΣX+,AO|htΣ
−1
AO,AO|htφ

AO
t = PX+,AO|htΦ

AO>
(

ΦAO
>
)†
P−1
AO,AO|htΦ

AO†ΦAOeao

= PX+,AO|htP
−1
AO,AO|hteao (4.13)

Conversely, if rank
(
ΦAO

)
< |A| × |O|, then then Equation 4.13 is only approximately the

Bayes’ rule update. However, even when Bayes’ rule is approximated, using features can be
a huge advantage in practice: the fact that we never need to explicitly estimate or represent a
probability density function of observations can outweigh small inaccuracies in the Bayes rule
update. We explore feature representations of Bayes’ rule, and the practical advantages of this
strategy, in more detail in Chapter 5 where we discuss and use the recent work on kernel Bayes’
rule for learning non-parametric dynamical system models.

Given the equations for computing Bayes’ rule with feature covariances, we are now in a
position to define PSRs with observation features in such a way that we can perform Bayes’ rule
updates for filtering based only on observable quantities.

4.4 Defining PSRs with Observation Features
Defining PSRs with observation features requires combining Bayes’ rule from the previous sec-
tion with our derivations for discovering a state space with characteristic and indicative features
from Section 4.2. Specifically, we use the fact that ΣT ,H = ΦT ΓΣX,H from Equation 4.1c to
argue that the PSR state space can be found by a spectral decomposition of an observable covari-
ance matrix and we use Bayes’ rule update to state at each time step t using only moments of
observable quantities.
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Instead of defining one set of moments per action-observation pair ΣT +,ao,H, we define one
set of moments per feature: let index k = 1 . . .m range over features, and define a 3-mode tensor
ΣT +,AO,H:

[ΣT +,AO,H]
ikj

def
= E

[
φTi,t+1 · φ̂AOk,t · φHj,t

∣∣∣ do(ζ+)
]

(4.14)

Also, instead of working with tensors directly, in the following derivations it will often be con-
venient to project a tensor like ΣT +,AO,H to a matrix as follows:

ΣT +,AO(η)
def
= E

[
φTi,t+1〈η, φHj,t〉φ̂AO>t

∣∣∣ do(ζ+)
]

(4.15)

We can think of the matrix ΣT +,AO(η) as re-weighting a cross covariance of characteristic and

indicative features ΣT +,AO = E
[
φTt+1φ̂

AO>
t

∣∣∣ do(ζ+)
]

by a scalar 〈η, φHt 〉. The inner product
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〈η, φHt 〉 is contracting φHt down to a single dimension. In particular:

[
ΣT +,AO(η)

]
i,j

def
= E

[
φTi,t+1〈η, φHt 〉φ̂AO>t,j

∣∣∣ do(ζ+)
]

= E
[
E
[
φTi,t+1〈η, φHt 〉φ̂AO>t,j

∣∣∣ do(ζ+), ht
]]

= E
[
E
[
φTi,t+1φ̂

AO>
t,j

∣∣∣ do(ζ+), ht
]
〈η,E

[
φHt | ht

]
〉
]

= E

|A|×|O|∑
ao=1

E
[
φTi,t+1 | do(ζ+), ht, ot = o, at = a

]
P[ot = o, at = a | ht]

ΦAO>j,ao

P[at = a | ht]

 〈η,E [φHt | ht]〉


= E

|A|×|O|∑
ao=1

E
[
φTi,t+1 | do(ζ+), ht, ot = o, at = a

]
P[ot = o | ht, at = a]P[at = a | ht]

ΦAO>j,ao

P[at = a | ht]

 〈η,E [φHt | ht]〉


= E

|A|×|O|∑
ao=1

E
[
φTi,t+1 | do(ζ+), ht, ot = o, at = a

]
P[ot = o | ht, at = a]ΦAOj,ao

>

 〈η,E [φHt | ht]〉


= E

|A|×|O|∑
ao=1

ΦTi,:Γx(ht, ot = o, at = a)P[ot = o | ht, at = a]ΦAOj,ao
>

 〈η,E [φHt | ht]〉


= ΦTi,:ΓE

|A|×|O|∑
ao=1

x(ht, ot = o, at = a)P[ot = o | ht, at = a]ΦAOj,ao
>

 〈η,E [φHt | ht]〉


= ΦTi,:ΓE

|A|×|O|∑
ao=1

Maox(ht)

x>∞Maox(ht)
P[ot = o | ht, at = a]ΦAOj,ao

>

 〈η,E [φHt | ht]〉


= ΦTi,:ΓE

|A|×|O|∑
ao=1

Maox(ht)Φ
AO
j,ao
>

 〈η,E [φHt | ht]〉


= ΦTi,:ΓE

|A|×|O|∑
ao=1

|Q|∑
l=1

Maolxl(ht)Φ
AO
j,ao
>

 〈η,E [φHt | ht]〉


= ΦTi,:ΓE

 |Q|∑
l=1

|A|×|O|∑
ao=1

MaolΦ
AO
j,ao
>

 〈η,E [φHt | ht]xl(ht)〉


= ΦTi,:Γ

|Q|∑
l=1

|A|×|O|∑
ao=1

MaolΦ
AO
j,ao
>

〈η,E [E [φHt | ht]xl(ht)]〉

= ΦTi,:Γ

|Q|∑
l=1

|A|×|O|∑
ao=1

MaolΦ
AO
j,ao
>

〈η,ΣX,Hl,:〉

= ΦTi,:Γ

|Q|∑
l=1

ΣX+,AO|Xl :,j

〈
η,ΣX,Hl,:

〉

=⇒ ΣT +,AO(η) = ΦT Γ

|Q|∑
l=1

ΣX+,AO|Xl

〈
η,ΣX,Hl,:

〉
(4.16)

where the covariance matrix ΣX+,AO|Xl
def
=
(∑|A|×|O|

ao=1 MaolΦ
AO
j,ao
>
)

. From ΣT +,AO(η) we can
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compute a linear transform of ΣX+,AO|ht:

U>ΣT +,AO((U>ΣT ,H)†bt) = U>ΣT +,AO((U>ΣT ,H)†(U>ΦT Γ)x(ht))

= U>ΦT Γ

|Q|∑
l=1

|A|×|O|∑
ao=1

MaolΦ
AO
:,ao

>

〈((U>ΣT ,H)†(U>ΦT Γ)x(ht),ΣX,Hl,:

〉

= U>ΦT Γ

|Q|∑
l=1

|A|×|O|∑
ao=1

MaolΦ
AO
:,ao

>

xl(ht)

= U>ΦT Γ

|A|×|O|∑
ao=1

Maox(ht)Φ
AO
:,ao

>


= (U>ΦT Γ)ΣX+,AO|ht (4.17)

Next we need to find ΣAO,AO|ht . We start by defining a 3-mode tensor ΣAO,H,AO:

[ΣAO,H,AO]ilj
def
= E

[
φ̂AOi,t · φHl,t · φ̂AOj,t

]
(4.18)

and its projection ΣAO,AO(η):

[ΣAO,AO(η)]i,j
def
= E

[
φ̂AOi,t 〈η, φHt 〉φ̂AO>j,t

]
= E

[
E
[
φ̂AOi,t 〈η, φHt 〉φ̂AO>j,t | ht

]]
= E

[
E
[
φ̂AOi,t φ̂

AO>
j,t | ht

]
E
[
〈η, φHt 〉 | ht

]]
= E

[
E
[
φ̂AOi,t φ̂

AO>
j,t | ht

] 〈
η,E

[
φHt | ht

]〉]
= E

|A|×|O|∑
ao=1

ΦAOi,aoΦAOj,ao
>

P[at = a | ht]
P [ot = o, at = a | ht]

〈
η,E

[
φHt | ht

]〉
= E

|A|×|O|∑
ao=1

ΦAOi,aoΦAOj,ao
>

P[at = a | ht]
P [ot = o | at = a, ht]P[at = a | ht]

〈
η,E

[
φHt | ht

]〉
=

|A|×|O|∑
ao=1

ΦAOi,aoΦAOj,ao

>E
[
P [ot = o | at = a, ht] 〈η,E

[
φHt | ht

]
〉
]

=

|A|×|O|∑
ao=1

ΦAOi,aoΦAOj,ao

> 〈
η,E

[
P [ot = o | at = a, ht]E

[
φHt | ht

]]〉
=

|A|×|O|∑
ao=1

ΦAOi,aoΦAOj,ao

> 〈
η,E

[
g>aox(ht)E

[
φHt | ht

]]〉
=

|A|×|O|∑
ao=1

ΦAOi,aoΦAOj,ao

>〈η,Σ>X,Hgao〉

=⇒ ΣAO,AO(η) =

|A|×|O|∑
ao=1

ΦAOao ΦAOao

>〈η,Σ>X,Hgao〉 (4.19)
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Given ΣAO,AO|ht and the current state bt, we can calculate ΣAO,AO|ht as follows. We see that we
can compute the probability P[ot = o | at = a, ht] from the current state bt:

g>aoΣX,H(U>ΣT ,H)†bt = g>aoΣX,H(U>ΣT ,H)†(U>ΦT Γ)x(ht)

= g>ao(U
>ΦT Γ)−1(U>ΦT Γ)ΣX,H(U>ΣT ,H)†(U>ΦT Γ)x(ht)

= g>ao(U
>ΦT Γ)−1(U>ΦT Γ)x(ht)

= g>aox(ht)

= P[ot = o | at = a, ht] (4.20)

Combining Equation 4.19 and Equation 4.20, we can find the conditional embedding of the
covariance ΣAO,AO|ht:

ΣAO,AO
(
(U>ΣT ,H)†bt

)
=

|A|×|O|∑
ao=1

ΦAOao ΦAOao
>〈(U>ΣT ,H)†bt,Σ

>
X,Hgao〉

=

|A|×|O|∑
ao=1

ΦAOao P[ot = o | at = a, ht]Φ
AO
ao

>

= ΣAO,AO|ht (4.21)

Finally, we can implement the recursive Bayes’ rule for PSRs with only observable features:

bt+1 = (U>ΦT Γ)xt+1

= (U>ΦT Γ)ΣX+,AO|htΣ
−1
AO,AO|htφ

AO
t

= U>ΣT +,AO|htΣ
−1
AO,AO|htφ

AO
t

= U>ΣT +,AO|ht
(
ΣAO,AO

(
(U>ΣT ,H)†bt

))−1
φAOt

= U>ΣT +,AO
(
(U>ΣT ,H)†bt

) (
ΣAO,AO

(
(U>ΣT ,H)†bt

))−1
φAOt (4.22)

Importantly, note that in the final line above all quantities are observable.
We can now define our spectral learning algorithm for PSRs with many observations. Unlike

the few-observation case, to save space and time, we do not precompute and store B̂ao for each
action-observation pair. Instead, we compute the Bayes’ rule state update as needed at tracking
time via Equation 4.22.

4.4.1 The Moment Spectral Learning Algorithm for PSRs
The equations from the previous section yield a simple spectral learning algorithm. Our al-
gorithm will estimate the moments ΣT ,H,ΣT +,AO,H, and ΣAO,H,AO from data and then use
Equation 4.22 to update state. Just as before, once we have computed the estimated moments
Σ̂T ,H, Σ̂T +,AO,H and Σ̂AO,H,AO, we can generate Û by singular value decomposition of Σ̂T ,H.

For reference, we summarize the learning algorithm here:
1. Compute empirical estimates of the moments: Σ̂T ,H, Σ̂T +,AO,H and Σ̂AO,H,AO.
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2. Compute a SVD of Σ̂T ,H to find Û , the matrix of left singular vectors corresponding to the
d largest singular values.

3. Compute the initial state: b̂∗ = Û>P̂T ,He.

4. At each time step update state with generalized Bayes’ rule:

b̂t+1 = Û>Σ̂T +,AO

(
(Û>Σ̂T ,H)†b̂t

) (
Σ̂AO,AO

(
(Û>Σ̂T ,H)†b̂t

))−1

φAOt .

As we include more data in our averages, the law of large numbers guarantees that our estimates
Σ̂T ,H, Σ̂T +,AO,H and Σ̂AO,H,AO converge to the true matrices ΣT ,H,ΣT +,AO,H, and ΣAO,H,AO. So
by continuity of the formulas above, if our system is truly a PSR of finite rank, and our features
are sufficiently expressive, our estimates b̂∗ and Bayes’ rule converge to the true parameters up
to a linear transform—that is, our learning algorithm is consistent. 2

2Again, with the same caveat about the SVD.
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Chapter 5

Hilbert Space Embeddings of Predictive
State Representations

The standard spectral algorithm for PSRs derived in Chapter 3 is formulated for discrete random
variables, and, in Chapter 4, an efficient spectral learning algorithm was derived for large sets of
actions and observations. The approach in Chapter 4 utilized finite sets of features of observa-
tions, tests, and histories. In this chapter we will explore this concept further and examine how
to extend these ideas to general cases with continuous and structured variables.

In this chapter, we fully generalize PSRs to (potentially) continuous observation and action
sets using a recent concept called Hilbert space embeddings of distributions [94, 103]. The
essence of our method is to represent distributions of tests, histories, observations, and actions,
as points in (possibly) infinite-dimensional Hilbert spaces. During filtering we update these
points entirely in the Hilbert spaces using a kernel version of Bayes’ rule.

The proposed method is similar to recent work that applies kernel methods to dynamical
system modeling and reinforcement learning, which we summarize here. Song et al. [99] pro-
posed a nonparametric approach to learning HMM representations in RKHS. The resulting non-
parametric dynamical system model, called Hilbert Space Embeddings of Hidden Markov Mod-
els (HSE-HMMs), proved to be an impressive alternative to competing dynamical system models
on a number of experimental benchmarks. Despite these successes, the HSE-HMM has two ma-
jor limitations: first, the update rule for the HMM only approximates the state update (up to
a fixed multiplicative scalar) instead of performing direct Bayesian inference in Hilbert space.
Second, the model lacks the capacity to reason about actions, which limits the scope of systems
that can be modeled. Our model can be viewed as an extension of HSE-HMMs that adds control
inputs and updates state using a kernelized version of Bayes’ rule.

Grünewälder et al. [37] proposed a nonparametric approach to learning transition dynam-
ics in Markov decision processes (MDPs) by representing the MDP transitions as conditional
distributions in RKHS. This work was extended by Nishiyama et al. [73] who developed a non-
parametric approach for policy learning in POMDPs that represents distributions over the states,
observations, and actions as embeddings in a RKHSs. The resulting model is called Hilbert Space
Embeddings of POMDPs (HSE-POMDPs). Distributions over states given the observations are
obtained by applying the kernel Bayes rule to these distribution embeddings. Policies and value
functions are then defined on the feature space over states. Critically, the authors only provided
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results for fully observable models, where the training data includes labels for the true latent
states. By contrast, our algorithm only requires access to an (unlabeled) sequence of actions and
observations.

5.1 Hilbert Space Embeddings

At a high level, we will be extending the idea of feature representations from Chapter 4 from
finite feature spaces to function spaces. This requires some additional concepts and tools for
reasoning about statistics in reproducing kernel Hilbert spaces (RKHSs), which we review here.
However, once these concepts are introduced, the observable representation of PSRs in RKHSs
can be seen as identical to the representation in Chapter 3 or Chapter 4. (For example, if we use
the discrete/delta kernel on a finite set of observations, we recover the algorithm of Chapter 3;
and if we use a finite-dimensional RKHS, we recover the algorithm of Chapter 4.) The sole
practical difference in the learning algorithm is the use of the kernel trick to contend with the
fact that the characteristic, indicative, and observation features are no longer required to be finite-
dimensional. We will derive the algorithm using infinite-dimensional operators first, since that
representation best shows the analogy to Chapters 3–4. Then, starting in Section 5.3 we will
show how to implement the algorithm using only finite-dimensional Gram matrices.

5.1.1 Mean Maps

Let F be a reproducing kernel Hilbert space (RKHS) associated with kernel KX(x, x′)
def
=〈

φX(x), φX(x′)
〉
F . Then for all functions f ∈ F and x ∈ X we have the reproducing property:〈

f, φX(x)
〉
F = f(x), i.e. the evaluation of function f at x can be written as an inner product.

Examples of kernels include the Gaussian RBF kernelKX(x, x′) = exp(−s ‖x− x′‖2), however
kernel functions have also been defined on strings, graphs, and other structured objects.

Let P be the set of probability distributions on X , and X the random variable with distri-
bution P ∈ P . Following Smola et al. [94], we define the mean map of P ∈ P into RKHS F
to be µX

def
= E

[
φX(X)

]
, also called the Hilbert space embedding of P or simply mean map.

For all f ∈ F , E[f(X)] = 〈f, µX〉F by the reproducing property and linearity of expectations.
We may think of the mean map by analogy with a mean vector in a finite dimensional space: if
F = Rd, then f ∈ Rd is some fixed vector, X is a random vector defined on Rd with mean µX ,
and E 〈f,X〉F = f>µX .

A characteristic RKHS is one for which the mean map is injective: that is, each distribution
has a unique embedding [103]. This property holds for many commonly used kernels (eg. the
Gaussian and Laplace kernels when X = Rd).

As a special case of the mean map, the marginal probability vector of a discrete variable X
is a Hilbert space embedding, i.e. (P[X = i])Mi=1 = µX . Here the kernel is the delta function
KX(x, x′) = I(x = x), and the feature map is the 1-of-M representation for discrete variables.
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Given t i.i.d. observations {xt}Tt=1, an estimate of the mean map is straightforward:

µ̂X
def
=

1

T

T∑
t=1

φX(xt) =
1

T
ΥX1T (5.1)

where ΥX def
= (φX(x1), . . . , φX(xT )) is the operator which maps the tth unit vector of RT

to φX(xt), which we can think of as an arrangement of feature maps into columns. Assume
KX(x, x′) bounded; then with probability 1 − δ, this estimate computes an approximation with
an error of ‖µ̂X − µX‖F = O(T−1/2(log(1/δ))1/2) [94].

5.1.2 Covariance Operators
The covariance operator is a generalization of the covariance matrix. Given a joint distribution
P [X, Y ] over two variables X on X and Y on Y1the uncentered covariance operator CXY is [6]

CXY
def
= EXY

[
φX(X)⊗ φY (Y )

]
, (5.2)

where ⊗ denotes tensor product. Alternatively, CXY can simply be viewed as an embedding of
joint distribution P [X, Y ] using joint feature map ψ(x, y)

def
= φX(x) ⊗ φY (y) (in tensor product

RKHS F ⊗ G). Given two functions, f ∈ F and g ∈ G, their cross-covariance is computed as:

〈f, CXY g〉F or equivalently 〈f ⊗ g, CXY 〉F⊗G . (5.3)

For discrete variables X and Y with delta kernels on both domains, the covariance operator will
coincide with the joint probability table, i.e. P [X = i, Y = j]Mi,j=1 = CXY .

Given T pairs of i.i.d. observations {(xt, yt)}Tt=1, we denote ΥX =
(
φX(x1), . . . , φX(xT )

)
and ΥY =

(
φY (y1), . . . , φY (yT )

)
. The covariance operator CXY can then be estimated as

ĈXY =
1

T
ΥXΥY ∗ (5.4)

where Υ∗ denotes the adjoint of Υ. Assume KX(x, x′) and KY (y, y′) are bounded. With prob-
ability 1 − δ, this estimate computes an approximation with an error of ‖ĈXY − CXY ‖F⊗G =
O(T−1/2(log(1/δ))1/2) [94].

5.1.3 Conditional Embedding Operators
Based on covariance operators, Song et al. [98] define a conditional embedding operator which
allows us to compute conditional expectations E

[
φY (Y ) | X

]
as linear operators in RKHS. We

define the conditional embedding operatorWY |X : F 7→ G

WY |X
def
= CY XC−1

XX (5.5)

1We assume a kernel Ky(y, y′) =
〈
φY (y), φY (y′)

〉
G is defined on Y with associated RKHS G.
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such that for all g ∈ G

E[g(Y ) | x] = 〈g,WY |Xφ
X(x)〉G

given several assumptions. First we assume E[g(Y ) | X = ·] ∈ F for all g ∈ G. Next
we define the operator S : G 7→ F such that Sg = E[g(Y ) | X = ·] ∈ F , which implies
CXY g = CXXE[g(Y ) | X = ·] [34]. If we further assume that CXX is injective, we can write
C−1
XXCXY g = E[g(Y ) | X = ·] meaning that S def

= C−1
XXCXY .2 Finally we assume that S is

bounded which implies it has an adjoint S∗. By the reproducing theorem,

E[g(Y ) | X = x] = 〈E[g(Y ) | X = ·], φX(x)〉F
= 〈Sg, φX(x)〉F
= 〈g, S∗φX(x)〉F
= 〈g, CY XC−1

XXφ
X(x)〉F

Therefore, there exists aWY |X = CY XC−1
XX .

For discrete variables with delta kernels, conditional embedding operators correspond exactly
to conditional probability tables (CPT), i.e. (P [Y = i | X = j])Mi,j=1 = CY |X , and each individual
conditional embedding corresponds to one column of the CPT, i.e. (P [Y = i | X = x])Mi=1 =
µY |x.

Given T i.i.d. pairs {(xt, yt)}Tt=1 from P[X, Y ], the conditional embedding operator can be
estimated as

ŴY |X =
ΥY ΥX∗

T

(
ΥXΥX∗

T
+ λI

)−1

= ΥY (GX,X + λTI)−1ΥX∗ (5.6)

where we have defined the Gram matrix GX,X
def
= ΥX∗ΥX with (i, j)th entry KX(xi, xj). The

regularization parameter λ helps to avoid overfitting and to ensure invertibility (and thus that
the resulting operator is well defined). Under strong assumptions Song et al. [100] show that
ŴY |X converges to its population counterpart in probability. However, convergence should also
be guaranteed under weaker assumptions, see [34] for details.

5.1.4 Kernel Bayes’ Rule

We are now in a position to define the kernel mean map implementation of Bayes’ rule (which
we call Kernel Bayes’ Rule (KBR)). In deriving the kernel realization of Bayes’ rule we use
conditional embedding operators to obtain the kernel mean representation of a conditional joint
probability P [X, Y | Z = z]. Given Hilbert spaces F , G, and H corresponding to the em-
bedding of x, y, and z respectively, this can be represented as an RKHS operator CX,Y |z

def
=

2Note that we do not require C−1XX to be bounded: in fact, it wont be bounded if the eigenspectrum is countable,
which will be the case for a Gaussian kernel. But the composite operator C−1XXCXY can still be bounded if the
singular values of CXY decay fast enough, and its singular vectors are somewhat aligned with those of CXX .
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E
[
φX(X)⊗ φY (Y ) | z

]
. We define the conditional covariance operator H 7→ F ⊗ G given

several assumptions [34]:

CXY |z
def
= C(XY )ZC−1

ZZφ(z) (5.7)

Here the covariance operator C(XY )Z is defined by the random variable ((X, Y ), Z).
Our goal is to perform a Bayes rule update P [X | Y = y, Z = z] = P[X,Y=y|Z=z]

P[Y=y|Z=z]
in RKHS.

We accomplish this by defining kernel Bayes’ rule in terms of conditional covariance opera-
tors [34]:

µX|y,z = CXY |zC−1
Y Y |zφ(y) (5.8)

For discrete variables with delta kernels, KBR corresponds exactly to the discrete Bayes’ rule

update i.e.
(

P[X=i,Y=j|Z=k]
P[Y=j|Z=k]

)M
i,j,k=1

=WX|Y,Z , and each individual conditional embedding corre-

sponds to one column of the CPT, i.e. (P [X = i | Y = y, Z = z])Mi=1 = µX|y,z.
Given T i.i.d. triples {(xt, yt, zt)}Tt=1 from P [X, Y, Z], we denote ΥX =

(
φX(x1), . . . , φX(xT )

)
,

ΥY =
(
φY (y1), . . . , φY (yT )

)
, and ΥZ =

(
φZ(z1), . . . , φZ(zT )

)
. The Bayes’ rule update can be

estimated by first estimating the conditional embedding of the covariance operators ĈXY |z and

ĈY Y |z via the Equations in Section 5.1.3, and then estimating ĈX|y,z = ĈXY |z
(
ĈY Y |z + λI

)−1

φY (y).
We can express this equation with Gram matrices as follows [34]:

Λz = diag((GZ,Z + λTI)−1ΥZ∗φZ(z)) (5.9)

ĈX|y,z = ΥXΛzGY,Y ((ΛzGY,Y )2 + λTI)−1ΛzΥ
Y ∗φY (y) (5.10)

where we have defined the Gram matrixGY,Y
def
= ΥY ∗ΥY with (i, j)th entryKY (yi, yj) and Gram

matrixGZ,Z
def
= ΥZ∗ΥZ with (i, j)th entryKZ(zi, zj). The function diag(·) takes a vector as input

and returns a diagonal matrix. The diagonal elements of Λz weight the samples thereby encoding
the conditioning information from z. Since the weights may be negative, we use a different type
of regularization than the standard Tikhonov regularization used in Equation 5.6 [34].

5.2 Predictive Representations in RKHS
We will focus on learning the conditional embedding operatorWT O|T A,ht for the predictive den-
sity of a core set of tests P

[
τOt | τAt , ht

]
of a PSR and updating this conditional embedding

operator given a new action and observation using kernel Bayes’ rule. In this chapter we assume
that our data was generated by a blind policy, where future actions do not rely on future obser-
vations. This means that the PSR state is the conditional probability of observation sequences
given action sequences (we do not need to worry about interventions). This is an expressive rep-
resentation: we can model near-arbitrary continuous-valued dynamical systems, limited only by
the existence of the conditional embedding operator WT O|T A,ht (and therefore the assumptions
in given in Section 5.1.3).
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5.2.1 Conditional Predictive Representations
We begin by defining kernels on core test observations τO, core test actions τA, observations o,
actions a, and histories h:

KT O(τO, τ ′
O

) = 〈φT O(τO), φT
O

(τ ′
O

)〉F (5.11)

KT A(τA, τ ′
A

) = 〈φT A(τA), φT
A

(τ ′
A

)〉G (5.12)

KO (o, o′) =
〈
φO (o) , φO (o′)

〉
J (5.13)

KA (a, a′) =
〈
φA (a) , φA (a′)

〉
K (5.14)

KH (h, h′) =
〈
φH (h) , φH (h′)

〉
L (5.15)

Predictive State in RKHS Given the covariance operator for embedded action sequences
CT A,T A

def
= E

[
φT
A

(τAt )⊗ φT A(τAt )
]

and the cross covariance operator between embedded ob-

servation sequences and action sequences CT O,T A
def
= E

[
φT
O

(τOt )⊗ φT A(τAt )
]
, the Hilbert

space embedding of tests conditioned on a single action sequence is the conditional embedding
detailed in Section 5.1.3:

µT O|τAt = CT O,T AC−1
T A,T Aφ

T A(τAt ) (5.16)

However, a predictive representation of the future is a collection of distributions of tests, one per
action sequence. We can represent the PSR state as a conditional embedding operatorWT O|T A:

WT O|T A = CT O,T AC−1
T A,T A (5.17)

From this operator we can find the mean embedding for any action sequence as µT O|τAt =

WT O|T AφT
A

(τAt ) by Equation 5.16.
If we want to compute the PSR state given a particular history ht, we define several new co-

variance operators and apply KBR. We first define CT O,T A,H
def
= E

[
φT
O

(τOt )⊗ φT A(τAt )⊗ φH(ht)
]
,

CT A,T A,H
def
= E

[
φT
A

(τAt )⊗ φT A(τAt )⊗ φH(ht)
]
, and CH,H

def
= E

[
φH(ht)⊗ φH(ht)

]
. We then

compute the conditional covariance operators

CT O,T A|ht = C(T O,T A)HC−1
H,Hφ

H(ht) (5.18)

CT A,T A|ht = C(T A,T A)HC−1
H,Hφ

H(ht) (5.19)

Finally, we can compute the conditional embedding operatorWT O|T A,ht:

WT O|T A,ht = CT O,T A|htC
−1
T A,T A|ht (5.20)

The conditional embedding operatorWT O|T A,ht is the kernel mean embedding of P
[
τOt | τAt , ht

]
,

i.e. it is the Hilbert space embedding of a PSR state. It is a predictive state since it uniquely
encodes the predictive density of future observations in the dynamical system given future action
sequences. In Section 5.2.2 we detail how to find a PSR state in RKHS given a previous state
and an action-observation pair, instead of needing to use the entire history.
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In Sections 5.2.2 and 5.3 below we break the PSR stateWT O|T A,ht down into its constituent
parts, the conditional embedding operators CT O,T A|ht and CT A,T A|ht . We then update these two
operators instead ofWT O|T A,ht directly. This representation is at least as expressive since we can
always reconstructWT O|T A,ht = CT O,T A|htC

−1
T A,T A|ht .

Conditional Observations Here we use the rules for conditional embedding from Section 5.1.3
to show how to calculate the conditional embedding of an observation distribution given a state
and an action. We start by showing how to embed the observation distribution of a stateless
process. We define CA,A

def
= E

[
φA(at)⊗ φA(at)

]
and CO,A

def
= E

[
φO(ot)⊗ φA(at)

]
. The condi-

tional embedding of the observation distribution is therefore:

µO|at = CO,AC−1
A,Aφ

A(at) (5.21)

As with the Hilbert space predictive state, we actually want to calculate the embedding of the
PDF of the observation conditioned on the current action and history ht. Therefore we calculate
the following conditional embeddings of covariance operators

CO,A|ht = C(O,A)HC−1
H,Hφ

H(ht) (5.22)

CA,A|ht = C(A,A)HC−1
H,Hφ

H(ht) (5.23)

The embedding of the conditional observation given an action and history is given by KBR:

µO|ht,at = CO,A|htC−1
A,A|htφ

A(at) (5.24)

5.2.2 The State Update
To implement the Bayes’ rule state update we start with a PSR state at time t, then take an
action, receive an observation, and incorporate this information into the PSR to get the state
at time t + 1. In what follows, we need to be careful about independence between different
random variables. For example, if we evaluate φT O(τOt ) and φT O(τOt+1) at the same time step, the
realizations will not be independent, even conditioned on the state of the process—if we wanted
independent realizations of φT O(τOt ) and φT O(τOt+1), we’d have to assume the ability to reset the
system to a desired state. Below we will take care that we only ask for operators which we can
estimate without resets. (If we didn’t have to obey this constraint, the algorithm would become
somewhat simpler, but the need for resets would constrain applicability.) Therefore, in addition
to the covariance operators CT O,T A,H and CT A,T A,H defined above we define several additional
covariance operators CT O+,T A+,O,A,H, CO,O,A,H, and CA,A,H, which are needed to update the state.

CT O,T A,H
def
= E

[
φT
O

(τOt )⊗ φT A(τAt )⊗ φH(ht)
]

(5.25)

CT A,T A,H
def
= E

[
φT
A

(τAt )⊗ φT A(τAt )⊗ φH(ht)
]

(5.26)

CT O+,T A+,O,A,H
def
= E

[
φT
O

(τOt+1)⊗ φT A(τAt+1)⊗ φO(ot)⊗ φA(at)⊗ φH(ht)
]

(5.27)

CO,O,A,H
def
= E

[
φO(ot)⊗ φO(ot)⊗ φA(at)⊗ φH(ht)

]
(5.28)

CA,A,H
def
= E

[
φA(at)⊗ φA(at)⊗ φH(ht)

]
(5.29)
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Unlike Equations 5.18, 5.19, 5.22, and 5.23 we don’t want to compute the conditional embed-
dings of covariance operators CT O,T A|ht , CT A,T A|ht , CO,A|ht , and CA,A|ht directly from histories,
but rather from the previous state. Since CT O,T A|ht is the characteristic embedding of the proba-
bility distribution of all tests, we assume that we can compute the embedding of the probability
distribution of any subset of observations, actions, or tests with a conditional covariance operator
from this embedding. For example,

CA,A|ht = E[φA(at)⊗ φA(at) | ht]
= E[E[φA(at)⊗ φA(at) | φT

O
(τOt )⊗ φT A(τAt )] | ht]

= E
[
WAA|T O,T A

(
φT
O

(τOt )⊗ φT A(τAt )
)
| ht
]

=WAA|T O,T AE[φT
O

(τOt )⊗ φT A(τAt ) | ht]
=WAA|T O,T ACT O,T A|ht

Specifically, we assume that the operatorsWT O+,T A+,O,A|T O,T A ,WT A,T A|T O,T A ,WO,O,A|T O,T A ,
andWA,A|T O,T A exist and that we can pseudo-invert C(T O,T A)H such that C(T O,T A)HC†(T O,T A)H =
I . We see that we can then compute these operators from the covariances given in Equa-
tions 5.25–5.29:

C(T O+,T A+,O,A)HC†(T O,T A)H =WT O+,T A+,O,A|HCH,HC†(T O,T A)H

=WT O+,T A+,O,A|T O,T AWT O,T A|HCH,HC†(T O,T A)H

=WT O+,T A+,O,A|T O,T AC(T O,T A)HC†(T O,T A)H

=WT O+,T A+,O,A|T O,T A (5.30)

C(T A,T A)HC†(T O,T A)H =WT A,T A|HCH,HC†(T O,T A)H

=WT A,T A|T O,T AWT O,T A|HCH,HC†(T O,T A)H

=WT A,T A|T O,T AC(T O,T A)HC†(T O,T A)H

=WT A,T A|T O,T A (5.31)

C(O,O,A)HC†(T O,T A)H =WO,O,A|HCH,HC†(T O,T A)H

=WO,O,A|T O,T AWT O,T A|HCH,HC†(T O,T A)H

=WO,O,A|T O,T AC(T O,T A)HC†(T O,T A)H

=WO,O,A|T O,T A (5.32)

C(A,A)HC†(T O,T A)H =WA,A|HCH,HC†(T O,T A)H

=WA,A|T O,T AC(T O,T A)HCH,HC†(T O,T A)H

=WA,A|T O,T AC(T O,T A)HC†(T O,T A)H

=WA,A|T O,T A (5.33)

50



Updating State with Bayes’ Rule

Using the above equations, we can find covariance operators conditioned on history at time t,
based on the covariance CT O,T A|ht at time t:

CT O+,T A+,O,A|ht =WT O+,T A+,O,A|T O,T ACT O,T A|ht (5.34)
CT A,T A|ht =WT A,T A|T O,T ACT O,T A|ht (5.35)
CO,O,A|ht =WO,O,A|T O,T ACT O,T A|ht (5.36)
CA,A|ht =WA,A|T O,T ACT O,T A|ht (5.37)

Finally, in order to update our state, we execute two instances of KBR. First, when we choose an
action at, we update:

CT O+,T A+,O|ht,at = C(T O+,T A+,O)A|htC
−1
A,A|htφ

A(at) (5.38)

CO,O|ht,at = C(O,O)A|htC−1
A,A|htφ

A(at) (5.39)

Next, when we receive the observation generated by the system, ot, we incorporate it to calculate
the joint conditional covariance:

CT O+,T A+|ht,at,ot = C(T O+,T A+)O|ht,atC
−1
O,O|ht,atφ

O(ot) (5.40)

Finally, the joint conditional covariance at time t+ 1 is identified as CT O+,T A+|ht,at,ot:

CT O,T A|ht+1
≡ CT O+,T A+|ht,at,ot (5.41)

The PSR state can now be computed from Equation 5.35 and Equation 5.20:

CT A,T A|ht+1
=WT A,T A|T O,T ACT O,T A|ht+1

(5.42)
WT O|T A,ht+1

= CT O,T A|ht+1
C−1
T A,T A|ht+1

(5.43)

5.2.3 A Minimal State Space
Instead of working with mean embeddings in generic RKHSs, it is sometimes possible to embed
distributions in a finite-dimensional subspace of the RKHS. For discrete action-observation PSRs
with delta kernels, such a subspace corresponds to a core set of tests (see Chapter 3 for details).
In the more general case, we can factor the conditional embedding of the covariance operator
CT O,T A|ht into a finite dimensional operator CXO,XA|ht and a conditional covariance operator U .
Here X = (XO, XA) is a finite set of linear combinations of tests, which we choose to make the
factorization possible.

CT O,T A|ht = UCXO,XA|ht (5.44)

Analogous to the discrete case we can find U by performing a ‘thin’ SVD of the covariance oper-
ator C(T O,T A)H and taking the top d singular vectors as U . (So we are choosing X so that U∗U =
I .) Instead of using the infinite-dimensional operators WT O+,T A+,O,A|T O,T A , WT A,T A|T O,T A ,
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WO,O,A|T O,T A , and WA,A|T O,T A in conjunction with KBR to update state, we use finite di-
mensional operators WXO+,XA+,O,A|XO,XA , WXA,XA|XO,XA , WO,O,A|XO,XA , and WA,A|XO,XA ,
which we can find as follows:

U∗C(T O+,T A+,O,A)H(U∗C(T O,T A)H)† = U∗WT O+,T A+,O,A|T O,T AC(T O,T A)H(U∗C(T O,T A)H)†

= U∗WT O+,T A+,O,A|T O,T AUC(XO,XA)H(C(XO,XA)H)†

= U∗WT O+,T A+,O,A|T O,T AU
=WXO+,XA+,O,A|XO,XA (5.45)

The last line follows from the fact that

U∗CT O+,T A+,O,A,T O,T AC−1
T O,T AU =WXO+,XA+,O,A,XO,XAU∗(UCXO,XAU∗)−1U

=WXO+,XA+,O,A,XO,XAC−1
XO,XA

=WXO+,XA+,O,A|XO,XA

Continuing, we see that:

C(T A,T A)H(U∗C(T O,T A)H)† =WT A,T A|T O,T AC(T O,T A)H(U∗C(T O,T A)H)†

=WT A,T A|T O,T AUC(XO,XA)H(C(XO,XA)H)†

=WT A,T A|T O,T AU
=WT A,T A|XO,XA (5.46)

C(O,O,A)H(U∗C(T O,T A)H)† =WO,O,A|T O,T AC(T O,T A)H(U∗C(T O,T A)H)†

=WO,O,A|T O,T AUC(XO,XA)H(C(XO,XA)H)†

=WO,O,A|T O,T AU
=WO,O,A|XO,XA (5.47)

C(A,A)H(U∗C(T O,T A)H)† =WA,A|T O,T AC(T O,T A)H(U∗C(T O,T A)H)†

=WA,A|T O,T AUC(XO,XA)H(C(XO,XA)H)†

=WA,A|T O,T AU
=WA,A|XO,XA (5.48)

Similar to Equations 5.34–5.37 we can find covariance operators conditioned on history at time
t:

CXO+,XA+,O,A|ht =WXO+,XA+,O,A|XO,XACXO,XA|ht (5.49)
CT A,T A|ht =WT A,T A|XO,XACXO,XA|ht (5.50)
CO,O,A|ht =WO,O,A|XO,XACXO,XA|ht (5.51)
CA,A|ht =WA,A|XO,XACXO,XA|ht (5.52)

Finally, we update our state with action at and observation ot by applying KBR twice:

CXO+,XA+,O|ht,at = C(XO+,XA+,O)A|htC
−1
A,A|htφ

A(at) (5.53)

CO,O|ht,at = C(O,O)A|htC−1
A,A|htφ

A(at) (5.54)

CXO+,XA+|ht,at,ot = C(XO+,XA+)O|ht,atC
−1
O,O|ht,atφ

O(ot) (5.55)
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The PSR state can now be computed:

CXO,XA|ht+1
≡ CXO+,XA+|ht,at,ot (5.56)

CT A,T A|ht+1
=WT A,T A|XO,XACXO,XA|ht+1

(5.57)
WT O|T A,ht+1

= UCXO,XA|ht+1
C−1
T A,T A|ht+1

(5.58)

5.3 Kernel Learning Algorithms for PSRs
The equations in Section 5.2 allow us to estimate the appropriate covariance operators and update
the Hilbert space embedding of the PSR state. If the RKHS embeddings are finite, then the
learning algorithm and state update are the same as Chapter 4. However, if the RKHS is infinite,
which is often the case, then it is not possible to store or manipulate the above covariances
directly. Instead, we use the “kernel trick” and represent all of the covariances and compute state
updates with Gram matrices.

Given T i.i.d. tuples
{

(τOt , τ
A
t , ot, at, ht)

}T
t=1

from a PSR, we denote:

ΥT
O

=
(
φT
O

(τO1 ), . . . , φT
O

(τOT−1)
)

ΥT
A

=
(
φT
A

(τA1 ), . . . , φT
A

(τAT−1)
)

ΥT
O⊗T A =

(
φT
O⊗T A(τO1 , τ

A
1 ), . . . , φT

O⊗T A(τOT−1, τ
A
T−1)

)
ΥT

O+

=
(
φT
O

(τO2 ), . . . , φT
O

(τOT )
)

ΥT
A+

=
(
φT
A

(τA2 ), . . . , φT
A

(τAT )
)

ΥT
O+⊗T A+

=
(
φT
O⊗T A(τO2 , τ

A
2 ), . . . , φT

O⊗T A(τOT , τ
A
T )
)

ΥO =
(
φO(o1), . . . , φO(oT−1)

)
ΥA =

(
φA(a1), . . . , φA(aT−1)

)
ΥH =

(
φH(h1), . . . , φH(hT−1)

)
(5.59)

The learning algorithm for HSE-PSRs proceeds to estimate covariance operators by Gram ma-
trices. The following Gram matrices are used below:

GH,H = ΥH∗ΥH (5.60)

GA,A = ΥA∗ΥA (5.61)

GO,O = ΥO∗ΥO (5.62)

GT A,T A = ΥT
A∗ΥT

A
(5.63)

GT O,T O = ΥT
O∗ΥT

O
(5.64)

GT O⊗T A,T O⊗T A = GT O,T O ◦GT A,T A (5.65)
GT O⊗T A,T O+⊗T A+ = GT O,T O+ ◦GT A,T A+ (5.66)

where ◦ is the Hadamard (element-wise matrix) product.
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5.3.1 The Gram Matrix Formulation for Hilbert Space Embeddings of
PSRs

The PSR state is encoded as a set of weights αht on samples. In order to recover the predictive
state, we need to compute the conditional covarianceWT O|T A,ht , which involves first computing
CT A,T A|ht and CT O,T A|ht .

CT A,T A|ht = ΥT
A

diag(αht)Υ
T A∗ (5.67)

CT O,T A|ht = ΥT
O

diag(αht)Υ
T A∗ (5.68)

Let Λht be a diagonal matrix with the set of weights αht along the diagonal: Λht = diag (αht).
To write the predictive state at time t in terms of Gram matrices we apply Equation 5.10:

WT O|T A,ht = ΥT
O

ΛhtGT A,T A((ΛhtGT A,T A)2 + λTI)−1ΛhtΥ
T A∗ (5.69)

5.3.2 Gram Matrix State Updates
Given the Gram matrix representation of state, we recursively apply kernel Bayes’ rule to update
state given a new action and observation. We start with a set of weights αht on samples and the
corresponding diagonal matrix Λht . After choosing action at, we condition to find another set of
weights (again via Equation 5.10):

αat,ht = ΛhtGA,A
(
(ΛhtGA,A)2 + λTI

)−1
ΛhtΥ

A∗φA(at) (5.70)

Equation 5.70 is the Gram matrix analogue of Equation 5.38. This vector can be used to find an
estimate of the conditional embedding CO|ht,at by weighting the samples ΥO:

CO|ht,at = ΥOαht,at (5.71)

Given a new observation ot, we apply KBR again

αht,at,ot = Λht,atGO,O((Λht,atGO,O)2 + λTI)−1Λht,atΥ
O∗φO(ot) (5.72)

Equation 5.72 is the Gram matrix analogue of Equation 5.40. Given the coefficients α̂ht+1 , we
can calculate the embedding of the conditional joint probability of future observation sequences
and future action sequences as

CT O+,T A+|ht,at,ot = ΥT
O+⊗T A+

αht,at,ot (5.73)

To finish updating the state we map these coefficients on samples ΥT
O+⊗T A+ to coefficients on

samples ΥT
O⊗T A:

αht+1 = GH,H(GT O⊗T A,T O⊗T AGH,H + λTI)−1GT O⊗T A,T O+⊗T A+αht,at,ot (5.74)

Equation 5.74 can be viewed as the first step of our recursive filtering algorithm, that is, we
are taking the state at time t + 1 and applying Equation 5.9 to begin the process of finding the
conditional embedding weights αat+1,ht+1 etc. Equation 5.70. To continue updating the state, we
recursively apply Equations 5.70–5.74.
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5.3.3 A Spectral Learning Algorithm
The kernel spectral algorithm for PSRs proceeds by first performing a ‘thin’ SVD of the sample
covariance Ĉ(T O,T A),H = 1

T
ΥT

O⊗T AΥH
∗. Then the left singular vector v = ΥT

O⊗T Aα (α ∈ RT )
can be estimated as follows

Ĉ(T O,T A),HĈ(T O,T A),H∗v = ωv

⇔ΥT
O⊗T AGH,HΥT

O⊗T A∗v = ωv

⇔ΥT
O⊗T AGH,HGT O⊗T A,T O⊗T Aα = ωΥT

O⊗T Aα

⇔GT O⊗T A,T O⊗T AGH,HGT O⊗T A,T O⊗T Aα = ωGT O⊗T A,T O⊗T Aα, (α ∈ RT , ω ∈ R) (5.75)

where α is the generalized eigenvector. After normalization, we have

v =
1√

α>GT O⊗T A,T O⊗T Aα
ΥT

O⊗T Aα (5.76)

Then the U operator is the column concatenation of the d top left singular vectors, i.e. Û =

(v1, . . . , vd). If we let A def
= (α1, . . . , αd) ∈ RT×d be the column concatenation of the d top αi,

and D def
= diag

(
(α>1 GT O⊗T A,T O⊗T Aα1)−1/2, . . . , (α>d GT O⊗T A,T O⊗T Aαd)

−1/2
)
∈ Rd×d, we can

concisely express Û = ΥT
O⊗T AAD. Therefore, we can compute the low-dimensional embed-

ding:

CXO,XA|ht = U∗CT O,T A|ht
= U∗ΥT O⊗T Aαht
= D>A>GT O⊗T A,T O⊗T Aαht (5.77)

Again, let Λht = diag (αht). Updating state given a new action and observation proceeds in
exactly the same way as the non-minimal case:

αat,ht = ΛhtGA,A
(
(ΛhtGA,A)2 + λTI

)−1
ΛhtΥ

A∗φA(at)

Λht,at = diag(αat,ht)

α̂ht+1 = αht,at,ot = Λht,atGO,O((Λht,atGO,O)2 + λTI)−1Λht,atΥ
O∗φO(ot)

To finish updating the state

αht+1

= GH,HGT O⊗T A,T O⊗T AAD(D>A>GT O⊗T A,T O⊗T AGH,HGT O⊗T A,T O⊗T AAD)−1D>A>GT O⊗T A,T O+⊗T A+ α̂ht+1

(5.78)

Although we have not supplied any sample complexity results for this algorithm yet, we believe
that we can place bounds on each individual empirically estimated covariance operator, and then
chain those bounds together to get a bound on the result: a similar approach was used to obtain
a bound on a previous version of this algorithm [99].
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Figure 5.1: Robot vision data. (A) Sample images from the robot’s camera. The figure below
depicts the hallway environment with a central obstacle (black) and the path that the robot took
through the environment (the red counter-clockwise ellipse). (B) Squared error for prediction
with different estimated models and baselines.

5.4 Experimental Results
For our experimental results, we implemented a slight variation on the algorithm described above
for a special subclass of HSE-PSRs called Hilbert Space Embeddings of Hidden Markov Models
(HSE-HMMs). HSE-HMMs are something of a misnomer: the model is a “hidden Markov
model” with a potentially infinite number of states, it is therefore equivalent to an Observable
Operator Model or an uncontrolled PSR. As such we can just use the learning algorithm described
above, but ignore actions. This makes the math and learning considerably easier in practice.

In the experimental results described here, we used an older variation of this algorithm with
some differences in the observation update [99]. In particular, Song et al. [99] update the em-
bedding of the belief state of the HMM given a new observation ot with an estimated operator
Bot , which is a conditional mean update in RKHS multiplied by a conditional density estimate
(which must be estimated separately). This is a less direct option than performing the update
completely in the embedding space. We hypothesize that using kernel Bayes’ rule, as described
in the previous section will is not just more direct, but should work better in practice. We will
directly compare the two approaches in future work.

We designed 3 sets of experiments to evaluate the effectiveness of learning embedded HMMs
for difficult real-world filtering and prediction tasks. In each case we compare the learned em-
bedded HMM to several alternative time series models including (I) linear dynamical systems
(LDS) learned by spectral methods (Chapter 2) with stability constraints (Chapter 7), (II) dis-
crete HMMs learned by EM, and (III) the Reduced-rank HMM (RR-HMM) learned by spectral
methods [90]. In these experiments we demonstrate that the kernel spectral learning algorithm
for embedded HMMs achieves the state-of-the-art performance.

5.4.1 Robot Vision
In this experiment, a video of 2000 frames was collected at 6 Hz from a Point Grey Bumblebee2
stereo camera mounted on a Botrics Obot d100 mobile robot platform circling a stationary ob-
stacle (under imperfect human control) (Figure 5.1(A)) and 1500 frames were used as training

56



A. B.

0 10 20 30 40 50 60 70 80 90 100

3
4
5
6
7
8

x 106

Prediction Horizon

A
vg

. P
re

di
ct

io
n 

Er
r.

2
1

IMUSl
ot

 C
ar

0

Racetrack

RR-HMM
LDS

HMMMean
Last

Embedded

Figure 5.2: Slot car inertial measurement data. (A) The slot car platform and the IMU (top)
and the racetrack (bottom). (B) Squared error for prediction with different estimated models and
baselines.

data for each model. Each frame from the training data was reduced to 100 dimensions via SVD
on single observations. The goal of this experiment was to learn a model of the noisy video, and,
after filtering, to predict future image observations.

We trained a 50-dimensional embedded HMM with tests consisting of sequences of 20 con-
secutive observations. Gaussian RBF kernels are used and the bandwidth parameter is set with
the median of squared distance between training points (median trick). The regularization pa-
rameter λ is set of 10−4. For comparison, a 50-dimensional RR-HMM with Parzen windows
is also learned with sequences of 20 observations [90]; a 50-dimensional LDS is learned using
Subspace ID with Hankel matrices of 20 time steps; and finally a 50-state discrete HMM and
axis-aligned Gaussian observation models is learned using EM algorithm run until convergence.

For each model, we performed filtering3 for different extents t1 = 100, 101, . . . , 250, then
predicted an image which was a further t2 steps in the future, for t2 = 1, 2..., 100. The squared
error of this prediction in pixel space was recorded, and averaged over all the different filtering
extents t1 to obtain means which are plotted in Figure 5.1(B). As baselines, we also plot the error
obtained by using the mean of filtered data as a predictor (Mean), and the error obtained by using
the last filtered observation (Last).

Any of the more complex algorithms perform better than the baselines (though as expected,
the ‘Last’ predictor is a good one-step predictor), indicating that this is a nontrivial prediction
problem. The embedded HMM learned by the kernel spectral algorithm yields significantly lower
prediction error compared to each of the alternatives (including the RR-HMM) consistently for
the duration of the prediction horizon (100 timesteps, i.e. 16 seconds).

5.4.2 Slot Car Inertial Measurement
In a second experiment, the setup consisted of a track and a miniature car (1:32 scale model)
guided by a slot cut into the track. Figure 6.2(A) shows the car and the attached IMU (an
Intel Inertiadot) in the upper panel, and the 14m track which contains elevation changes and
banked curves. At each time step we extracted the estimated 3-D acceleration of the car and the

3Update models online with incoming observations.
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estimated difference between the 3-D orientation of the car from the previous time step at a rate
of 10Hz. We collected 3000 successive measurements of this data while the slot car circled the
track controlled by a constant policy. The goal was to learn a model of the noisy IMU data, and,
after filtering, to predict future readings.

We trained a 20-dimensional embedded HMM with tests consisting of sequences of 150 con-
secutive observations. The bandwidth parameter of the Gaussian RBF kernels is set with ‘median
trick’. The regularization parameter λ is 10−4. For comparison, a 20-dimensional RR-HMM with
Parzen windows is learned also with sequences of 150 observations; a 20-dimensional LDS is
learned using Subspace ID with Hankel matrices of 150 time steps; and finally, a 20-state discrete
HMM (with 400 level of discretization for observations) is learned using EM algorithm.

For each model, we performed filtering for different extents t1 = 100, 101, . . . , 250, then
predicted an image which was a further t2 steps in the future, for t2 = 1, 2..., 100. The squared
error of this prediction in the IMU’s measurement space was recorded, and averaged over all
the different filtering extents t1 to obtain means which are plotted in Figure 6.2(B). Again the
embedded HMM yields lower prediction error compared to each of the alternatives consistently
for the duration of the prediction horizon.

5.4.3 Audio Event Classification
Our final experiment concerns an audio classification task. The data, recently presented in [81],
consisted of sequences of 13-dimensional Mel-Frequency Cepstral Coefficients (MFCC) ob-
tained from short clips of raw audio data recorded using a portable sensor device. Six classes
of labeled audio clips were present in the data, one being Human speech. For this experiment
we grouped the latter five classes into a single class of Non-human sounds to formulate a binary
Human vs. Non-human classification task. Since the original data had a disproportionately large
amount of Human Speech samples, this grouping resulted in a more balanced dataset with 40
minutes 11 seconds of Human and 28 minutes 43 seconds of Non-human audio data. To reduce
noise and training time we averaged the data every 100 timesteps (equivalent to 1 second).

For each of the two classes, we trained embedded HMMs with 10, 20, . . . , 50 latent dimen-
sions using spectral learning and Gaussian RBF kernels with bandwidth set with the ‘median
trick’. The regularization parameter λ is 10−1. For comparison, regular HMMs with axis-aligned
Gaussian observation models, LDSs and RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spectral algorithm of [90] respectively, also
with 10, . . . , 50 latent dimensions.

For RR-HMMs, regular HMMs and LDSs, the class-conditional data sequence likelihood
is the scoring function for classification. For embedded HMMs, the scoring function for a
test sequence x1:t is the log of the product of the compatibility scores for each observation,
i.e.
∑t

τ=1 log
(〈
ϕ(xτ ), µ̂Xτ |x1:τ−1

〉
F

)
.

For each model size, we performed 50 random 2:1 partitions of data from each class and used
the resulting datasets for training and testing respectively. The mean accuracy and 95% confi-
dence intervals over these 50 randomizations are reported in Figure 5.3. The graph indicates that
embedded HMMs have higher accuracy and lower variance than other standard alternatives at
every model size. Though other learning algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification problem where embedded HMMs signif-
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Figure 5.3: Accuracies and 95% confidence intervals for Human vs. Non-human audio event
classification, comparing embedded HMMs to other common sequential models at different la-
tent state space sizes.

icantly outperform commonly used sequential models trained using typical learning and model
selection methods.

5.5 Conclusion
In this chapter we proposed an extension of the feature-based observable representation of PSRs
presented in Chapter 4. We extended the finite features of that chapter to Hilbert spaces, resulting
in Hilbert space embeddings of PSRs. The essence of this new approach is to represent distribu-
tions over tests as elements in Hilbert spaces, and update these elements entirely in the Hilbert
spaces using kernel Bayes’ rule. This allows us to derive a local-minimum-free kernel spectral
algorithm for learning the embedded PSRs. In our experimental results we show that a variation
of this algorithm [99] exceeds previous state-of-the-art in real world challenging problems.

We briefly note that it is possible to extend the algorithms presented in this chapter to a
manifold dynamical system learning algorithm. If we are interested in modeling a dynamical
system whose state space lies on a low-dimensional manifold, then we can use this additional
knowledge to constrain the learning algorithm and produce a more accurate model for a given
amount of training data. For details see [13].
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Chapter 6

Computational Efficiency in Spectral
Learning Algorithms

6.1 Introduction

In the previous chapters, we have described several novel spectral learning algorithms that can be
used to learn models of partially observable nonlinear dynamical systems such as HMMs [42, 90]
and PSRs [12, 14, 84]. These algorithms are statistically consistent, unlike the popular expecta-
tion maximization (EM) algorithm, which is subject to local optima. Furthermore, we have seen
that spectral learning algorithms are easy to implement with a series of linear algebra operations.
Despite these attractive features, these algorithms have so far had an important drawback: they
are batch methods (needing to store their entire training data set in memory at once) instead of
online ones (with space complexity independent of the number of training examples and time
complexity linear in the number of training examples).

To remedy this drawback, we propose a fast, online spectral algorithm for PSRs. Since PSRs
subsume HMMs and POMDPs [84, 93], the algorithm described in this chapter also improves on
past algorithms for these other models. Our method leverages fast, low-rank modifications of the
thin singular value decomposition [20], and uses tricks such as random projections to scale to
extremely large numbers of examples and features per example. Consequently, the new method
can handle orders of magnitude larger data sets than previous methods, and can therefore scale
to learn models of systems that are too complex for previous methods.

Experiments show that our online spectral learning algorithm does a good job recovering
the parameters of a nonlinear dynamical system in two partially observable domains. In our first
experiment we empirically demonstrate that our online spectral learning algorithm is unbiased by
recovering the parameters of a small but difficult synthetic Reduced-Rank HMM. In our second
experiment we demonstrate the performance of the new method on a difficult, high-bandwidth
video understanding task.
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6.2 Batch Learning of PSRs

In Chapter 4, we presented a straightforward learning algorithm for PSRs: we build empirical
estimates of observable features Σ̂AO,H,AO, Σ̂T ,H, and Σ̂T +,AO,H and compute Û as the matrix
of d leading left singular vectors of Σ̂T ,H. Finally, we use the estimated covariances and Û to
compute estimated PSR parameters. One of the advantages of subspace identification is that the
complexity of the model can be tuned by selecting the number of singular vectors in Û , at the
risk of losing prediction quality.

As we include more data in our averages, the law of large numbers guarantees that our es-
timates converge to the true matrices ΣAO,H,AO, ΣT ,H, and ΣT +,AO,H. So by continuity of the
formulas in Chapter 4, if our system is truly a PSR of finite rank, our estimated parameters con-
verge, with probability 1, to the true parameters up to a linear transform—that is, our learning
algorithm is consistent.1

Unfortunately, it is difficult to implement the naı̈ve algorithm in practice. For example, if
there are a very large number of features of tests or features of histories, we may not be able even
to store the full parameters ΣAO,H,AO, ΣT ,H, and ΣT +,AO,H in memory. Therefore, we want to
use a more efficient algorithm, one that does not explicitly build these parameters. We will start
by improving the batch algorithm, then make it online in Section 6.3.

6.2.1 An Efficient Batch Learning Algorithm

The key idea is to compute a set of smaller-sized intermediate quantities from realizations of
characteristic features φT , indicative features φH, and observation features φAO, and then com-
pute PSR parameters from these quantities.

In the batch setting we can store Σ̂T ,H and compute its rank-d singular value decomposition
Û , Ŝ, V̂ >. Then, instead of computing ΣAO,H,AO, and ΣT +,AO,H directly, we use the factors
Û , Ŝ, V̂ > to make storing the other matrices and calculating the ultimate PSR parameters much
more efficient. (When we discuss iterative updating in Section 6.3 below we don’t even have to
store Σ̂T ,H or compute its SVD directly, potentially increasing our computational and memory
savings by a substantial amount.)

In more detail, we begin by estimating Σ̂T ,H. Recall that each element of our estimate Σ̂T ,H
is an unnormalized empirical expectation of the product of one indicative feature and one charac-
teristic feature, if we sample a history from ω and then follow an appropriate sequence of actions.
We can compute all elements of Σ̂T ,H from a single sample of trajectories if we sample histories
from ω, follow an appropriate exploratory policy, and then importance-weight each sample [16]:
[Σ̂T ,H]ij is

∑w
t=1 λtφ

T
itφ
H
jt, where λt is an importance weight.

Next we compute Û ŜV̂ >, the rank-d thin singular value decomposition of Σ̂T ,H:

〈Û , Ŝ, V̂ 〉 = SVD

(
w∑
t=1

λtφ
T
t φ
H
t

)
(6.1)

1Continuity holds if we fix Û ; a similar but more involved argument works if we estimate Û as well.
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The left singular vectors Û define the state space of the PSR and therefore play a direct role in
the PSR learning algorithm. However, the right singular vectors V̂ and singular values Ŝ can
also be used to make computation of the other PSR parameters more efficient.

First, and most obviously, we can directly compute the estimate of an initial feasible state b∗
from Equation 4.2a using Ŝ and V̂ . The key is noting that U>ΣT ,H = SV >. Then

b̂∗ = ŜV̂ >e (6.2a)

More importantly, we can compute the Bayes’ rule state update without computing the full ten-
sors ΣAO,H,AO, and ΣT +,AO,H. To see that, recall that the Bayes rule state update is given by
(Equation 4.22):

bt+1 = U>ΣT +,AO
(
(U>ΣT ,H)†bt

) (
ΣAO,AO

(
(U>ΣT ,H)†bt

))−1
φAOt

Therefore, instead of computing Σ̂T +,AO,H =
∑w

t=1 λtφ
T
t ⊗ φAOt ⊗ φHt we can instead compute

the much smaller tensor Σ̂B+,AO|B = Û>Σ̂T +,AO,H(U>ΣT ,H)† directly:

Σ̂B+,AO|B =
w∑
t=1

λt

(
Û>φTt

)
⊗
(
φAOt

)
⊗
(
Ŝ−1V̂ >φHt

)
(6.2b)

Similarly, instead of estimating ΣAO,H,AO =
∑w

t=1 λtφ̂
AO
t ⊗ φHt ⊗ φ̂AOt we compute the smaller

tensor

Σ̂AO,AO|B =
w∑
t=1

λt

(
φ̂AOt

)
⊗
(
Ŝ−1V̂ >φHt

)
⊗
(
φ̂AOt

)
(6.2c)

Finally, we can compute Bayes’ rule as

bt+1 = U>ΣT +,AO
(
(U>ΣT ,H)†bt

) (
ΣAO,AO

(
(U>ΣT ,H)†bt

))−1
φAOt

= U>ΣT +,AO
(
(U>ΣT ,H)†bt

) (
Σ̂AO,AO|B (bt)

)−1

φAOt

= Σ̂B+,AO|B (bt)
(

Σ̂AO,AO|B (bt)
)−1

φAOt (6.2d)

In summary, this learning algorithm works well when the number of features of tests, his-
tories, and action-observation pairs is relatively small, and in cases where data is collected in
batch. These restrictions can be limiting for many real-world data sets. In practice, the num-
ber of features may need to be quite large in order to accurately estimate the parameters of the
PSR. Additionally, we are often interested in estimating PSRs from massive datasets, updating
PSR parameters given a new batch of data, or learning PSRs online from a data stream. Below
we develop several computationally efficient extensions to overcome these practical obstacles to
learning in real-world situations.

6.3 Iterative Updates to PSR Parameters
We first attack the problem of updating existing PSR parameters given a batch of new informa-
tion. Next, we look at the special case of updating PSR parameters in an online setting (batch
size 1), and develop additional optimizations for this situation.
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6.3.1 Batch Updates
We first present an algorithm for updating existing PSR parameters given a new batch of char-
acteristic features φTnew, one-step removed characteristic features φTnew+, indicative features φHnew,
and observation features φAOnew. Naı̈vely, we can just store empirical estimates and update them
from each new batch of data: Σ̂T ,H+φTnewφ

H
new
>, Σ̂AO,H,AO+φAOnew⊗φHnew⊗φAOnew,and Σ̂T +,AO,H+∑w

t=1 φ
T
new+ ⊗ φAOnew ⊗ φHnew. Then, after each batch, we can learn new PSR parameters.

This naı̈ve algorithm is very inefficient: it requires storing Σ̂T ,H, Σ̂AO,H,AO,and Σ̂T +,AO,H,
updating these tensors given new information, and recomputing the PSR parameters. However,
as we have seen, it is also possible to write the PSR parameters in terms of a set of lower-
dimensional memory-efficient matrices and tensors (Equations 6.2a–d), made possible by the
singular value decomposition of Σ̂T ,H. The key idea is to update these lower-dimensional ma-
trices directly, instead of the naı̈ve updates suggested above, by taking advantage of numerical
algorithms for updating singular value decompositions efficiently [20].

The main computational savings come from using incremental SVD to update Û , Ŝ, V̂ , Σ̂B+,AO|B,
and Σ̂AO,AO|B directly. The incremental update for Û , Ŝ, V̂ is much more efficient than the naı̈ve
additive update when the number of new data points is much smaller than the number of features
in φT and φH. The incremental updates for Σ̂B+,AO|B and Σ̂AO,AO|B save time and space when
the latent dimension d is much smaller than the number of features in φT and φH.

Our goal is therefore to compute the updated SVD,

〈Ûnew, Ŝnew, V̂new〉 = SVD
(

Σ̂T ,H + φTnewΛφHnew

>
)
,

where Λ is a diagonal matrix of importance weights Λ = diag(λ1:t). We will derive the incre-
mental SVD update in two steps. First, if the new data φTnew and φHnew lies entirely within the
column spaces of Û and V̂ respectively, then we can find Ŝnew by projecting both the new and
old data onto the subspaces defined by Û and V̂ , and diagonalizing the resulting small (n × n)
matrix:

〈Û , Ŝnew, V̂〉 = SVD
(
Û>
(

Σ̂T ,H + φTnewΛφHnew

>
)
V̂
)

= SVD
(
Ŝ + (Û>φTnew)Λ(V̂ >φHnew)>

)
We can then compute Ûnew = Û Û> and V̂new = V̂ V̂>, the rotations of Û and V̂ induced by the
new data.

If the new data does not lie entirely within the column space of Û and V̂ , we can update the
SVD efficiently (and optionally approximately) following Brand [20]. The idea is to split the new
data into a part within the column span of Û and V̂ and a remainder, and use this decomposition
to construct a small matrix to diagonalize as above.

LetC andD be orthonormal bases for the component of the column space of φTnew orthogonal
to Û and the component of the column space of φHnew orthogonal to V̂ :

C = orth
(

(I − Û Û>)φTnew

)
(6.3a)

D = orth
(

(I − V̂ V̂ >)φHnew

)
(6.3b)
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The dimension of C and D is upper-bounded by the number of data points in our new batch, or
the number of features of tests and histories, whichever is smaller. (If the dimension is large,
the orthogonalization step above (as well as other steps below) may be too expensive; we can
accommodate this case by splitting a large batch of examples into several smaller batches.) Let

K =

[
Ŝ 0
0 0

]
+

[
Û>

C>

]
φTnewΛφHnew

>
[ V̂ D ], (6.3c)

and diagonalize K to get the update to Ŝ:

〈Û , Ŝnew, V̂〉 = SVD (K) (6.3d)

Finally, as above, Û and V̂ rotate the extended subspaces [ Û C ] and [ V̂ D ]:

Ûnew = [ Û C ] Û (6.3e)

V̂new = [ V̂ D ] V̂ (6.3f)

Note that if there are components orthogonal to Û and V̂ in the new data (i.e., if C and D are
nonempty), the size of the thin SVD will grow. So, during this step, we may choose to tune the
complexity of our estimated model by restricting the dimensionality of the SVD. If we do so,
we may lose information compared to a batch SVD: if future data causes our estimated leading
singular vectors to change, the dropped singular vectors may become relevant again. However,
empirically, this information loss can be minimal, especially if we keep extra “buffer” singular
vectors beyond what we expect to need.

Also note that the above updates do not necessarily preserve orthonormality of Ûnew and
V̂new, due to discarded nonzero singular values and the accumulation of numerical errors. To
correct for this, every few hundred iterations, we re-orthonormalize using a QR decomposition
and a SVD:

〈UQ, UR〉 = QR
(
Ûnew

)
〈VQ, VR〉 = QR

(
V̂new

)
〈UQR, SQR, VQR〉 = SVD

(
URŜnewV

>
R

)
Ûnew = UQUQR

V̂new = VQVQR

Ŝnew = SQR

The updated SVD now gives us enough information to compute the updates to Σ̂B+,AO|B and
Σ̂AO,AO|B. Let Λ be the diagonal tensor of importance weights Λi,i,i = λi(i ∈ 1, 2, . . . , t). Using
the newly computed subspaces Ûnew, Ŝnew, and V̂new, we can compute additive updates from the
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new data. First, we compute the updated tensor Σ̂B+,AO|Bnew :

Σ̂B+,AO|Bnew =
(

Σ̂T +,AO,H + Λ×1 φ
T
new+ ×2 φ

AO
new ×3 φ

H
new

)
×1 Û

>
new ×3 Ŝ

−T
newV̂

>
new

= Σ̂B+,AO
update + Σ̂B+,AO

new (6.4)

where Σ̂B+,AO
update can be viewed as the projection of Σ̂B+,AO|B onto the new subspace:

Σ̂B+,AO
update = Σ̂T +,AO,H ×1 Û

>
new ×3 Ŝ

−T
newV̂

>
new

=

[
Σ̂B+,AO|B 0

0 0

]
×1

(
Û>new

[
Û 0

])
×3

(
Ŝ−1

newV̂
>

new

[
V̂ Ŝ 0

])
and Σ̂B+,AO

new is the projection of the additive update onto the new subspace:

Σ̂B+,AO
new = Λ×1 (Û>newφ

T
new+)×2 (φAOnew)×3 (Ŝ−1

newV̂
>

newφ
H
new)

Next we compute the updated tensor Σ̂AO,AO|Bnew :

Σ̂AO,AO|Bnew =
(

Σ̂AO,H.AO + Λ×1 φ
AO
new ×2 φ

H
new ×3 φ

AO
new

)
×2 Ŝ

−T
newV̂

>
new

= Σ̂AO,AOupdate + Σ̂AO,AOnew (6.5)

where Σ̂AO,AOupdate can be viewed as the projection of Σ̂AO,AO|B onto the new subspace:

Σ̂AO,AOupdate = Σ̂AO,H,AO ×2 Ŝ
−T
newV̂

>
new

=
[

Σ̂B+,AO|B 0
]
×2

(
Ŝ−1

newV̂
>

new

[
V̂ Ŝ 0

])
and Σ̂AO,AOnew is the projection of the additive update onto the new subspace:

Σ̂AO,AOnew = Λ×1 (φAOnew)×2 (Ŝ−1
newV̂

>
newφ

H
new)×3 (φAOnew)

Once the updated estimates in Equation 6.4 and Equation 6.5 have been calculated, we can
compute the new PSR Bayes’ rule update as

bt+1 = Σ̂B+,AO|Bnew (bt)
(
ΣAO,AO|Bnew (bt)

)−1
φAOt (6.6)
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6.3.2 Online updates

In the online setting (with just one sample per batch), the updates to Ŝ are rank-1, allowing some
additional efficiencies. We compute the rank-1 update to the matrices Û , Ŝ, and V̂ >. We can
compute C and D efficiently via a simplified Gram-Schmidt step [20]:

C̃ = (I − Û Û>)φT1

C = C̃/‖C̃‖
D̃ = (I − V̂ V̂ >)φH1

D = D̃/‖D̃‖

Finally, we can compute K by adding a rank-1 matrix to Ŝ:

K =

[
Ŝ 0
0 0

]
+

[
Û>

C>

]
φT1 λ1φ

H
1

>
[ V̂ D ],

We then compute the updated parameters using Eqs. 6.3d–f.
The online update incurs significant computational cost due to the fact that we must compute

a SVD at each time step. Therefore, the online updates are not worth the computation time unless
new parameters are truly needed after each observation. By contrast, updating the parameters
with small batches of new information provides a good tradeoff between batch and online updates
when the efficient batch algorithm is computationally intractable.

6.4 Random Projections for High Dimensional Feature Spaces
Despite their simplicity and wide applicability, HMMs, POMDPs, and PSRs are limited in that
they are usually restricted to discrete observations, and the state is usually restricted to have
only moderate cardinality. In Chapter 4, we described a feature-based representation for PSRs
that relaxes this restriction. In Chapter 5 and Song et al. [99] we proposed a spectral learning
algorithm for PSRs and HMMs with continuous observations by representing distributions over
these observations and continuous latent states as embeddings in an infinite dimensional Hilbert
space. These Hilbert Space Embeddings of PSRs (HSE-PSRs) and HMMs (HSE-HMMs) use
essentially the same framework as other spectral learning algorithms for HMMs and PSRs, but
avoid working in the infinite-dimensional Hilbert space by the well-known “kernel trick.”

HSE-HMMs have been shown to perform well on several real-world datasets, often beating
the next best method by a substantial margin. However, they scale poorly due to the need to work
with the kernel matrix, whose size is quadratic in the number of training points.

We can overcome this scaling problem and learn PSRs that approximate HSE-HMMs using
random features for kernel machines [80]: we construct a large but finite set of random features
which let us approximate a desired kernel using ordinary dot products. (Rahimi and Recht show
how to approximate several popular kernels, including radial basis function (RBF) kernels and
Laplacian kernels.) The benefit of random features is that we can use fast linear methods that do
not depend on the number of data points to approximate the original kernel machine.
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Figure 6.1: A synthetic RR-HMM. (A.) The eigenvalues of the true transition matrix. (B.) RMS
error in the nonzero eigenvalues of the estimated transition matrix vs. number of training samples,
averaged over 10 trials. The error steadily decreases, indicating that the PSR model is becoming
more accurate, as we incorporate more training data.

HSE-HMMs are no exception: using random features of tests and histories, we can approx-
imate a HSE-HMM with a PSR. If we combine random features with the above online learning
algorithm, we can approximate an HSE-HMM very closely by using an extremely large number
of random features. Such a large set of features would overwhelm batch spectral learning algo-
rithms, but our online method allows us to approximate an HSE-HMM very closely, and scale
HSE-HMMs to orders of magnitude larger training sets or even to streaming datasets with an
inexhaustible supply of training data.

6.5 Experimental Results

We designed 3 sets of experiments to evaluate the statistical properties and practical potential of
our online spectral learning algorithm. In the first experiment we show the convergence behavior
of the algorithm. In the second experiment we show how online spectral learning combined with
random projections can be used to learn a PSR that closely approximates the performance of a
HSE-HMM. In the third experiment we demonstrate how this combination allows us to model a
high-bandwidth, high-dimensional video, where the amount of training data would overwhelm
a kernel-based method like HSE-HMMs and the number of features would overwhelm a PSR
batch learning algorithm.

6.5.1 A Synthetic Example

First we demonstrate the convergence behavior of our algorithm on a difficult synthetic HMM
from Siddiqi et al. [90]. This HMM is 2-step observable, with 4 states, 2 observations, and a rank-
3 transition matrix. (So, the HMM is reduced rank (an “RR-HMM”) and features of multiple
observations are required to disambiguate state.) The transition matrix T and the observation
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Figure 6.2: Slot car inertial measurement data. (A) The slot car platform: the car and IMU (top)
and the racetrack (bottom). (B) Squared error for prediction with different estimated models.
Dash-dot shows the baseline of simply predicting the mean measurement on all frames.

matrix O are:

T =


0.7829 0.1036 0.0399 0.0736
0.1036 0.4237 0.4262 0.0465
0.0399 0.4262 0.4380 0.0959
0.0736 0.0465 0.0959 0.7840


O =

[
1 0 1 0
0 1 0 1

]
We sample observations from the true model and then estimate the model using the algorithm

of Section 6.3.2. Since we only expect to recover the transition matrix up to a similarity trans-
form, we compare the eigenvalues of B̂ =

∑
o B̂o in the learned model to the eigenvalues of the

transition matrix T of the true model. Fig. 6.1 shows that the learned eigenvalues converge to the
true ones as the amount of data increases.

6.5.2 Slot Car Inertial Measurement
In a second experiment, we compare the online spectral algorithm with random features to HSE-
HMMs with Gaussian RBF kernels. The setup consisted of a track and a miniature car (1:32
scale) guided by a slot cut into the track [99]. Figure 6.2(A) shows the car and the attached IMU
(an Intel Inertiadot), as well as the 14m track, which contains elevation changes and banked
curves. We collected the estimated 3D acceleration and velocity of the car at 10Hz. The data
consisted of 3000 successive measurements while the slot car circled the track controlled by a
constant policy. The goal was to learn a model of the noisy IMU data, and, after filtering, to
predict future readings.

We trained a 20-dimensional HSE-HMM using the algorithm of Song et al., with tests and
histories consisting of 150 consecutive observations. We set the bandwidth parameter of the
Gaussian RBF kernels with the “median trick,” and the regularization (ridge) parameter was
10−4. For details see Song et al. (2010).
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Next we trained a 20-dimensional PSR with random Fourier features to approximate the
Gaussian RBF kernel. We generated 25000 features for the tests and histories and 400 features
for current observations, and then used the online spectral algorithm to learn a model. Finally, to
provide some context, we learned a 20-state discrete HMM (with 400 levels of discretization for
observations) using the Baum-Welch EM algorithm run until convergence.

For each model, we performed filtering for different extents t1 = 100, 101, . . . , 250, then
predicted an image which was a further t2 = 1, 2, . . . , 100 steps in the future. The squared
error of this prediction in the IMU’s measurement space was recorded, and averaged over all the
different filtering extents t1 to obtain means which are plotted in Figure 6.2(B).

The results demonstrate that the online spectral learning algorithm with a large number of
random Fourier features does an excellent job matching the performance of the HSE-HMM, and
suggest that the online spectral learning algorithm is a viable alternative to HSE-HMMs when
the amount of training data grows large.

6.5.3 Modeling Video
Next we look at the problem of mapping from video: we collected a sequence of 11,000 160×120
grayscale frames at 24 fps in an indoor environment (a camera circling a conference room, occa-
sionally switching directions; each full circuit took about 400 frames). This data was collected by
hand, so the camera’s trajectory is quite noisy. The high frame rate and complexity of the video
mean that learning an accurate model requires a very large dataset. Unfortunately, a dataset of
this magnitude makes learning an HSE-HMM difficult or impossible: e.g., the similar but less
complex example of Song et al. used only 1500 frames.

Instead, we used random Fourier features and an online PSR to approximate a HSE-HMM
with Gaussian RBF kernels. We used tests and histories based on 400 sequential frames from
the video, generated 100,000 random features, and learned a 50-dimensional PSR. To duplicate
this setup, the batch PSR algorithm would have to find the SVD of a 100,000×100,000 matrix;
by contrast, we can efficiently update our parameters by incorporating 100,000-element feature
vectors one at a time and maintaining 50× 50 and 50×100,000 matrices.

Figure 6.3 shows our results. The final learned model does a surprisingly good job at captur-
ing the major features of this environment, including both the continuous location of the camera
and the discrete direction of motion (either clockwise or counterclockwise). Furthermore, the
fact that a general-purpose online algorithm learns these manifolds is a powerful result: we are
essentially performing simultaneous localization and mapping in a difficult loop closing scenario,
without any prior knowledge (even, say, that the environment is three-dimensional, or whether
the sensor is a camera, a laser rangefinder, or something else).

6.6 Conclusions
We presented spectral learning algorithms for PSR models of partially-observable nonlinear dy-
namical systems. In particular, we showed how to update the parameters of a PSR given new
batches of data, and built on these updates to develop an efficient online spectral learning algo-
rithm. We also showed how to use random projections in conjunction with PSRs to efficiently
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Figure 6.3: Modeling video. (A.) Schematic of the camera’s environment. (B.) The second and
third dimension of the learned belief space (the first dimension contains normalization informa-
tion). Points are colored red when the camera is traveling clockwise and blue when traveling
counterclockwise. The learned state space separates into two manifolds, one for each direction,
connected at points where the camera changes direction. (The manifolds appear on top of one
another, but are separated in the fourth latent dimension.) (C.) Loop closing: estimated historical
camera positions after 100, 350, and 600 steps. Red star indicates current camera position. The
camera loops around the table, and the learned map “snaps” to the correct topology when the
camera passes its initial position.

approximate HSE-HMMs. The combination of random projections and online updates allows us
to take advantage of powerful Hilbert space embeddings while handling training data sets that
are orders of magnitude larger than previous methods, and therefore, to learn models that are too
complex for previous methods.
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Part II

Spectral Learning Algorithms in Practice
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Chapter 7

Stability in Linear Dynamical Systems

A major difficulty in learning LDSs is that standard learning algorithms, both spectral and like-
lihood based methods, can result in models with unstable dynamics, which causes them to be
ill-suited for several important tasks such as simulation and long-term prediction. This problem
can arise even when the underlying dynamical system emitting the data is stable, particularly
if insufficient training data is available, which is often the case for high-dimensional temporal
sequences. In this chapter we propose an extension to Subspace ID that enforces the estimated
parameters to be stable. Though stability is a non-convex constraint, we will see how a constraint-
generation-based optimization approach yields approximations to the optimal solution that are
more efficient and more accurate than previous state-of-the-art stabilizing methods.

7.1 Introduction

We propose an optimization algorithm for learning the dynamics matrix of an LDS while guar-
anteeing stability. We first obtain an estimate of the underlying state sequence using subspace
identification. We then formulate the least-squares minimization problem for the dynamics ma-
trix as a quadratic program (QP) [18], initially without constraints. When we solve this QP, the
estimate Â we obtain may be unstable. However, any unstable solution allows us to derive a
linear constraint which we then add to our original QP and re-solve. This constraint is a conser-
vative approximation to the true feasible region. The above two steps are iterated until we reach
a stable solution, which is then refined by a simple interpolation to obtain the best possible stable
estimate. The overall algorithm is illustrated in Figure 7.1.

Our method can be viewed as constraint generation [40] for an underlying convex program
with a feasible set of all matrices with singular values at most 1, similar to work in control
systems such as [57]. This convex set approximates the true, non-convex feasible region. So,
we terminate before reaching feasibility in the convex program, by checking for matrix stability
after each new constraint. This makes our algorithm less conservative than previous methods
for enforcing stability since it chooses the best of a larger set of stable dynamics matrices. The
difference in the resulting stable systems is noticeable when simulating data. The constraint
generation approach also results in much greater efficiency than previous methods in nearly all
cases.
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One application of LDSs in computer vision is learning dynamic textures from video data [96].
An advantage of learning dynamic textures is the ability to play back a realistic looking gener-
ated sequence of any desired duration. In practice, however, videos synthesized from dynamic
texture models can quickly become degenerate because of instability in the underlying LDS. In
contrast, sequences generated from dynamic textures learned by our method remain sane even
after arbitrarily long durations. We also apply our algorithm to learning baseline dynamic models
of over-the-counter (OTC) drug sales for biosurveillance, and sunspot numbers from the UCR
archive [54]. Comparison to the best alternative methods [57] on these problems yields positive
results.

7.2 Learning Stable Linear Dynamical Systems

The spectral algorithm in Section 3.4 does not enforce stability in Â which can cause problems
when predicting and simulating from an LDS learned from data. To account for stability, we first
formulate the dynamics matrix learning problem as a quadratic program with a feasible set that
includes the set of stable dynamics matrices. Then we demonstrate how instability in its solutions
can be used to generate linear constraints that are added to the QP to restrict this feasible set
appropriately. As a final step, the solution is refined to be as close as possible to the least-squares
estimate while remaining stable. We compare our results algorithm to two previous approaches
from control theory, LB-1 and LB-2, in our experimental results [57, 58].1 The overall algorithm
is illustrated in Figure 7.1(A). We now explain the algorithm in more detail.

7.2.1 Formulating the Objective
In our spectral learning algorithm for Kalman filters, it is possible to write the objective function
for Â as a quadratic function. For subspace ID we define a quadratic objective function:

Â = arg min
A

∥∥AΣF ,H − ΣF+,H
∥∥2

F

= arg min
A

{
tr
[
(AΣF ,H − ΣF+,H)T (AΣF ,H − ΣF+,H)

]}
= arg min

A

{
tr
(
AΣF ,HΣT

F ,HA
T
)
− 2tr

(
ΣF ,HΣT

F+,HA
)

+ tr
(
ΣT
F+,HΣF+,H

)}
= arg min

a

{
aTPa− 2 qTa+ r

}
(7.1a)

where a ∈ Rn2×1, q ∈ Rn2×1, P ∈ Rn2×n2 and r ∈ R are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T (7.1b)

P = In ⊗
(
ΣF ,HΣT

F ,H
)

(7.1c)

q = vec(ΣF ,HΣT
F+,H) (7.1d)

r = tr
(
ΣT
F+,HΣF+,H

)
(7.1e)

1For detailed comparisons between our algorithm and these approaches, see [89].
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Figure 7.1: (A): Conceptual depiction of the space of n×n matrices. The region of stability (Sλ)
is non-convex while the smaller region of matrices with σ1 ≤ 1 (Sσ) is convex. The elliptical
contours indicate level sets of the quadratic objective function of the QP. Â is the unconstrained
least-squares solution to this objective. ALB-1 is the solution found by LB-1 [57]. One iteration
of constraint generation yields the constraint indicated by the line labeled ‘generated constraint’,
and (in this case) leads to a stable solution A∗. The final step of our algorithm improves on this
solution by interpolating A∗ with the previous solution (in this case, Â) to obtain A∗final. (B):
The actual stable and unstable regions for the space of 2 × 2 matrices Eα,β = [ 0.3 α ; β 0.3 ],
with α, β ∈ [−10, 10]. Constraint generation is able to learn a nearly optimal model from a
noisy state sequence of length 7 simulated from E0,10, with better state reconstruction error than
either LB-1 or LB-2. The matrices E10,0 and E0,10 are stable, but their convex combination
E5,5 = 0.5E10,0 + (1− 0.5)E0,10 is unstable.

In is the n× n identity matrix and ⊗ denotes the Kronecker product. Note that P (which is not
related to the P in Section 2.3.2) is a symmetric positive semi-definite matrix and the objective
function in Equation 7.1a is a quadratic function of a.

7.2.2 Generating Constraints

The feasible set of the quadratic objective function is the space of all n×nmatrices, regardless of
their stability. When its solution yields an unstable matrix, the spectral radius of Â (i.e. |λ1(Â)|)
is greater than 1. Ideally we would like to use Â to calculate a convex constraint on the spectral
radius. However, consider the class of 2×2 matrices: Eα,β = [ 0.3 α ; β 0.3 ] [71]. The matrices
E10,0 and E0,10 are stable with λ1 = 0.3, but their convex combination γE10,0 + (1 − γ)E0,10

is unstable for (e.g.) γ = 0.5 (Figure 7.1(B)). This shows that the set of stable matrices is non-
convex for n = 2, and in fact this is true for all n > 1. We turn instead to the largest singular
value, which is a closely related quantity since

σmin(Â) ≤ |λi(Â)| ≤ σmax(Â) ∀i = 1, . . . , n [39]
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Therefore every unstable matrix has a singular value greater than one, but the converse is not
necessarily true. Moreover, the set of matrices with σ1 ≤ 1 is convex2. Figure 7.1(A) conceptu-
ally depicts the non-convex region of stability Sλ and the convex region Sσ with σ1 ≤ 1 in the
space of all n × n matrices for some fixed n. The difference between Sσ and Sλ can be signif-
icant. Figure 7.1(B) depicts these regions for Eα,β with α, β ∈ [−10, 10]. The stable matrices
E10,0 and E0,10 reside at the edges of the figure. While results for this class of matrices vary
based on the instance used, the constraint generation algorithm described below is able to learn
a nearly optimal model from a noisy state sequence of τ = 7 simulated from E0,10, with better
state reconstruction error than LB-1 and LB-2.

Let Â = ŨΣ̃Ṽ T by SVD, where Ũ = [ũi]
n
i=1 and Ṽ = [ṽi]

n
i=1 and Σ̃ = diag{σ̃1, . . . , σ̃n}.

Then:

Â = ŨΣ̃Ṽ T ⇒ Σ̃ = ŨTÂṼ ⇒ σ̃1(Â) = ũT
1 Âṽ1 = tr(ũT

1 Âṽ1) (7.2)

Therefore, instability of Â implies that:

σ̃1 > 1⇒ tr
(
ũT

1 Âṽ1

)
> 1⇒ tr

(
ṽ1ũ

T
1 Â
)
> 1⇒ gTâ > 1 (7.3)

Here g = vec(ũ1ṽ
T
1 ). Since Eq. (7.3) arose from an unstable solution of Eq. (7.1a), g is a

hyperplane separating â from the space of matrices with σ1 ≤ 1. We use the negation of Eq. (7.3)
as a constraint:

gTâ ≤ 1 (7.4)

7.2.3 Computing the Solution
The overall quadratic program can be stated as:

minimize aTPa− 2 qTa+ r
subject to Ga ≤ h

(7.5)

with a, P , q and r as defined in Eqs. (7.1e). {G, h} define the set of constraints, and are initially
empty. The QP is invoked repeatedly until the stable region, i.e. Sλ, is reached. At each iteration,
we calculate a linear constraint of the form in Eq. (7.4), add the corresponding gT as a row in G,
and augment h with 1. Note that we will almost always stop before reaching the feasible region
Sσ.

7.2.4 Refinement
Once a stable matrix is obtained, it is possible to refine this solution. We know that the last
constraint caused our solution to cross the boundary of Sλ, so we interpolate between the last
solution and the previous iteration’s solution using binary search to look for a boundary of the

2Since σ1(M)
def
= maxu,v:‖u‖2=1,‖v‖2=1 u

TMv, so if σ1(M1) ≤ 1 and σ1(M2) ≤ 1, then for all convex
combinations, σ1(γM1 + (1− γ)M2) = maxu,v:‖u‖2=1,‖v‖2=1 γu

TM1v + (1− γ)uTM2v ≤ 1.
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stable region, in order to obtain a better objective value while remaining stable. This results in a
stable matrix with top eigenvalue slightly less than 1. In principle, such an interpolation could be
attempted between the least squares solution and any stable solution. However, the stable region
can be highly complex, and there may be several folds and boundaries of the stable region in
the interpolated area. In our experiments (not shown), interpolating from the solutions given by
LB-1 and LB-2 yielded worse results.

7.3 Experiments
For learning the dynamics matrix, we implemented subspace identification, constraint generation
(using quadprog), LB-1 [57] and LB-2 [58] (using CVX with SeDuMi) in Matlab on a 3.2
GHz Pentium with 2 GB RAM. Note that the algorithms that constrain the solution to be stable
give a different result from the basic subspace ID algorithm only in situations when the learned
Â is unstable. However, LDSs learned in scarce-data scenarios are unstable for almost any
domain, and some domains lead to unstable models up to the limit of available data (e.g. the
steam dynamic textures in Section 7.3.1). The goals of our experiments are to: (1) examine
the state evolution and simulated observations of models learned using constraint generation,
and compare them to previous work on learning stable dynamical systems; and (2) compare
the algorithms in terms of predictive accuracy and computational efficiency. We apply these
algorithms to learning dynamic textures from the vision domain (Section 7.3.1) as well as OTC
drug sales counts (Section 7.3.2) and sunspot numbers (Section 7.3.3).

7.3.1 Stable Dynamic Textures
Dynamic textures in vision can intuitively be described as models for sequences of images that
exhibit some form of low-dimensional structure and recurrent (though not necessarily repeating)
characteristics, e.g., fixed-background videos of rising smoke or flowing water. Treating each
frame of a video as an observation vector of pixel values yt, we learned dynamic texture models
of two video sequences by subspace identification: the steam sequence, composed of 120 ×
170 pixel images, and the fountain sequence, composed of 150 × 90 pixel images, both of
which originated from the MIT temporal texture database (Figure 7.2(A)). We use the following
parameters: training data size τ = 80, number of latent state dimensions n = 15, and number of
past and future observations in the Hankel matrix i = 5. Note that, while the observations are the
raw pixel values, the underlying state sequence we learn has no a priori interpretation. We can,
however, interpret the underlying state space as a set of predicted observations; that is, states are
coefficients for the learned observation basis.

An LDS model of a dynamic texture may synthesize an arbitrarily long sequence of images
by driving the model with zero mean Gaussian noise. Each of our two models uses an 80 frame
training sequence to generate 1000 sequential images in this way. To better visualize the differ-
ence between image sequences generated by least-squares, LB-1, and constraint generation, the
evolution of each method’s state is plotted over the course of the synthesized sequences (Fig-
ure 7.2(B)). Sequences generated by the least squares models appear to be unstable, and this
was in fact the case; both the steam and the fountain sequences resulted in unstable dy-
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Figure 7.2: Dynamic textures. A. Samples from the original steam sequence and the
fountain sequence. B. State evolution of synthesized sequences over 1000 frames (steam
top, fountain bottom). The least squares solutions display instability as time progresses. The
solutions obtained using LB-1 remain stable for the full 1000 frame image sequence. The con-
straint generation solutions, however, yield state sequences that are stable over the full 1000
frame image sequence without significant damping. C. Samples drawn from a least squares syn-
thesized sequences (top), and samples drawn from a constraint generation synthesized sequence
(bottom). Here we are displaying image values that are clipped to stay within the valid pixel
range [0, 255]. Images for LB-1 are not shown. The constraint generation synthesized steam
sequence is qualitatively better looking than the steam sequence generated by LB-1, although
there is little qualitative difference between the two synthesized fountain sequences.

namics matrices. Conversely, the constrained subspace identification algorithms all produced
well-behaved sequences of states and stable dynamics matrices (Table 7.1), although constraint
generation demonstrates the fastest runtime, best scalability, and lowest error of any stability-
enforcing approach.

A qualitative comparison of images generated by constraint generation and least squares
(Figure 7.2(C)) indicates the effect of instability in synthesized sequences generated from dy-
namic texture models. While the unstable least-squares model demonstrates a dramatic increase
in image contrast over time, the constraint generation model continues to generate qualitatively
reasonable images. Qualitative comparisons between constraint generation and LB-1 indicate
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CG LB-1 LB-1∗ LB-2 CG LB-1 LB-1∗ LB-2
steam (n = 10) fountain (n = 10)

|λ1| 1.000 0.993 0.993 1.000 0.999 0.987 0.987 0.997
σ1 1.036 1.000 1.000 1.034 1.051 1.000 1.000 1.054

ex(%) 45.2 103.3 103.3 546.9 0.1 4.1 4.1 3.0
time 0.45 95.87 3.77 0.50 0.15 15.43 1.09 0.49

steam (n = 20) fountain (n = 20)
|λ1| 0.999 — 0.990 0.999 0.999 — 0.988 0.996
σ1 1.037 — 1.000 1.062 1.054 — 1.000 1.056

ex(%) 58.4 — 154.7 294.8 1.2 — 5.0 22.3
time 2.37 — 1259.6 33.55 1.63 — 159.85 5.13

steam (n = 30) fountain (n = 30)
|λ1| 1.000 — 0.988 1.000 1.000 — 0.993 0.998
σ1 1.054 — 1.000 1.130 1.030 — 1.000 1.179

ex(%) 63.0 — 341.3 631.5 13.3 — 14.9 104.8
time 8.72 — 23978.9 62.44 12.68 — 5038.94 48.55

steam (n = 40) fountain (n = 40)
|λ1| 1.000 — 0.989 1.000 1.000 — 0.991 1.000
σ1 1.120 — 1.000 1.128 1.034 — 1.000 1.172

ex(%) 20.24 — 282.7 768.5 3.3 — 4.8 21.5
time 5.85 — 79516.98 289.79 61.9 — 43457.77 239.53

Table 7.1: Quantitative results on the dynamic textures data for different numbers of states n. CG
is our algorithm, LB-1and LB-2 are competing algorithms, and LB-1∗ is a simulation of LB-1
using our algorithm by generating constraints until we reach Sσ, since LB-1 failed for n > 10 due
to memory limits. ex is percent difference in squared reconstruction error. Constraint generation,
in all cases, has lower error and faster runtime.

that constraint generation learns models that generate more natural-looking video sequences3

than LB-1.
Given the paucity of data available when modeling dynamic textures, it is not possible to test

the long-range predictive power of the learned dynamical systems quantitatively. Instead, the
error metric used for the quantitative experiments when evaluating matrix A∗ is

ex(A
∗) = 100%×

(
J2(A∗)− J2(Â)

)
/J2(Â) (7.6)

i.e. percent increase in squared reconstruction error compared to least squares, with J(·) as de-
fined in Eq. (7.1a). Table 7.1 demonstrates that constraint generation always has the lowest error
as well as the fastest runtime. The running time of constraint generation depends on the number
of constraints needed to reach a stable solution. Note that LB-1 is more efficient and scalable
when simulated using constraint generation (by adding constraints until Sσ is reached) than it is
in its original SDP formulation.

3See videos at http://www.select.cs.cmu.edu/projects/stableLDS
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Figure 7.3: Bar graphs illustrating decreases in objective function value relative to the least
squares solution (A,B) and the running times (C,D) for different stable LDS learning algorithms
on the fountain and steam textures respectively, based on the corresponding columns of
Table 7.1.

7.3.2 Stable Baseline Models for Biosurveillance

We examine daily counts of OTC drug sales in pharmacies, obtained from the National Data
Retail Monitor (NDRM) collection [118]. The counts are divided into 23 different categories and
are tracked separately for each zipcode in the country. We focus on zipcodes from a particular
American city (not identified here due to data privacy restrictions). The data exhibits 7-day
periodicity due to differential buying patterns during weekdays and weekends. We isolate a 60-
day subsequence where the data dynamics remain relatively stationary, and attempt to learn LDS
parameters to be able to simulate sequences of baseline values for use in detecting anomalies.

We perform two experiments on different aggregations of the OTC data, with parameter
values We use the following parameters: number of latent state dimensions n = 7, number
of past and future observations in the Hankel matrix i = 4, and training data size τ = 14.
Figure 7.4(A) plots 22 different drug categories aggregated over all zipcodes, and Figure 7.4(B)
plots a single drug category (cough/cold) in 29 different zipcodes separately. In both cases,
constraint generation is able to use very little training data to learn a stable model that captures
the periodicity in the data, while the least squares model is unstable and its predictions diverge
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Figure 7.4: (A): 60 days of data for 22 drug categories aggregated over all zipcodes in the city.
(B): 60 days of data for a single drug category (cough/cold) for all 29 zipcodes in the city. (C):
Sunspot numbers for 200 years separately for each of the 12 months. The training data (top),
simulated output from constraint generation, output from the unstable least squares model, and
output from the over-damped LB-1 model (bottom).

over time. LB-1 learns a model that is stable but overconstrained, and the simulated observations
quickly drift from the correct magnitudes. Further details can be found in [89].

7.3.3 Modeling Sunspot Numbers
We compared least squares and constraint generation on learning LDS models for the sunspot
data discussed earlier. We use the following parameters: number of latent state dimensions
n = 7, number of past and future observations in the Hankel matrix i = 9, and training data size
τ = 50. Figure 7.4(C) represents a data-poor training scenario where we train a least-squares
model on 18 timesteps, yielding an unstable model whose simulated observations increase in
amplitude steadily over time. Again, constraint generation is able to use very little training
data to learn a stable model that seems to capture the periodicity in the data if not the magnitude,
while the least squares model is unstable. The model learned by LB-1 attenuates more noticeably,
capturing the periodicity to a smaller extent. Quantitative results on both these domains exhibit
similar trends as those in Table 7.1.

7.4 Related Work
Linear system identification is a well-studied subject [62]. Within this area, subspace identifica-
tion methods ([117], Chapter 2) have been very successful. These techniques first estimate the
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model dimensionality and the underlying state sequence, and then derive parameter estimates us-
ing least squares. Within subspace methods, techniques have been developed to enforce stability
by augmenting the extended observability matrix with zeros [24] or adding a regularization term
to the least squares objective [116].

All previous methods were outperformed by LB-1 [57]. They formulate the problem as a
semidefinite program (SDP) whose objective minimizes the state sequence reconstruction error,
and whose constraint bounds the largest singular value by 1. This convex constraint is obtained
by rewriting the nonlinear matrix inequality In −AAT � 0 as a linear matrix inequality4, where
In is the n × n identity matrix. Here, � 0 (� 0) denotes positive (semi-) definiteness. The
existence of this constraint also proves the convexity of the σ1 ≤ 1 region. This condition is
sufficient but not necessary, since a matrix that violates this condition may still be stable.

A follow-up to this work by the same authors [58], which we call LB-2, attempts to over-
come the conservativeness of LB-1 by approximating the Lyapunov inequalities P−APAT � 0,
P � 0 with the inequalities P −APAT− δIn � 0, P − δIn � 0, δ > 0. These inequalities hold
iff the spectral radius is less than 1.5 However, the approximation is achieved only at the cost
of inducing a nonlinear distortion of the objective function by a problem-dependent reweighting
matrix involving P , which is a variable to be optimized. In our experiments, this causes LB-2 to
perform worse than LB-1 (for any δ) in terms of the state sequence reconstruction error (dynamic
textures) and predictive log-likelihood (robot sensor data), even while obtaining solutions outside
the feasible region of LB-1. Consequently, we focus on LB-1 in our conceptual and qualitative
comparisons as it is the strongest baseline available. However, LB-2 is more scalable than LB-1,
so quantitative results are presented for both.

To summarize the distinction between constraint generation, LB-1 and LB-2: it is hard to
have both the right objective function (reconstruction error) and the right feasible region (the set
of stable matrices). LB-1 optimizes the right objective but over the wrong feasible region (the
set of matrices with σ1 ≤ 1). LB-2 has a feasible region close to the right one, but at the cost of
distorting its objective function to an extent that it fares worse than LB-1 in nearly all cases. In
contrast, our method optimizes the right objective over a less conservative feasible region than
that of any previous algorithm with the right objective, and this combination is shown to work
the best in practice.

4This bounds the top singular value by 1 since it implies ∀x xT (In − AAT )x ≥ 0 ⇒ ∀x xTAATx ≤ xTx ⇒
for ν = ν1(AAT) and λ = λ1(AAT), νTAAT ν ≤ νT ν ⇒ νTλν ≤ 1 ⇒ σ2

1(A) ≤ 1 since νTν = 1 and
σ2
1(M) = λ1(MMT ) for any square matrix M .

5For a proof sketch, see Horn and Johnson [39] pg. 410.
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Chapter 8

Reinforcement Learning: Value Iteration
in a Learned Predictive State
Representation

8.1 Introduction

In this chapter we shift our focus from learning models of linear dynamical systems to planning
in predictive state representations. Planning a sequence of actions or a policy to maximize reward
has long been considered a fundamental problem for autonomous agents. In the hardest version
of the problem, an agent must form a plan based solely on its own experience, without the aid
of a human engineer who can design problem-specific models, features or heuristics; it is this
version of the problem which we must solve to build a truly autonomous agent.

Partially Observable Markov Decision Processes (POMDPs) [22, 97] are a general frame-
work for single-agent planning. POMDPs model the state of the world as a latent variable
and explicitly reason about uncertainty in both action effects and state observability. Plans in
POMDPs are expressed as policies, which specify the action to take given any possible probabil-
ity distribution over states. Unfortunately, exact planning algorithms such as value iteration [97]
are computationally intractable for most realistic POMDP planning problems. Furthermore, re-
searchers have had only limited success learning POMDP models from data. There are arguably
two primary reasons for these problems [77]. The first is the “curse of dimensionality”: for a
POMDP with n states, the optimal policy is a function of an n− 1 dimensional distribution over
latent state. The second is the “curse of history”: the number of distinct policies increases ex-
ponentially in the planning horizon. We hope to mitigate the curse of dimensionality by seeking
an approximate dynamical system model with low dimensionality, and to mitigate the curse of
history by looking for a model that is susceptible to approximate planning.

As we demonstrated in Part I of this thesis, Predictive State Representations (PSRs) [61] and
the closely related Observable Operator Models (OOMs) [44] are generalizations of POMDPs
that have attracted interest because they both have greater representational capacity than POMDPs
and yield representations that are at least as compact [31, 93]. An additional benefit of PSRs and
OOMs is that many successful approximate planning techniques for POMDPs can be used to
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plan in PSRs and OOMs with minimal adjustment. Accordingly, PSR and OOM models of dy-
namical systems have potential to overcome both the curse of dimensionality and the curse of
history.

The quality of an optimized policy for a POMDP, PSR, or OOM depends strongly on the
accuracy of the model: inaccurate models typically lead to useless plans. We can specify a
model manually or learn one from data. A fully autonomous agent must be able to learn models
from data, but due to the difficulty of learning, it is far more common to see planning algo-
rithms applied to hand-specified models, and therefore to small systems where there is extensive
and goal-relevant domain knowledge. For example, recent extensions of approximate planning
techniques for PSRs have only been applied to hand-constructed models [43, 45].

Work that does learn models for planning in partially observable environments has so far met
with only limited success. As a result, there have been few successful attempts at closing the
loop by learning a model from an environment, planning in that model, and testing the plan in
the environment. For example, Expectation-Maximization (or EM—see, e.g., [9]) does not avoid
local minima or scale to large state spaces; and, although many learning algorithms have been
proposed for PSRs [16, 67, 92, 119, 123] and OOMs [38, 44, 63], none have been shown to learn
models that are accurate enough for planning.

Several researchers have, however, made progress in the problem of planning using a learned
model. In one instance [87], researchers obtained a POMDP heuristically from the output of
a model-free algorithm [66] and demonstrated planning on a small toy maze. In another in-
stance [85], researchers used Markov Chain Monte Carlo (MCMC) inference both to learn a
factored Dynamic Bayesian Network (DBN) representation of a POMDP in a small synthetic
network administration domain, as well as to perform online planning. Due to the cost of the
MCMC sampler used, this approach is still impractical for larger models. In a third example,
researchers learned Linear-Linear Exponential Family PSRs from an agent traversing a simu-
lated environment, and found a policy using a policy gradient technique with a parameterized
function of the learned PSR state as input [120, 122]. In this case both the learning and the plan-
ning algorithm were subject to local optima. In addition, the authors determined that the learned
model was too inaccurate to support value-function-based planning methods [120]. Finally, there
is a successful line of research which computes closed-loop controllers from learned or partly-
learned models, starting from linear subspace identification [117] and ranging to controllers for
helicopters [72] and bird-like robots [107]. This line of research uses techniques similar to the
ones described here; but, it focuses on control-like problems, in which accurate state estima-
tion and dealing with continuous controls are the main sources of difficulty, in contrast to the
planning-like problems we consider here, in which longer-term lookahead and discrete choices
are more important.

The current work differs from these and other previous examples of planning in learned
models: it both uses a principled and provably statistically consistent model-learning algorithm,
which we developed in Chapter 3 and Chapter 4, and demonstrates that this algorithm is able
to learn compact models of a difficult, realistic dynamical system without any prior domain
knowledge built into the model or algorithm. Finally, we perform approximate point-based value
iteration (PBVI) in the learned compact models, and demonstrate that the greedy policy for the re-
sulting value function works well in the original (not the learned) system. To our knowledge this
is the first research that combines all of these achievements, closing the loop from observations
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to actions in an unknown nonlinear, non-Gaussian planning system with no human intervention
beyond collecting the raw transition data and specifying features.

8.2 Planning in PSRs

The primary motivation for modeling a controlled dynamical system is to reason about the effects
of taking a sequence of actions in the system. Although this paper is not predominantly about
planning algorithms for PSRs, since PSR planning is a straightforward extension of POMDP
planning [43, 45], we describe PSR planning here since it is needed for our closing-the-loop
experiments. The PSR model can be augmented for this purpose by specifying a linear reward
function for taking an action at in state bt:

R(bt, at)
def
= η>atbt (8.1)

where η>at ∈ Rn is the linear function specified by action at. (This extension generalizes the state-
dependent rewards of (PO)MDPs.) Given this function and a discount factor γ, the planning
problem for PSRs is to find a policy that maximizes the expected discounted sum of rewards,
E [
∑

t γ
tR(bt, at)]. The optimal policy can be compactly represented using the optimal value

function J∗(bt), which specifies the expected sum of future rewards in each PSR state. The value
function is defined recursively as:

J∗(bt)
def
= max

a∈A

[
R(bt, at = a) + γ

∑
o∈O

P [ot = o | bt, at = a]V ∗(btao)

]
(8.2)

where btao is the state obtained from bt after executing action a and observing o. We have im-
plicitly assumed that the expected reward is a linear function of the PSR state; we can ensure
that this assumption holds by including the reward as an observation when we learn the PSR
dynamics. (Or, if the reward is not directly observable, by including its expectation given all
observable information.) We can obtain the optimal action by taking the arg max instead of the
max in Equation 8.3:

π∗(bt)
def
= arg max

a∈A

[
R(bt, at = a) + γ

∑
o∈O

P [ot = o | bt, at = a]V ∗(btao)

]
(8.3)

When optimized exactly, the value function is always piecewise linear and convex (PWLC) in
the state, and has finitely many pieces in finite-horizon planning problems [45]. In this case, the
value function for a finite horizon t can be expressed by a set of vectors Γt = {α1, . . . , αg}. Each
α-vector represents a hyperplane, and defines a value function over a bounded region of the PSR
state space:

Jt(bt) = max
α∈Γt

α>bt (8.4)
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The finite horizon t set Γt can be generated recursively from Γt−1 through a process called Exact
Value Iteration. Let

Γa,ot
def
= {αa,oi | αi ∈ Γt−1, a ∈ A, o ∈ O} (8.5)

αa,oi
def
= γB>aoαi (8.6)

Then, for each action a ∈ A, the set Γat is generated by:

Γat = R(bt, at) +
⊕
o∈O

Γa,ot (8.7)

where ⊕ denotes the cross-sum operator. Finally, the new set Γt is the union

Γt =
⋃
a∈A

Γat (8.8)

Exact value iteration for PSRs optimizes the value function over all possible beliefs or state
vectors. However, computing the exact value function is problematic because the number of
sequences of actions that must be considered grows exponentially with the planning horizon,
called the “curse of history.” Approximate point-based planning techniques (see below) specif-
ically target the curse of history by attempting only to calculate the best sequence of actions at
some finite set of belief points. Unfortunately, in high dimensions, approximate planning tech-
niques have difficulty adequately sampling the space of possible beliefs. This is called the “curse
of dimensionality.” Because PSRs often admit a compact low-dimensional representation, they
can reduce the effect of the curse of dimensionality, and so approximate point-based planning
techniques can work well in these models.

Point-Based Value Iteration (PBVI) [76] is an efficient approximation of exact value iteration
that performs value backup steps on a finite set of heuristically-chosen belief points rather than
over the entire belief simplex. PBVI exploits the fact that the value function is PWLC. A
linear lower bound on the value function at one point b can be used as a lower bound at nearby
points; this insight allows the value function to be approximated with a finite set of α-vectors,
one for each chosen point. Although PBVI was designed for POMDPs, the approach has been
generalized to PSRs [43]. Formally, given some set of points B = {b1, . . . , bg} in the PSR state
space, we recursively compute the value function and linear lower bounds at only these points.
The approximate value function after t iterations can be represented by a set of α-vectors Γt such
that each αi is maximal for least one prediction vector bi.

As with exact value iteration, Γt can be generated recursively from Γt−1.

Γat = {αab | b ∈ B} αab = R(b, a) +
∑
o∈O

arg max
α∈Γa,ot

α>b (8.9)

where Γa,ot is as given in Equation 8.5. Because we only need to generate one α-vector αab per
PSR state b for each action a ∈ A, we calculate summations for only these states and do not need
the cross-sum operation (Equation 8.7). Finally we find the best α-vector for each PSR state

αb = arg max
α∈∪aΓat

α>b (∀b ∈ B) (8.10)
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Once Γt has been calculated, the approximate value function at any PSR state b, including b /∈ B
can be found as before (Equation 8.4).

In addition to being tractable on much larger-scale planning problems than exact value itera-
tion, PBVI comes with theoretical guarantees in the form of error bounds that are low-order poly-
nomials in the degree of approximation, range of reward values, and discount factor γ [43, 76].
In our experiments, we use Perseus [45, 102], a variant of PBVI that updates the value function
over a small randomized subset of a large set of reachable belief points at each time step. By
only updating a subset of belief points, Perseus can achieve a computational advantage over plain
PBVI in some domains.

8.3 Experimental Results
We have introduced a novel algorithm for learning PSRs directly from data, as well as a kernel-
based extension for modeling continuous observations. We judge the quality of our PSR learning
algorithm by first learning a model of a challenging non-linear, partially observable, controlled
domain directly from sensor inputs and then “closing the loop” by planning in the learned model.
Successful planning is a much stronger result than standard dynamical system evaluations such
as one-step squared error or prediction log-likelihood. Unlike previous attempts to learn PSRs,
which either lack planning results [84, 121], or which compare policies within the learned sys-
tem [122], we compare our resulting policy to a bound on the best possible solution in the original
system and demonstrate that the policy is close to optimal.

8.3.1 The Autonomous Robot Domain
Our simulated autonomous robot domain consisted of a simple 45 × 45 unit square arena with
a central obstacle and brightly colored walls (Figure 8.1(A-B)), containing a robot of radius 2
units. The robot could move around the floor of the arena and rotate to face in any direction.
The robot had a simulated 16 × 16 pixel color camera, with a focal plane one unit in front
of the robot’s center of rotation, and with a visual field of 45◦ in both azimuth and elevation,
corresponding to an angular resolution of ∼ 2.8◦ per pixel. Images on the sensor matrix at
any moment were simulated by a non-linear perspective transformation and projection onto the
camera’s focal plane, based on the robot’s current position and orientation in the environment.
The resulting 768-element pattern of unprocessed RGB values was the only input to the robot
(images were not preprocessed to extract features), and each action produced a new set of pixel
values. The robot was able to move forward 1 or 0 units, and simultaneously rotate 15◦, −15◦,
or 0◦, resulting in 6 unique actions. In the real world, friction, uneven surfaces, and other factors
confound precisely predictable movements. To simulate this uncertainty, a small amount of
Gaussian noise was added to the translation (mean 0, standard deviation .1 units) and rotation
(mean 0, standard deviation 5◦) components of the actions. The robot was allowed to occupy
any real-valued (x, y, θ) pose that didn’t intersect a wall; in case of an attempt to drive through a
wall, we interrupted the commanded motion just before contact, simulating an inelastic collision.

The autonomous robot domain was designed to be a difficult domain comparable to the most
complex domains that previous PSR algorithms have attempted to model. In particular, the
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domain in this paper was modeled after the autonomous robot domains found in recent PSR
work [121, 122]. The proposed problem, learning a model of this domain and then planning
in the learned model, is quite difficult. The autonomous robot has no knowledge of any of the
underlying properties of the domain, e.g., the geometry of the environment or the robot motion
model; it only has access to samples of the 3× 256 pixel features, and how these features change
as actions are executed. Writing a correct policy for a specific task in this domain by hand
would be at best tedious—and in any case, as mentioned above, it is often impractical to hand-
design a policy for an autonomous agent, since doing so requires guessing the particular planning
problems that the agent may face in the future. Furthermore, the continuous and non-linear nature
of this domain makes learning models difficult. For example, a POMDP model of this domain
would require a prohibitively large number of hidden states, making learning and planning next
to impossible. PSRs are able to overcome this problem by compactly representing state in a low-
dimensional real-valued space, and the algorithm presented in this work allows us to efficiently
learn the parameters of the PSR in closed form.

8.3.2 Features

In order to contend with the continuous observations generated by our experimental system,
we used features of actions and observations when building our observable representation. In
particular, we built features for each observation by using a fraction of the training observations
as kernel centers. We used a multivariate Gaussian kernel with an elliptical covariance matrix,
chosen by PCA: that is, we used a spherical covariance after projecting onto the eigenvectors of
the covariance matrix of the observations and scaling by the square roots of the eigenvalues. We
chose the bandwidth manually, by a coarse search. However, as we demonstrated in Chapter 4
the exact details of kernel choice are not an essential feature of our algorithm: any smooth kernel
could suffice (and, in fact, many different types of features could be used).

One of the nice properties of this choice of features is that, the kernel density estimate (KDE)
of the observation probability density function (PDF) is a convex combination of these kernels;
since each kernel integrates to 1, this estimator also integrates to 1. KDE theory [91] tells us that,
with the correct kernel weights, as the number of kernel centers and the number of samples go to
infinity and the kernel bandwidth goes to zero (at appropriate rates), the KDE estimator converges
to the observation PDF in L1 norm. The kernel density estimator is completely determined by
the normalized vector of kernel weights; therefore, if we can estimate this vector accurately, our
estimate of the observation PDF will converge to the observation PDF as well. Hence our goal is
to predict the correct expected value of this normalized kernel vector given all past observations.

Given these features, we can write our latent-state update in the continuous-observation case
in the form of Equation 4.2c, using a matrix Bao; however, rather than learning each of the
uncountably-many Bao matrices separately, we learn one base operator per kernel center, and
use convex combinations of these base operators to compute observable operators as needed.
For details on practical aspects of learning with continuous observations and these features, see
Boots et al. [14].
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8.3.3 Learning a Model

We learn our model from a sample of 10000 short trajectories, each containing 7 action-observation
pairs. We generate each trajectory by starting from a uniformly randomly sampled position in
the environment and executing a uniform random sequence of actions. In each trajectory, we
consider the first 3 actions the “past,” the 4th action the “present,” and the last 3 actions the “fu-
ture.” (The initial distribution ω is, therefore, the distribution obtained by initializing uniformly
and taking 3 random actions.) We used the first l = 2000 trajectories to generate kernel centers,
and the remaining w = 8000 to estimate the matrices µH, ΣT ,H, and ΣT +,ao,H.

To define these matrices, we need to specify a set of indicative features, a set of observation
kernel centers, and a set of characteristic features. We use Gaussian kernels to define our indica-
tive and characteristic features, in a similar manner to the Gaussian kernels described above for
observations; our analysis allows us to use arbitrary indicative and characteristic features, but we
found Gaussian kernels to be convenient and effective. Note that the resulting features over tests
and histories are just features; unlike the kernel centers defined over observations, there is no
need to let the kernel width approach zero, since we are not attempting to learn accurate PDFs
over the histories and tests inH and T .

In more detail, we define a set of 2000 indicative kernels, each one centered at a sequence of
3 observations from the initial segment of one of our trajectories. We choose the kernel covari-
ance using PCA on these sequences of observations, just as described for single observations in
Section 8.3.2. We then generate our indicative features for a new sequence of three observations
by evaluating each indicative kernel at the new sequence, and normalizing so that the vector of
features sums to one. Similarly, we define 2000 characteristic kernels, each one centered at a
sequence of 3 observations from the end of one of our sample trajectories, choose a kernel covari-
ance, and define our characteristic feature vector by evaluating each kernel at a new observation
sequence and normalizing. Finally, we define 500 observation kernels, each one centered at a
single observation from the middle of one of our sample trajectories, and replace each observa-
tion by its corresponding vector of normalized kernel weights. Next, we construct the matrices
µ̂H, Σ̂T ,H, and Σ̂T +,ao,H as the empirical expectations over our 8000 training trajectories accord-
ing to the equations in Section 4.2. Finally we chose |Q′| = 5 as the dimension of our PSR, the
smallest dimension that was able to produce high quality policies (see Section 8.3.5 below).

8.3.4 Qualitative Evaluation

Having learned the parameters of the PSR according to the algorithm in Section 4.2, we can
use the model for prediction, filtering, and planning in the autonomous robot domain. We first
evaluated the model qualitatively by projecting the sets of histories in the training data onto the
learned PSR state space: Û>φH1:w. We colored each data point according to the average of the
red, green, and blue components of the highest probability observation following the projected
history. The features of the low dimensional embedding clearly capture the topology of the
major features of the robot’s visual environment (Figure 8.1(C–D)), and continuous paths in the
environment translate into continuous paths in the latent space (Figure 8.1(F)). For example,
positions near different walls are mapped to different “spines” in the star-shaped embedding of
the state space (Figure 8.1(C)).
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8.3.5 Planning in the Learned Model

To test the quality of the learned model, we set up a navigation problem where the robot was
required to plan to reach a goal image (looking directly at the blue wall). We specified a large
reward (1000) for this observation, a reward of−1 for colliding with a wall, and 0 for every other
observation. We learned a reward function by linear regression from the embedded histories
Û>φH1:w to the observed immediate rewards. We used the learned reward function to compute an
approximate state-action value function via the PSR extension of the Perseus variant of PBVI [43,
45, 76, 102] with discount factor γ = .8, a prediction horizon of 10 steps, and with the 8000
embedded histories as the set of belief points. The learned value function is displayed in Figure
8.1(E). When faced with a new 3-step history, we computed an initial belief by starting with
b∗ and tracking for 3 action-observation pairs, and from then on executed the greedy policy for
our learned value function while updating our belief with each new observation. Examples of
paths planned in the learned model are presented in Figure 8.1(F); the same paths are shown in
geometric space in Figure 8.1(G). (Recall that the robot only has access to images, never its own
position.)

The reward function encouraged the robot to navigate to a specific set of points in the envi-
ronment, so the planning problem can be viewed as a shortest path problem. Even though we
don’t encode this intuition into our algorithm, we can use it to quantitatively evaluate the perfor-
mance of the policy in the original system. First we randomly sampled 100 initial histories in the
environment and asked the robot to plan paths for each based on its learned policy. We compared
the number of actions taken both to a random policy and to the optimistic path, calculated by
A* search in the robot’s configuration space given the true underlying position. Note that this
comparison is somewhat unfair: in order to achieve the same cost as the optimistic path, the robot
would have to know its true underlying position, the dynamics would have to be deterministic,
all rotations would have to be instantaneous, and the algorithm would need an unlimited amount
of training data. Nonetheless, the results (Figure 8.1(H)) indicate that the performance of the
PSR policy is close to this optimistic bound. We think that this finding is remarkable, especially
given that previous approaches have encountered significant difficulty modeling continuous do-
mains [47] and domains with similarly high levels of complexity [122].

8.4 Conclusions

In Chapter 3 and Chapter 4 we presented a novel consistent subspace identification algorithms
that simultaneously solve the discovery and learning problems for PSRs (and therefore POMDPs).
In this chapter we showed how point-based approximate planning techniques can be used to solve
the planning problem in a learned model. We demonstrated the representational capacity of our
model and the effectiveness of our learning algorithm by learning a compact model from simu-
lated autonomous robot vision data. Finally, we closed the loop by successfully planning with
the learned models. To our knowledge this is the first instance of learning a model and success-
fully planning in the learned model for a simulated robot in a nonlinear, non-Gaussian, partially
observable environment of this complexity using a consistent algorithm. We compare the policy
generated by our model to a bound on the best possible value, and determine that our policy is
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close to optimal.
We believe that spectral PSR learning algorithms can increase the scope of planning under

uncertainty for autonomous agents in previously intractable scenarios. We believe that this im-
provement is partly due to the greater representational power of PSRs as compared to POMDPs,
and partly due to the efficient and statistically consistent nature of the learning method.
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Figure 8.1: Learning and Planning in the Autonomous Robot Domain. (A) The robot uses visual
sensing to traverse a square domain with multi-colored walls and a central obstacle. Examples of
images recorded by the robot occupying two different positions in the environment are shown at
the bottom of the figure. (B) A to-scale 3-dimensional view of the environment. (C) The 2nd and
3rd dimension of the learned subspace (the first dimension primarily contained normalization
information). Each point is the embedding of a single history, displayed with color equal to the
average RGB color in the first image in the highest probability test. (D) The same points in (C)
projected onto the environment’s geometric space. (E) The value function computed for each
embedded point; lighter indicates higher value. (F) Policies executed in the learned subspace.
The red, green, magenta, and yellow paths correspond to the policy executed by a robot with
starting positions facing the red, green, magenta, and yellow walls respectively. (G) The paths
taken by the robot in geometric space while executing the policy. Each of the paths corresponds
to the path of the same color in (F). The darker circles indicate the starting and ending positions,
and the tick-mark indicates the robot’s orientation. (H) Analysis of planning from 100 randomly
sampled start positions to the target image (facing blue wall). In the bar graph: the mean number
of actions taken by the optimistic solution found by A* search in configuration space (left); the
mean number taken by the policy found by Perseus in the learned model (center); and the mean
number taken by a random policy (right). The line graph illustrates the cumulative density of the
number of actions given the optimal, learned, and random policies.
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Chapter 9

Reinforcement Learning: Predictive State
Temporal Difference Learning

9.1 Introduction

In this chapter we will show how to use spectral learning algorithms to enhance least squares tem-
poral difference learning. Specifically, we examine the problem of estimating a policy’s value
function within a decision process in a high dimensional and partially-observable environment,
when the parameters of the process are unknown: i.e. we only have access to trajectories of
observations and rewards sampled from the process. In this situation, a common strategy is to
employ a linear architecture and represent the value function as a linear combination of features
of (sequences of) observations. A popular family of model-free algorithms called temporal dif-
ference (TD) algorithms [105] can then be used to estimate the parameters of the value function.
Least-squares TD (LSTD) algorithms [17, 19, 59] exploit the linearity of the value function to
find the optimal parameters in a least-squares sense from time-adjacent samples of features.

Unfortunately, choosing a good set of features is hard. The features must be predictive of
future reward, and the set of features must be small relative to the amount of training data, or TD
learning will be prone to overfitting. The problem of selecting a small set of reasonable features
has been approached from a number of different perspectives. In many domains, the features
are selected by hand according to expert knowledge; however, this task can be difficult and time
consuming in practice. Therefore, a considerable amount of research has been devoted to the
problem of automatically identifying features that support value function approximation.

Much of this research is devoted to finding sets of features when the dynamical system is
known, but the state space is large and difficult to work with. For example, in a large fully
observable Markov decision process (MDP), it is often easier to estimate the value function from
a low dimensional set of features than by using state directly. So, several approaches attempt to
automatically discover a small set of features from a given larger description of an MDP, e.g., by
using a spectral analysis of the state-space transition graph to discover a low-dimensional feature
set that preserves the graph structure [46, 64, 65].

Partially observable Markov decision processes (POMDPs) extend MDPs to situations where
the state is not directly observable [3, 22, 97]. In this circumstance, an agent can plan using a
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continuous belief state with dimensionality equal to the number of hidden states in the POMDP.
When the number of hidden states is large, dimensionality reduction in POMDPs can be achieved
by projecting a high dimensional belief space to a lower dimensional one; of course, the diffi-
culty is to find a projection which preserves decision quality. Strategies for finding good projec-
tions include value-directed compression [78] and non-negative matrix factorization [60, 110].
The resulting model after compression is a Predictive State Representation (PSR) [61, 93], an
Observable Operator Model [44], or a multiplicity automaton [30]. Moving to one of these rep-
resentations can often compress a POMDP by a large factor with little or no loss in accuracy:
examples exist with arbitrarily large lossless compression factors, and in practice, we can often
achieve large compression ratios with little loss.

The drawback of all of the approaches enumerated above is that they first assume that the dy-
namical system model is known, and only then give us a way of finding a compact representation
and a value function. In practice, we would like to be able to find a good set of features, without
prior knowledge of the system model. Kolter and Ng [55] contend with this problem from a sparse
feature selection standpoint. Given a large set of possibly-relevant features of observations, they
proposed augmenting LSTD by applying an L1 penalty to the coefficients, forcing LSTD to se-
lect a sparse set of features for value function estimation. The resulting algorithm, LARS-TD,
works well in certain situations (for example, see Section 9.4.1), but only if our original large set
of features contains a small subset of highly-relevant features.

Recently, Parr et al. looked at the problem of value function estimation from the perspective
of both model-free and model-based reinforcement learning [75]. The model-free approach esti-
mates a value function directly from sample trajectories, i.e., from sequences of feature vectors
of visited states. The model-based approach, by contrast, first learns a model and then computes
the value function from the learned model. Parr et al. compared LSTD (a model-free method) to
a model-based method in which we first learn a linear model by viewing features as a proxy for
state (leading to a linear transition matrix that predicts future features from past features), and
then compute a value function from this approximate model. Parr et al. demonstrated that these
two approaches compute exactly the same value function [75], formalizing a fact that has been
recognized to some degree before [17].

In this chapter, we build on this insight, while simultaneously finding a compact set of fea-
tures using spectral system identification ideas from Chapter 3 and Chapter 4. First, we look
at the problem of improving LSTD from a model-free predictive-bottleneck perspective: given
a large set of features of history, we devise a new TD method called Predictive State Temporal
Difference (PSTD) learning that estimates the value function through a bottleneck that preserves
only predictive information (Section 9.3.2). Intuitively, this approach has some of the same ben-
efits as LARS-TD: by finding a small set of predictive features, we avoid overfitting and make
learning more data-efficient. However, our method differs in that we identify a small subspace
of features instead of a sparse subset of features. Hence, PSTD and LARS-TD are applicable in
different situations: as we show in our experiments below, PSTD is better when we have many
marginally-relevant features, while LARS-TD is better when we have a few highly-relevant fea-
tures hidden among many irrelevant ones.

Second, we look at the problem of value function estimation from a model-based perspective
(Section 9.3.4). Instead of learning a linear transition model from features, as in [75], we use
subspace identification [14, 84] to learn a PSR from our samples. Then we compute a value
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function via the Bellman equations for our learned PSR. This new approach has a substantial
benefit: while the linear feature-to-feature transition model of [75] does not seem to have any
common uses outside that paper, PSRs have been proposed numerous times on their own merits
(including being invented independently at least three times), and are a strict generalization of
POMDPs.

Just as Parr et al. showed for the two simpler methods, we show that our two improved meth-
ods (model-free and model-based) are equivalent. This result yields some appealing theoretical
benefits: for example, coefficients of PSTD features can be explicitly interpreted as a statisti-
cally consistent estimate of the true underlying system state. And, the feasibility of finding the
true value function can be shown to depend on the linear dimension of the dynamical system,
or equivalently, the dimensionality of the predictive state representation—not on the cardinality
of the POMDP state space. Therefore our representation is naturally “compressed” in the sense
of [78], speeding up convergence.

The improved methods also yield practical benefits; we demonstrate these benefits with sev-
eral experiments. First, we compare PSTD to LSTD and LARS-TD on a synthetic example using
different sets of features to illustrate the strengths and weaknesses of each algorithm. Next, we
apply PSTD to a difficult optimal stopping problem for pricing high-dimensional financial deriva-
tives. A significant amount of work has gone into hand tuning features for this problem. We show
that, if we add a large number of weakly relevant features to these hand-tuned features, PSTD can
find a predictive subspace which performs much better than competing approaches, improving
on the best previously reported result for this particular problem by a substantial margin.

The theoretical and empirical results reported here suggest that, for many applications where
LSTD is used to compute a value function, PSTD can be simply substituted to produce better
results.

9.2 Value Function Approximation
The notion of a value function is of central importance in reinforcement learning: for a given
policy π, the value of state s is defined as the expected discounted sum of rewards obtained when
starting in state s and following policy π, Jπ(s) = E [

∑∞
t=0 γ

tR(st) | s0 = s, π]. It is well known
that the value function must obey the Bellman equation

Jπ(s) = R(s) + γ
∑
s′

Jπ(s′)P[s′ | s, π(s)] (9.1)

If we know the transition function T , and if the set of states S is sufficiently small, we can
use (9.1) directly to solve for the value function Jπ. We can then execute the greedy policy for
Jπ, setting the action at each state to maximize the right-hand side of (9.1).

However, we consider instead the harder problem of estimating the value function when s
is a partially observable latent variable, and when the transition function T is unknown. In this
situation, we receive information about s through observations from a finite setO. Our state (i.e.,
the information which we can use to make decisions) is not an element of S but a history (an
ordered sequence of action-observation pairs ht = a1, o1, . . . , at−1, ot−1 that have been executed
and observed prior to time t). If we knew the transition model T , we could use ht to infer a
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belief distribution over S, and use that belief (or a compression of that belief) as a state instead;
below, we will discuss how to learn a compressed belief state. Because of partial observability,
we can only hope to predict expected reward conditioned on history, R(ht) = E[R(s) | ht], and
we must choose actions as a function of history, π(ht) instead of π(s).

Let H be the set of all possible histories. H is often very large or infinite, so instead of
finding a value separately for each history, we focus on value functions that are linear in features
of histories

Jπ(s) ≈ w>φH(ht) (9.2)

Here w ∈ Rj is a parameter vector and φH(ht) ∈ Rj is a feature vector for a history ht. So, we
can rewrite the Bellman equation as

w>φH(ht) ≈ R(ht) + γ
∑
o∈O

w>φH(htπo)P[htπo | htπ] (9.3)

where hπo is history h extended by taking action π(ht) and observing o.

9.2.1 Least Squares Temporal Difference Learning
In general we don’t know the transition probabilities P[htπo | ht], but we do have samples
of state features φHt = φH(ht), next-state features φHt+1 = φH(ht+1), and immediate rewards
Rt = R(ht). We can thus estimate the Bellman equation

w>φH1:k ≈ R1:k + γw>φH2:k+1 (9.4)

(Here we have used the notation φH1:k to mean the matrix whose columns are φHt for t = 1 . . . k.)
We can immediately attempt to estimate the parameter w by solving the linear system in the
least squares sense: ŵ> = R1:k

(
φH1:k − γφH2:k+1

)†, where † indicates the Moore–Penrose pseudo-
inverse. However, this solution is biased [19], since the independent variables φHt − γφHt+1 are
noisy samples of the expected difference E[φH(ht) − γ

∑
o∈O φ

H(htπo)P[htπo | ht]]. In other
words, estimating the value function parameters w is an error-in-variables problem.

The least squares temporal difference (LSTD) algorithm provides a consistent estimate of the
independent variables by right multiplying the approximate Bellman equation (Equation 9.4) by
φHt
>. The quantity φHt

> can be viewed as an instrumental variable [19], i.e., a measurement that
is correlated with the true independent variables, but uncorrelated with the noise in our estimates
of these variables.1 The value function parameter w may then be estimated as follows:

ŵ> =
1

k

k∑
t=1

Rtφ
H
t

>
(

1

k

k∑
t=1

φHt φ
H
t

> − γ

k

k∑
t=1

φHt+1φ
H
t

>
)−1

(9.5)

As the amount of data k increases, the empirical covariance matrices φH1:kφ
H
1:k
>
/k and φH2:k+1φ

H
1:k
>
/k

converge with probability 1 to their population values, and so our estimate of the matrix to be
inverted in (9.5) is consistent. Therefore, as long as this matrix is nonsingular, our estimate of
the inverse is also consistent, and our estimate of w therefore converges to the true parameters
with probability 1.

1The LSTD algorithm can also be theoretically justified as the result of an application of the Bellman operator
followed by an orthogonal projection back onto the row space of φH [59].
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9.3 Predictive Features
Although LSTD provides a consistent estimate of the value function parameters w, in practice,
the potential size of the feature vectors can be a problem. If the number of features is large
relative to the number of training samples, then the estimation of w is prone to overfitting. This
problem can be alleviated by choosing some small set of features that only contain information
that is relevant for value function approximation. However, with the exception of LARS-TD [55],
there has been little work on the problem of how to select features automatically for value func-
tion approximation when the system model is unknown; and of course, manual feature selection
depends on not-always-available expert guidance.

We approach the problem of finding a good set of features from a bottleneck perspective.
That is, given some signal from history, in this case a large set of features, we would like to
find a compression that preserves only relevant information for predicting the value function
Jπ. This idea, finding a set of predictive features of the future, is directly related to spectral
identification of PSRs. In particular, we think of predictions of the future as tests (Chapter 3) or,
more generally characteristic features (Chapter 4). Here we will use the terms “characteristic
features” and “features of the future” interchangeably.

9.3.1 Finding Predictive Features Through a Bottleneck
In order to find a predictive feature compression, we first need to determine what we would like
to predict; i.e. what characteristic features to choose. Since we are interested in value function
approximation, the most relevant prediction is the value function itself; so, we could simply try
to predict total future discounted reward given a history. Unfortunately, total discounted reward
has high variance, so unless we have a lot of data, learning will be difficult.

We can reduce variance by including other prediction tasks as well. For example, predicting
individual rewards at future time steps, while not strictly necessary to predict total discounted
reward, seems highly relevant, and gives us much more immediate feedback. Similarly, future
observations hopefully contain information about future reward, so trying to predict observations
can help us predict reward better. Finally, in any specific RL application, we may be able to add
problem-specific prediction tasks that will help focus our attention on relevant information: for
example, in a path-planning problem, we might try to predict which of several goal states we will
reach (in addition to how much it will cost to get there).

We can represent all of these prediction tasks as features of the future: e.g., to predict which
goal we will reach, we add a distinct observation at each goal state, or to predict individual
rewards, we add individual rewards as observations.2 We will write φTt for the vector of all
features of the “future at time t,” i.e., events starting at time t+ 1 and continuing forward.

So, instead of remembering a large arbitrary set of features of history, we want to find a small
subspace of features of history that is relevant for predicting features of the future. We will call

2If we don’t wish to reveal extra information by adding additional observations, we can instead add the corre-
sponding feature predictions as observations; these predictions, by definition, reveal no additional information. To
save the trouble of computing these predictions, we can use realized feature values rather than predictions in our
learning algorithms below, at the cost of some extra variance: the expectation of the realized feature value is the
same as the expectation of the predicted feature value.
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this subspace a predictive compression, and we will write the value function as a linear function
of only the predictive compression of features.

To find our predictive compression, we will use reduced-rank regression [83]. We define the
following empirical covariance matrices between features of the future and features of histories:

Σ̂T ,H =
1

k

k∑
t=1

φTt φ
H
t

>
Σ̂H,H =

1

k

k∑
t=1

φHt φ
H
t

>
(9.6)

Let LH be the lower triangular Cholesky factor of Σ̂H,H. Then we can find a predictive compres-
sion of histories by a singular value decomposition (SVD) of the weighted covariance: write

UDV> ≈ Σ̂T ,HL
−T
H (9.7)

for a truncated SVD [36] of the weighted covariance, where U are the left singular vectors, V>
are the right singular vectors, and D is the diagonal matrix of singular values. The number of
columns of U , V , or D is equal to the number of retained singular values.3 Then we define

Û = UD1/2 (9.8)

to be the mapping from the low-dimensional compressed space up to the high-dimensional space
of features of the future.

Given Û , we would like to find a compression operator V that optimally predicts features
of the future through the bottleneck defined by Û . The least squares estimate can be found by
minimizing the loss

L(V ) =
∥∥∥φT1:k − ÛV φH1:k

∥∥∥2

F
(9.9)

where ‖ · ‖F denotes the Frobenius norm. We can find the minimum by taking the derivative of
this loss with respect to V , setting it to zero, and solving for V (see Appendix, Section 12.1.1 for
details), giving us:

V̂ = arg min
V
L(V ) = Û>Σ̂T ,H(Σ̂H,H)−1 (9.10)

By weighting different features of the future differently, we can change the approximate
compression in interesting ways. For example, as we will see in Section 9.3.4, scaling up future
reward by a constant factor results in a value-directed compression—but, unlike previous ways

3If our empirical estimate Σ̂T ,H were exact, we could keep all nonzero singular values to find the smallest possi-
ble compression that does not lose any predictive power. In practice, though, there will be noise in our estimate, and
Σ̂T ,HL

−T
H will be full rank. If we know the true rank n of ΣT ,H, we can choose the first n singular values to define

a subspace for compression. Or, we can choose a smaller subspace that results in an approximate compression: by
selectively dropping columns of U corresponding to small singular values, we can trade off compression against
predictive power. Directions of larger variance in features of the future correspond to larger singular values in the
SVD, so we minimize prediction error by truncating the smallest singular values. By contrast with an SVD of the
unscaled covariance, we do not attempt to minimize reconstruction error for features of history, since features of
history are standardized when we multiply by the inverse Cholesky factor.
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to find value-directed compressions [78], we do not need to know a model of our system ahead
of time. For another example, define LT to be the lower triangular Cholesky factor of the em-
pirical covariance of future features Σ̂T ,T . Then, if we scale features of the future by L−TT , the
singular value decomposition will preserve the largest possible amount of mutual information
between features of the future and features of history. This is equivalent to canonical correlation
analysis [41, 95], and the matrixD becomes a diagonal matrix of canonical correlations between
futures and histories.

9.3.2 Predictive State Temporal Difference Learning

Now that we have found a predictive compression operator V̂ via Equation 9.10, we can re-
place the features of history φHt with the compressed features V̂ φHt in the Bellman recursion,
Equation 9.4. Doing so results in the following approximate Bellman equation:

w>V̂ φH1:k ≈ R1:k + γw>V̂ φH2:k+1 (9.11)

The least squares solution for w is still prone to an error-in-variables problem. The variable φH

is still correlated with the true independent variables and uncorrelated with noise, and so we
can again use it as an instrumental variable to unbias the estimate of w. Define the additional
empirical covariance matrices:

Σ̂R,H =
1

k

k∑
t=1

Rtφ
H
t

>
Σ̂H+,H =

1

k

k∑
t=1

φHt+1φ
H
t

>
(9.12)

Then, the corrected Bellman equation is:

ŵ>V̂ Σ̂H,H = Σ̂R,H + γŵ>V̂ Σ̂H+,H (9.13)

and solving for ŵ gives us the Predictive State Temporal Difference (PSTD) learning algorithm:

ŵ> = Σ̂R,H

(
V̂ Σ̂H,H − γV̂ Σ̂H+,H

)†
(9.14)

So far we have provided some intuition for why predictive features should be better than arbitrary
features for temporal difference learning. Below we will show an additional benefit: the model-
free algorithm in Equation 9.14 is, under some circumstances, equivalent to a model-based value
function approximation method which uses subspace identification to learn Predictive State Rep-
resentations [14, 84].

9.3.3 PSRs
We are ow almost ready to show that the model-free PSTD learning algorithm introduced in
Section 9.3.2 is equivalent to a model-based algorithm built around PSR learning. In order to do
so, we will use a number of equations from Chapter 4, specifically the definitions of moments
given in Equations 4.1 and PSR parameter estimates given in Equations 4.2. In addition we
define a few more moments and parameters:
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First we define ΣH+,ao,H, a set of matrices, one for each action-observation pair, that represent
the covariance between features of history before and after taking action a and observing o. In
the following, we assume that histories ht ∼ ω.

Σ̂H+,ao,H
def
=

1

k

k∑
t=1

φHt+1I(ot = o)φHt
>

ΣH+,ao,H
def
= E

[
Σ̂H+,ao,H

∣∣∣ at = a
]

= E

[
1

k

k∑
t=1

φHt+1I(ot = o)φHt
>

∣∣∣∣∣ at = a

]
(9.15a)

Since the dimensions of each Σ̂H+,ao,H are fixed, as k →∞ these empirical covariances converge
to the true covariances ΣH+,ao,H with probability 1. Next we define ΣR,H

def
= E[Rtφ

H
t
> | ht ∼ ω],

and approximate the covariance (in this case a vector) of reward and features of history:

Σ̂R,H
def
=

1

k

k∑
t=1

Rtφ
H
t

>

ΣR,H
def
= E

[
Σ̂R,H

]
= E

[
1

k

k∑
t=1

Rtφ
H
t

>
]

= E

[
1

k

k∑
t=1

η>x(ht)φ
H
t

>
]

= η>E

[
1

k

k∑
t=1

x(ht)φ
H
t

>
]

= η>ΣX,H (9.15b)

Again, as k →∞, Σ̂R,H converges to ΣR,H with probability 1.

We now wish to use the above-defined matrices to learn a PSR from data. To do so we need to
make a somewhat-restrictive assumption: we assume that our features of history are rich enough
to determine the state of the system, i.e., the regression from φH to s is exact: st = ΣX,HΣ−1

H,Hφ
H
t .

We discuss how to relax this assumption below in Section 9.3.5. We also need a matrix U such
that U>ΦT Γ is invertible; with probability 1 a random matrix satisfies this condition, but as we
will see below, it is useful to choose U via SVD of a scaled version of ΣT ,H as described in
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Sec. 9.3.1. Using our assumptions we can show a useful identity for ΣH+,ao,H:

ΣX,HΣ−1
H,HΣH+,ao,H = E

[
1

k

k∑
t=1

ΣX,HΣ−1
H,Hφ

H
t+1I(ot = o)φHt

>

∣∣∣∣∣ at = a

]

= E

[
1

k

k∑
t=1

x(ht+1)P[ot = o | at = a, ht]φ
H
t

>
]

= E

[
1

k

k∑
t=1

Maox(ht)φ
H
t

>
]

= MaoΣX,H (9.16)

This identity is at the heart of our learning algorithm: it shows that ΣH,ao,H contains a hidden
copy of Mao, the main PSR parameter that we need to learn. We would like to recover Mao via
Eq. 9.16, Mao = ΣX,HΣ−1

H,HΣH+,ao,HΣ†X,H; but of course we do not know ΣX,H. Fortunately,
though, it turns out that we can use U>ΣT ,H as a stand-in, since this matrix differs from ΣX,H
only by an invertible transform.

bt
def
= U>ΣT ,H(ΣH,H)−1φHt

= U>ΦT ΓΣX,H(ΣH,H)−1φHt

= (U>ΦT Γ)st (9.17a)

Bao
def
= U>ΣT ,H(ΣH,H)−1ΣH+,ao,H(U>ΣT ,H)†

= U>ΦT ΓΣX,H(ΣH,H)−1ΣH+,ao,H(U>ΣT ,H)†

= (U>ΦT Γ)Mao ΣX,H(U>ΣT ,H)†

= (U>ΦT Γ)Mao(U
>ΦT Γ)−1(U>ΦTR)ΣX,H(U>ΣT ,H)†

= (U>ΦT Γ)Mao(U
>ΦT Γ)−1 (9.17b)

b>η
def
= ΣR,H(U>ΣT ,H)†

= η>ΣX,H(U>ΣT ,H)†

= η>(U>ΦT Γ)−1(U>ΦT Γ)ΣX,H(U>ΣT ,H)†

= η>(U>ΦT Γ)−1 (9.17c)

9.3.4 Predictive State Temporal Difference Learning Revisited
With the additional parameter definitions above it is not difficult to show that model-free PSTD
learning is actually leveraging ideas from system identification to get good value function esti-
mates. For a fixed policy π, a PSR’s value function is a linear function of state, Jπ(s) = w>b,
and is the solution of the PSR Bellman equation [45]: for all b, w>b = b>η b + γ

∑
o∈O w

>Bπob,
or equivalently,

w> = b>η + γ
∑
o∈O

w>Bπo (9.18)
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If we substitute in our learned PSR parameters from Equations 9.17(a–c), we get

ŵ> = Σ̂R,H(U>Σ̂T ,H)† + γ
∑
o∈O

ŵ>U>Σ̂T ,H(Σ̂H,H)−1Σ̂H,πo,H(U>Σ̂T ,H)†

ŵ>U>Σ̂T ,H = Σ̂R,H + γŵ>U>Σ̂T ,H(Σ̂H,H)−1Σ̂H+,H

since, by comparing Eqs. 9.15a and 9.12, we can see that
∑

o∈O Σ̂H+,πo,H = Σ̂H+,H. Now,
suppose that we define Û and V̂ by Eqs. 9.8 and 9.10, and let U = Û as suggested above in
Sec. 4.2. Then U>Σ̂T ,H = V̂ Σ̂H,H, and

ŵ>V̂ Σ̂H,H = Σ̂R,H + γŵ>V̂ Σ̂H+,H

ŵ> = Σ̂R,H

(
V̂ Σ̂H,H − γV̂ Σ̂H+,H

)†
(9.19)

Eq. 9.19 is exactly the PSTD algorithm (Eq. 9.14). So, we have shown that, if we learn a PSR
by the subspace identification algorithm of Sec. 4.2 and then compute its value function via the
Bellman equation, we get the exact same answer as if we had directly learned the value function
via the model-free PSTD method. In addition to adding to our understanding of both methods,
an important corollary of this result is that PSTD is a statistically consistent algorithm for PSR
value function approximation—to our knowledge, the first such result for a TD method.

PSTD learning is related to value-directed compression of POMDPs [78]. If we learn a PSR
from data generated by a POMDP, then the PSR state is exactly a linear compression of the
POMDP state [84, 93]. The compression can be exact or approximate, depending on whether
we include enough features of the future and whether we keep all or only some nonzero singular
values in our bottleneck. If we include only reward as a feature of the future, we get a value-
directed compression in the sense of Poupart and Boutilier [78]. If desired, we can tune the de-
gree of value-directedness of our compression by scaling the relative variance of our features: the
higher the variance of the reward feature compared to other features, the more value-directed the
resulting compression will be. Our work significantly diverges from previous work on POMDP
compression in one important respect: prior work assumes access to the true POMDP model,
while we make no such assumption, and learn a compressed representation directly from data.

9.3.5 Insights from Subspace Identification
The close connection to subspace identification for PSRs provides additional insight into the tem-
poral difference learning procedure. In Equation 9.17 we made the assumption that the features
of history are rich enough to completely determine the state of the dynamical system. In fact,
using theory developed in Chapter 4 and [14], it is possible to relax this assumption and instead
assume that state is merely correlated with features of history. In this case, the value function
parameter w can be estimated as ŵ> = Σ̂R,H(Û>Σ̂T ,H)†(I −

∑
o∈O Û

>Σ̂T +,ao,H(Û>Σ̂T ,H)†)† =

Σ̂R,H(Û>Σ̂T ,H−
∑

o∈O Û
>Σ̂T +,ao,H)†. Since we no longer assume that state is completely speci-

fied by features of history, we can no longer apply the learned value function to ÛΣT ,H(ΣH,H)−1φt
at each time t. Instead we need to learn a full PSR model and filter with the model to estimate
state.
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9.4 Experimental Results

We designed several experiments to evaluate the properties of the PSTD learning algorithm. In
the first set of experiments we look at the comparative merits of PSTD with respect to LSTD
and LARS-TD when applied to the problem of estimating the value function of a reduced-rank
POMDP. In the second set of experiments, we apply PSTD to a benchmark optimal stopping
problem (pricing a fictitious financial derivative), and show that PSTD outperforms competing
approaches.

9.4.1 Estimating the Value Function of a RR-POMDP

We evaluate the PSTD learning algorithm on a synthetic example derived from [90]. The prob-
lem is to find the value function of a policy in a partially observable Markov decision Process
(POMDP). The POMDP has 4 latent states, but the policy’s transition matrix is low rank: the
resulting belief distributions can be represented in a 3-dimensional subspace of the original be-
lief simplex. A reward of 1 is given in the first and third latent state and a reward of 0 in the
other two latent states (see Appendix, Section 12.1.2). The system emits 2 possible observations,
conflating information about the latent states.

We perform 3 experiments, comparing the performance of LSTD, LARS-TD, PSTD, and
PSTD as formulated in Section 9.3.5 (which we call PSTD2) when different sets of features are
used. In each case we compare the value function estimated by each algorithm to the true value
function computed by Jπ = R(I − γT π)−1.

In the first experiment we execute the policy π for 1000 time steps. We split the data into
overlapping histories and tests of length 5, and sample 10 of these histories and tests to serve
as centers for Gaussian radial basis functions. We then evaluate each basis function at every
remaining sample. Then, using these features, we learned the value function using LSTD, LARS-
TD, PSTD with linear dimension 3, and PSTD2 with linear dimension 3 (Figure 9.1(A)).4 In this
experiment, PSTD and PSTD2 both had lower mean squared error than the other approaches. For
the second experiment, we added 490 random features to the 10 good features and then attempted
to learn the value function with each of the 3 algorithms (Figure 9.1(B)). In this case, LSTD
and PSTD both had difficulty fitting the value function due to the large number of irrelevant
features in both tests and histories and the relatively small amount of training data. LARS-TD,
designed for precisely this scenario, was able to select the 10 relevant features and estimate
the value function better by a substantial margin. Surprisingly, in this experiment PSTD2 not
only outperformed PSTD but bested even LARS-TD. For the third experiment, we increased the
number of sampled features from 10 to 500. In this case, each feature was somewhat relevant,
but the number of features was relatively large compared to the amount of training data. This
situation occurs frequently in practice: it is often easy to find a large number of features that are
at least somewhat related to state. PSTD and PSTD2 both outperform LARS-TD and each of
these subspace and subset selection methods outperform LSTD by a large margin by efficiently
estimating the value function (Figure 9.1(C)).

4Comparing LSTD and PSTD is straightforward; the two methods differ only by the compression operator V̂ .
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Figure 9.1: Experimental Results. Error bars indicate standard error. (A) Estimating the value
function with a small number of informative features. PSTD and PSTD2 both do well. (B)
Estimating the value function with a small set of informative features and a large set of random
features. LARS-TD is designed for this scenario and dramatically outperforms PSTD and LSTD,
however it does not outperform PSTD2. (C) Estimating the value function with a large set of
semi-informative features. PSTD is able to determine a small set of compressed features that
retain the maximal amount of information about the value function, outperforming LSTD by a
very large margin. (D) Pricing a high-dimensional derivative via policy iteration. The y-axis
is expected reward for the current policy at each iteration. The optimal threshold strategy (sell
if price is above a threshold [115]) is in black, LSTD (16 canonical features) is in blue, LSTD
(on the full 220 features) is cyan, LARS-TD (feature selection from set of 220) is in green, and
PSTD (16 dimensions, compressing 220 features (16 + 204)) is in red.

9.4.2 Pricing A High-dimensional Financial Derivative

Derivatives are financial contracts with payoffs linked to the future prices of basic assets such
as stocks, bonds and commodities. In some derivatives the contract holder has no choices, but
in more complex cases, the contract owner must make decisions—e.g., with early exercise the
contract holder can decide to terminate the contract at any time and receive payments based on
prevailing market conditions. In these cases, the value of the derivative depends on how the
contract holder acts. Deciding when to exercise is therefore an optimal stopping problem: at
each point in time, the contract holder must decide whether to continue holding the contract
or exercise. Such stopping problems provide an ideal testbed for policy evaluation methods,
since we can easily collect a single data set which is sufficient to evaluate any policy: we just
choose the “continue” action forever. (We can then evaluate the “stop” action easily in any of
the resulting states, since the immediate reward is given by the rules of the contract, and the next
state is the terminal state by definition.)

We consider the financial derivative introduced by Tsitsiklis and Van Roy [115]. The deriva-
tive generates payoffs that are contingent on the prices of a single stock. At the end of a given
day, the holder may opt to exercise. At exercise the owner receives a payoff equal to the current
price of the stock divided by the price 100 days beforehand. We can think of this derivative as
a “psychic call”: the owner gets to decide whether s/he would like to have bought an ordinary
100-day European call option, at the then-current market price, 100 days ago.
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In our simulation (and unknown to the investor), the underlying stock price follows a geomet-
ric Brownian motion with volatility σ = 0.02 and continuously compounded short term growth
rate ρ = 0.0004. Assuming stock prices fluctuate only on days when the market is open, these pa-
rameters correspond to an annual growth rate of∼ 10%. In more detail, if wt is a standard Brow-
nian motion, then the stock price pt evolves as ∇pt = ρpt∇t + σpt∇wt, and we can summarize

relevant state at the end of each day as a vector xt ∈ R100, with xt =
(
pt−99

pt−100
, pt−98

pt−100
, . . . , pt

pt−100

)>
.

The ith dimension xt(i) represents the amount a $1 investment in a stock at time t− 100 would
grow to at time t − 100 + i. This process is Markov and ergodic [23, 115]: xt and xt+100

are independent and identically distributed. The immediate reward for exercising the option is
G(x) = x(100), and the immediate reward for continuing to hold the option is 0. The discount
factor γ = e−ρ is determined by the growth rate; this corresponds to assuming that the risk-
free interest rate is equal to the stock’s growth rate, meaning that the investor gains nothing in
expectation by holding the stock itself.

The value of the derivative, if the current state is x, is given by V ∗(x) = supt E[γtG(xt) |
x0 = x]. Our goal is to calculate an approximate value function V (x) = w>φH(x), and then use
this value function to generate a stopping time min{t |G(xt) ≥ V (xt)}. To do so, we sample a
sequence of 1,000,000 states xt ∈ R100 and calculate features φH of each state. We then perform
policy iteration on this sample, alternately estimating the value function under a given policy and
then using this value function to define a new greedy policy “stop if G(xt) ≥ w>φH(xt).”

Within the above strategy, we have two main choices: which features do we use, and how do
we estimate the value function in terms of these features. For value function estimation, we used
LSTD, LARS-TD, or PSTD. In each case we re-used our 1,000,000-state sample trajectory for
all iterations: we start at the beginning and follow the trajectory as long as the policy chooses
the “continue” action, with reward 0 at each step. When the policy executes the “stop” action,
the reward is G(x) and the next state’s features are all 0; we then restart the policy 100 steps in
the future, after the process has fully mixed. For feature selection, we are fortunate: previous
researchers have hand-selected a “good” set of 16 features for this data set through repeated trial
and error (see Appendix, Section 12.1.2 and [23, 115]). We greatly expand this set of features,
then use PSTD to synthesize a small set of high-quality combined features. Specifically, we add
the entire 100-step state vector, the squares of the components of the state vector, and several
additional nonlinear features, increasing the total number of features from 16 to 220. We use
histories of length 1, tests of length 5, and (for comparison’s sake) we choose a linear dimension
of 16. Tests (but not histories) were value-directed by reducing the variance of all features except
reward by a factor of 100.

Figure 9.1D shows results. We compared PSTD (reducing 220 to 16 features) to LSTD with
either the 16 hand-selected features or the full 220 features, as well as to LARS-TD (220 fea-
tures) and to a simple thresholding strategy [115]. In each case we evaluated the final policy on
10,000 new random trajectories. PSTD outperformed each of its competitors, improving on the
next best approach, LARS-TD, by 1.75 percentage points. In fact, PSTD performs better than the
best previously reported approach [23, 115] by 1.24 percentage points. These improvements cor-
respond to appreciable fractions of the risk-free interest rate (which is about 4 percentage points
over the 100 day window of the contract), and therefore to significant arbitrage opportunities: an
investor who doesn’t know the best strategy will consistently undervalue the security, allowing
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an informed investor to buy it for below its expected value.

9.5 Conclusion
In this chapter, we attack the feature selection problem for temporal difference learning. Al-
though well-known temporal difference algorithms such as LSTD can provide asymptotically
unbiased estimates of value function parameters in linear architectures, they can have trouble
in finite samples: if the number of features is large relative to the number of training samples,
then they can have high variance in their value function estimates. For this reason, in real-world
problems, a substantial amount of time is spent selecting a small set of features, often by trial
and error [23, 115].

To remedy this problem, we present the PSTD algorithm, a new approach to feature selec-
tion for TD methods, which demonstrates how insights from system identification can benefit
reinforcement learning. PSTD automatically chooses a small set of features that are relevant for
prediction and value function approximation. It approaches feature selection from a bottleneck
perspective, by finding a small set of features that preserves only predictive information. Because
of the focus on predictive information, the PSTD approach is closely connected to PSRs: under
appropriate assumptions, PSTD’s compressed set of features is asymptotically equivalent to PSR
state, and PSTD is a consistent estimator of the PSR value function.

We demonstrate the merits of PSTD compared to two popular alternative algorithms, LARS-
TD and LSTD, on a synthetic example, and argue that PSTD is most effective when approxi-
mating a value function from a large number of features, each of which contains at least a little
information about state. Finally, we apply PSTD to a difficult optimal stopping problem, and
demonstrate the practical utility of the algorithm by outperforming several alternative approaches
and topping the best reported previous results.
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Chapter 10

A Spectral Learning Approach to
Range-Only SLAM

This chapter represents a significant shift in focus from the previous chapters. The bulk of this
thesis has focused on predictive representations and spectral learning algorithms for learning the
parameters of dynamical system models. This chapter uses similar tools but focuses on a specific
applied problem: range-only simultaneous localization and mapping (range-only SLAM) with
known correspondences and limited amounts of missing data [10].

10.1 Introduction

In range-only SLAM, we are given a sequence of range measurements from a robot to fixed
landmarks, and possibly a matching sequence of odometry measurements. We then attempt to
simultaneously estimate the robot’s trajectory and the locations of the landmarks. Popular ap-
proaches to range-only SLAM include EKFs and EIFs [27, 28, 50, 56, 111], multiple-hypothesis
trackers (including particle filters and multiple EKFs/EIFs) [29, 111], and batch optimization of
a likelihood function [53].

In all the above approaches, the most popular representation for a hypothesis is a list of land-
mark locations (mn,x,mn,y) and a list of robot poses (xt, yt, θt). Unfortunately, both the motion
and measurement models are highly nonlinear in this representation, leading to computational
problems: inaccurate linearizations in EKF/EIF/MHT and local optima in batch optimization ap-
proaches (see Section 10.2 for details). Much work has attempted to remedy this problem, e.g.,
by changing the hypothesis representation [27] or by keeping multiple hypotheses [27, 29, 111].
While considerable progress has been made, none of these methods are ideal; common dif-
ficulties include the need for an extensive initialization phase, inability to recover from poor
initialization, lack of performance guarantees, or excessive computational requirements.

We take a very different approach: we formulate range-only SLAM as a matrix factorization
problem, where features of observations are linearly related to a 4- or 7-dimensional state space.
This approach has several desirable properties. First, we need weaker assumptions about the
measurement model and motion model than previous approaches to range-only SLAM. Second,
our state space yields a linear measurement model, so we hope to lose less information during
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tracking to approximation errors and local optima. Third, our formulation leads to a simple spec-
tral learning algorithm, based on a fast and robust singular value decomposition (SVD)—in fact,
our algorithm is an instance of a general spectral system identification framework, from which
it inherits desirable guarantees including statistical consistency and no local optima. Fourth, we
don’t need to worry as much as previous methods about errors such as a consistent bias in odom-
etry, or a receiver mounted at a different height from the transmitters: in general, we can learn to
correct such errors automatically by expanding the dimensionality of our state space.

As we will discuss in Section 10.2, our approach to range-only SLAM has much in common
with spectral algorithms for subspace identification [14, 117]; unlike these methods, our focus on
SLAM makes it easy to interpret our state space. Our approach is also related to factorization-
based structure from motion [49, 113, 114], as well as to recent dimensionality-reduction-based
methods for localization and mapping [8, 32, 86, 124].

We begin in Section 10.2 by reviewing background related to our approach. In Section 10.3
we present the basic spectral learning algorithm for range-only SLAM, and discuss how it relates
to state space discovery for a dynamical system. We conclude in Section 10.4 by comparing spec-
tral SLAM to other popular methods for range-only SLAM on real world range data collected
from an autonomous lawnmower with time-of-flight ranging radios.

10.2 Background
There are four main pieces of relevant background: first, the well-known solutions to range-only
SLAM using variations of the extended Kalman filter and batch optimization; second, recently-
discovered spectral approaches to identifying parameters of nonlinear dynamical systems; third,
matrix factorization for finding structure from motion in video; and fourth, dimensionality-
reduction methods for localization and mapping. Below, we will discuss the connections among
these areas, and show how they can be unified within a spectral learning framework.

10.2.1 Likelihood-based Range-only SLAM

The standard probabilistic model for range-only localization [50, 56] represents robot state by a
vector st = [xt, yt, θt]

>; the robot’s (nonlinear) motion and observation models are

st+1 =

 xt + vt cos(θt)
yt + vt sin(θt)

θt + ωt

+ εt dt,n =
√

(mn,x − xt)2 + (mn,y − yt)2 + ηt (10.1)

Here vt is the distance traveled, ωt is the orientation change, dt,n is the estimate of the range
from the nth landmark location (mn,x,mn,y) to the current location of the robot (xt, yt), and
εt and ηt are noise. Throughout this chapter we assume known correspondences, since range
sensing systems such as radio beacons typically associate unique identifiers with each reading.
In the case of unknown correspondences or large amounts of missing data, our method becomes
a solution to a subproblem – which helps since being able to solve the subproblem reliably makes
the overall search easier.
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To handle SLAM rather than just localization, we can extend the state to include landmark
positions:

st = [xt, yt, θt,m1,x,m1,y, . . . ,mN,x,mN,y]
> (10.2)

where N is the number of landmarks. The motion and measurement models remain the same.
Given this model, we can use any standard optimization algorithm (such as Gauss-Newton) to
fit the unknown robot and landmark parameters by maximum likelihood. Or, we can track these
parameters online using EKFs, EIFs, or MHT methods like particle filters.

EKFs and EIFs are a popular solution for localization and mapping problems: for each new
odometry input at = [vt, ωt]

> and each new measurement dt, we propagate the estimate of the
robot state and error covariance by linearizing the non-linear motion and measurement models.
Unfortunately, though, range-only SLAM is notoriously difficult for EKFs/EIFs: since range-
only sensors are not informative enough to completely localize a robot or a landmark from a
small number of readings, nonlinearities are much worse in range-only SLAM than they are in
other applications such as range-and-bearing SLAM. In particular, if we don’t have a sharp prior
distribution for landmark positions, then after a few steps, the exact posterior becomes highly
non-Gaussian and multimodal; so, any Gaussian approximation to the posterior is necessarily
inaccurate. Furthermore, an EKF will generally not even produce the best possible Gaussian
approximation: a good linearization would tell us a lot about the modes of the posterior, which
would be equivalent to solving the original SLAM problem. So, practical applications of the EKF
to range-only SLAM attempt to delay linearization until enough information is available, e.g.,
via an extended initialization phase for each landmark. Such delays simply push the problem of
finding a good hypothesis onto the initialization algorithm.

Djugash et al. proposed a polar parameterization to more accurately represent the annular and
multimodal distributions typically encountered in range-only SLAM. The resulting approach is
called the ROP-EKF, and is shown to outperform the ordinary (Cartesian) EKF in several real-
world problems, especially in combination with multiple-hypothesis tracking [27, 28]. However,
the multi-hypothesis ROP-EKF can be much more expensive than an EKF, and is still a heuristic
approximation to the true posterior.

Instead of the posterior covariance of the state (as used by the EKF), the extended informa-
tion filter (EIF) maintains an estimate of the inverse covariance. The two representations are
statistically equivalent (and therefore have the same failure modes). But, the inverse covariance
is often approximately sparse, leading to much more efficient approximate computation [111].

10.2.2 Spectral State Space Discovery and System Identification
System identification algorithms attempt to learn dynamical system parameters such as a state
space, a dynamics model (motion model), and an observation model (measurement model) di-
rectly from samples of observations and actions. In the last few years, spectral system iden-
tification algorithms have become popular; these algorithms learn a state space via a spectral
decomposition of a carefully designed matrix of observable features, then find transition and
observation models by linear regressions involving the learned states. Originally, subspace iden-
tification algorithms were almost exclusively used for linear system identification [117], but re-
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Figure 10.1: A general principle for state space discovery. We can think of state as a statistic
of history that is minimally sufficient to predict future observations. If the bottleneck is a rank
constraint, then we get a spectral method.

cently, similar spectral algorithms have been used to learn models of partially observable nonlin-
ear dynamical systems such as HMMs [42, 90] and PSRs [12, 14, 15, 84]. All of these spectral
algorithms share a strategy for state space discovery: they learn a state space via a spectral de-
composition of a matrix of observations (Figure 10.1), resulting in a linear observation function,
and then they learn a model of the dynamics in the learned low-dimensional state space. This is
a powerful and appealing approach: the resulting algorithms are statistically consistent, and they
are easy to implement with efficient linear algebra operations. In contrast, batch optimization
of likelihood (e.g., via the popular expectation maximization (EM) algorithm) is only known to
be consistent if we find the global optimum of the likelihood function—typically an impractical
requirement.

As we will see in Section 10.3, we can view the range-only SLAM problem as an instance
of spectral state space discovery. And, the Appendix (Sec. 12.2.3) discusses how to identify
transition and measurement models given the learned states. The same properties that make
spectral methods appealing for system identification carry over to our spectral SLAM algorithm:
computational efficiency, statistical consistency, and finite-sample error bounds.

10.2.3 Orthographic Structure From Motion
In some ways the orthographic structure from motion (SfM) problem in vision [113] is very
similar to the SLAM problem: the goal is to recover scene geometry and camera rotations from
a sequence of images (compare with landmark geometry and robot poses from a sequence of
range observations). And in fact, one popular solution for SfM is very similar to the state space
discovery step in spectral state space identification. The key idea in spectral SfM is that is that an
image sequence can be represented as a 2F×P measurement matrixW , containing the horizontal
and vertical coordinates of P points tracked through F frames. If the images are the result of an
orthographic camera projection, then it is possible to show that rank(W ) = 3. As a consequence,
the measurement matrix can be factored into the product of two matrices U and V , where U
contains the 3d positions of the features and V contains the camera axis rotations [113]. With
respect to system identification, it is possible to interpret the matrix U as an observation model
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and V as an estimate of the system state. Inspired by SfM, we reformulate range-only SLAM
problem in a similar way in Section 10.3, and then similarly solve the problem with a spectral
learning algorithm. Also similar to SfM, we examine the identifiability of our factorization, and
give a metric upgrade procedure which extracts additional geometric information beyond what
the factorization gives us.

10.2.4 Dimensionality-reduction-based Methods for Mapping

Dimensionality reduction methods have recently provided an alternative to more traditional
likelihood-based methods for mapping. In particular, the problem of finding a good map can
be viewed as finding a (possibly nonlinear) embedding of sensor data via methods like multidi-
mensional scaling (MDS) and manifold learning.

For example, MDS has been used to determine a Euclidean map of sensor locations where
there is no distinction between landmark positions and robot positions [86]: instead all-to-all
range measurements are assumed for a set of landmarks. If some pairwise measurements are
not available, these measurements can be approximated by some interpolation method, e.g. the
geodesic distance between the landmarks [86, 108].

Our problem differs from this previous work: in contrast to MDS, we have no landmark-
to-landmark measurements and only inaccurate robot-to-robot measurements (from odometry,
which may not be present, and which often has significant errors when integrated over more than
a short distance). Additionally, our smaller set of measurements introduces additional challenges
not present in classical MDS: linear methods can recover the positions only up to a linear trans-
formation. This ambiguity forces changes compared to the MDS algorithm: while MDS factors
the all-to-all matrix of squared ranges, in Sec. 10.3.1 we factor only a block of this matrix, then
use either a metric upgrade step or a few global position measurements to resolve the ambiguity.

A popular alternative to linear dimensionality reduction techniques like classical MDS is
manifold learning: nonlinearly mapping sensor inputs to a feature space that “unfolds” the man-
ifold on which the data lies and then applying dimensionality reduction. Such nonlinear dimen-
sionality reduction has been used to learn maps of wi-fi networks and landmark locations when
sensory data is thought to be nonlinearly related to the underlying Eucidean space in which the
landmarks lie [8, 32, 124]. Unlike theses approaches, we show that linear dimensionality reduc-
tion is sufficient to solve the range-only SLAM problem. (In particular, [124] suggests solving
range-only mapping using nonlinear dimensionality reduction. We not only show that this is un-
necessary, but additionally show that linear dimensionality reduction is sufficient for localization
as well.) This greatly simplifies the learning algorithm and allows us to provide strong statistical
guarantees for the mapping portion of SLAM (Sec. 10.3.3).

10.3 State Space Discovery and Spectral SLAM

We start with SLAM from range data without odometry. For now, we assume no noise, no
missing data, and batch processing. We will generalize below: Sec. 10.3.2 discusses how to
recover robot orientation, Sec. 10.3.3 discusses noise, and Sec. 10.3.4 discusses missing data and
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online SLAM. In the Appendix (Section 12.2.3) we discuss learning motion and measurement
models.

10.3.1 Range-only SLAM as Matrix Factorization
Consider the matrix Y ∈ RN×T of squared ranges, with N ≥ 4 landmarks and T ≥ 4 time steps:

Y =
1

2


d2

11 d2
12 . . . d2

1T

d2
21 d2

22 . . . d2
2T

...
...

...
...

d2
N1 d2

N2 . . . d2
NT

 (10.3)

where dn,t is the measured distance from the robot to landmark n at time step t.
The most basic version of our spectral SLAM method relies on the insight that Y factors

according to robot position (xt, yt) and landmark position (mn,x,mn,y). To see why, note

d2
n,t = (m2

n,x +m2
n,y)− 2mn,x · xt − 2mn,y · yt + (x2

t + y2
t ) (10.4)

If we write Cn = [(m2
n,x + m2

n,y)/2,mn,x,mn,y, 1]> and Xt = [1,−xt,−yt, (x2
t + y2

t )/2]>, it
is easy to see that d2

n,t = 2C>nXt. So, Y factors as Y = CX , where C ∈ RN×4 contains the
positions of landmarks,

C =


(m2

1,x +m2
1,y)/2 m1,x m1,y 1

(m2
2,x +m2

2,y)/2 m2,x m2,y 1
...

...
...

...
(m2

N,x +m2
N,y)/2 mN,x mN,y 1

 (10.5)

and X ∈ R4×T contains the positions of the robot over time

X =


1 . . . 1
−x1 . . . −xT
−y1 . . . −yT

(x2
1 + y2

1)/2 . . . (x2
T + y2

T )/2

 (10.6)

If we can recover C and X , we can read off the solution to the SLAM problem. The fact that
Y ’s rank is at most 4 suggests that we might be able to use a rank-revealing factorization of Y ,
such as the singular value decomposition, to find C and X . Unfortunately, such a factorization
only determines C and X up to a linear transform: given an invertible matrix S, we can write
Y = CX = CS−1SX . Therefore, factorization can only hope to recover U = CS−1 and
V = SX .

To upgrade the factors U and V to a full metric map, we have two options. If global posi-
tion estimates are available for at least four landmarks, we can learn the transform S via linear
regression, and so recover the original C and X . This method works as long as we know at least
four landmark positions. Figure 10.2A shows a simulated example.
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Figure 10.2: Spectral SLAM on simulated data. See Section 10.4.1 for details. A.) Randomly
generated landmarks (6 of them) and robot path through the environment (500 timesteps). A SVD
of the squared distance matrix recovers a linear transform of the landmark and robot positions.
Given the coordinates of 4 landmarks, we can recover the landmark and robot positions in their
original coordinates; or, since 500 ≥ 9, we can recover positions up to an orthogonal transform
with no additional information. Despite noisy observations, the robot recovers the true path
and landmark positions with very high accuracy. B.) The convergence of the observation model
Ĉ5:6 for the remaining two landmarks: mean Frobenius-norm error vs. number of range readings
received, averaged over 1000 randomly generated pairs of robot paths and environments. Error
bars indicate 95% confidence intervals.

On the other hand, if no global positions are known, the best we can hope to do is recover
landmark and robot positions up to an orthogonal transform (translation, rotation, and reflection).
It turns out that Eqs. (10.5–10.6) provide enough additional geometric constraints to do so: in the
Appendix (Sec. 12.2.1) we show that, if we have at least 9 time steps and at least 9 landmarks,
and if each of these point sets is non-singular in an appropriate sense, then we can compute
the metric upgrade in closed form. The idea is to fit a quadratic surface to the rows of U , then
change coordinates so that the surface becomes the function in (10.5). (By contrast, the usual
metric upgrade for orthographic structure from motion [113], which uses the constraint that
camera projection matrices are orthogonal, requires a nonlinear optimization.)

10.3.2 SLAM with Headings

In addition to location, we often want the robot’s global heading θ. We could get headings
by post-processing our learned positions, but in practice we can reduce variance by learning
positions and headings simultaneously. We do so by adding more features to our measurement
matrix: differences between successive pairs of squared distances, scaled by velocity (which we
can estimate from odometry). Since we need pairs of time steps, we now have Y ∈ R2N×T−1:
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(10.7)

As before, we can factor Y into a robot state matrix and a landmark matrix. The key new
observation is that we can write the new features in terms of cos(θ) and sin(θ):

d2
n,t+1 − d2

n,t

2vt
=− mn,x(xt+1 − xt)

vt
− mn,y(yt+1 − yt)

vt
+
x2
t+1 − x2

t + y2
t+1 − y2

t

2vt

=−mn,x cos(θt)−mn,y sin(θt) +
x2
t+1 − x2

t + y2
t+1 − y2

t

2vt
(10.8)

From Eq. 10.4 and Eq. 10.8 it is easy to see that Y has rank at most 7 (exactly 7 if the robot
path and landmark positions are not singular): we have Y = CX , where C ∈ RN×7 contains
functions of landmark positions and X ∈ R7×T contains functions of robot state,

C =


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1,x +m2

1,y)/2 m1,x m1,y 1 0 0 0
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...
...

...
...

...
...

0 0 0 0 mN,x mN,y 1


(10.9)

X =
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
(10.10)

As with the basic SLAM algorithm in Section 10.3.1, we can factor Y using SVD, this time
keeping 7 singular values. To make the state space interpretable, we can then look at the top
part of the learned transform of C: as long as we have at least four landmarks in non-singular
position, this block will have exactly a three-dimensional nullspace (due to the three columns of
zeros in the top part of C). After eliminating this nullspace, we can proceed as before to learn
S and make the state space interpretable: either use the coordinates of at least 4 landmarks as
regression targets, or perform a metric upgrade. (See the Appendix, Sec. 12.2.1, for details).
Once we have positions, we can recover headings as angles between successive positions.
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Algorithm 1 Spectral SLAM
In: i.i.d. pairs of observations {ot, at}Tt=1; optional: measurement model for ≥ 4 landmarks C1:4

Out: measurement model (map) Ĉ, robot locations X̂ (the tth column is location at time t)

1: Collect observations and odometry into a matrix Ŷ (Eq. 10.7)

2: Find the the top 7 singular values and vectors: 〈Û , Λ̂, V̂ >〉 ← SVD(Ŷ , 7)

The transformed measurement matrix is ĈS−1 = Û and robot states are SX̂ = Λ̂V̂ >.

3: Find Ŝ via linear regression (from Û to C1:4) or metric upgrade (see Appendix)
and return Ĉ = Û Ŝ and X̂ = Ŝ−1Λ̂V̂ >

10.3.3 A Spectral SLAM Algorithm

The matrix factorizations of Secs. 10.3.1 and 10.3.2 suggest a straightforward SLAM algo-
rithm, Alg. 1: build an empirical estimate Ŷ of Y by sampling observations as the robot traverses
its environment, then apply a rank-7 thin SVD, discarding the remaining singular values to sup-
press noise.

〈Û , Λ̂, V̂ >〉 ← SVD(Ŷ , 7) (10.11)

Following Section 10.3.2, the left singular vectors Û are an estimate of our transformed mea-
surement matrix CS−1, and the weighted right singular vectors Λ̂V̂ > are an estimate of our
transformed robot state SX . We can then learn S via regression or metric upgrade.

Statistical Consistency and Sample Complexity Let M ∈ RN×N be the true observation co-
variance for a randomly sampled robot position, and let M̂ = 1

T
Ŷ Ŷ > be the empirical covariance

estimated from T observations. Then the true and estimated measurement models are the top sin-
gular vectors of M and M̂ . Assuming that the noise in M̂ is zero-mean, as we include more data
in our averages, we will show below that the law of large numbers guarantees that M̂ converges
to the true covariance M . So, our learning algorithm is consistent for estimating the range of M ,
i.e., the landmark locations. (The estimated robot positions will typically not converge, since we
typically have a bounded effective number of observations relevant to each robot position. But,
as we see each landmark again and again, the robot position errors will average out, and we will
recover the true map.)

In more detail, we can give finite-sample bounds on the error in recovering the true factors.
For simplicity of presentation we assume that noise is i.i.d., although our algorithm will work for
any zero-mean noise process with a finite mixing time. (The error bounds will of course become
weaker in proportion to mixing time, since we gain less new information per observation.) The
argument (see the Appendix, Sec. 12.2.2, for details) has two pieces: standard concentration
bounds show that each element of our estimated covariance approaches its population value;
then the continuity of the SVD shows that the learned subspace also approaches its true value.
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The final bound is:

|| sin Ψ||2 ≤
Nc
√

2 log(T )
T

γ
(10.12)

where Ψ is the vector of canonical angles between the learned subspace and the true one, c is a
constant depending on our error distribution, and γ is the true smallest nonzero eigenvalue of the
covariance. In particular, this bound means that the sample complexity is Õ(ζ2) to achieve error
ζ .

10.3.4 Extensions: Missing Data, Online SLAM, and System ID
Missing data So far we have assumed that we receive range readings to all landmarks at each
time step. In practice this assumption is rarely satisfied: we may receive range readings asyn-
chronously, some range readings may be missing entirely, and it is often the case that odometry
data is sampled faster than range readings. Here we outline two methods for overcoming this
practical difficulty.

First, if a relatively small number of observations are missing, we can use standard ap-
proaches for factorization with missing data. For example, probabilistic PCA [112] estimates
the missing entries via an EM algorithm, and matrix completion [21] uses a trace-norm penalty
to recover a low-rank factorization with high probability. However, for range-only data, often the
fraction of missing data is high and the missing values are structural rather than random.

The second approach is interpolation: we divide the data into overlapping subsets and then
use local odometry information to interpolate the range data within each subset. To interpolate
the data, we estimate a robot path by dead reckoning. For each point in the dead reckoning
path we build the feature representation [1,−x,−y, (x2 + y2)/2]>. We then learn a linear model
that predicts a squared range reading from these features (for the data points where range is
available), as in Eq. 10.4. Next we predict the squared range along the entire path. Finally
we build the matrix Ŷ by averaging the locally interpolated range readings. This interpolation
approach works much better in practice than the fully probabilistic approaches mentioned above,
and was used in our experiments in Section 10.4.

Online Spectral SLAM The algorithms developed in this section so far have had an impor-
tant drawback: unlike many SLAM algorithms, they are batch methods not online ones. The
extension to online SLAM is straightforward: instead of first estimating Ŷ and then performing
a SVD, we sequentially estimate our factors 〈Û , Λ̂, V̂ >〉 via online SVD [15, 20].

Robot Filtering and System Identification So far, our algorithms have not directly used (or
needed) a robot motion model in the learned state space. However, an explicit motion model
is required if we want to predict future sensor readings or plan a course of action. We have
two choices: we can derive a motion model from our learned transformation S between latent
states and physical locations, or we can learn a motion model directly from data using spectral
system identification. More details about both of these approaches can be found in the Appendix,
Sec. 12.2.3.
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10.4 Experimental Results

We perform several SLAM and robot navigation experiments to illustrate and test the ideas pro-
posed in this chapter. First we show how our methods work in theory with synthetic experiments
where complete observations are received at each point in time and i.i.d. noise is sampled from
a multivariate Gaussian distribution. Next we demonstrate our algorithm on data collected from
a real-world robotic system with substantial amounts of missing data. Experiments were per-
formed in Matlab, on a 2.66 GHz Intel Core i7 computer with 8 GB of RAM. In contrast to
batch nonlinear optimization approaches to SLAM, the spectral learning methods described in
this chapter are very fast, usually taking less than a second to run.

10.4.1 Synthetic Experiments

Our simulator randomly places 6 landmarks in a 2-D environment. A simulated robot then ran-
domly moves through the environment for 500 time steps and receives a range reading to each
one of the landmarks at each time step. The range readings are perturbed by noise sampled from
a Gaussian distribution with variance equal to 1% of the range. Given this data, we apply the al-
gorithm from Section 10.3.3 to solve the SLAM problem. We use the coordinates of 4 landmarks
to learn the linear transform S and recover the true state space, as shown in Figure 10.2A. The
results indicate that we can accurately recover both the landmark locations and the robot path.

We also investigated the empirical convergence rate of our observation model (and therefore
the map) as the number of range readings increased. To do so, we generated 1000 different ran-
dom pairs of environments and robot paths. For each pair, we repeatedly performed our spectral
SLAM algorithm on increasingly large numbers of range readings and looked at the difference
between our estimated measurement model (the robot’s map) and the true measurement model,
excluding the landmarks that we used for reconstruction: ‖Ĉ5:6 −C5:6‖F . The results are shown
in Figure 10.2B, and show that our estimates steadily converge to the true model, corroborating
our theoretical results (in Section 10.3.3 and the Appendix).

10.4.2 Robotic Experiments

We used two freely available range-only SLAM data sets collected from an autonomous lawn
mowing robot [27], shown in Fig. 10.3A.1 These “Plaza” datasets were collected via radio nodes
from Multispectral Solutions that use time-of-flight of ultra-wide-band signals to provide inter-
node ranging measurements. (Additional details on the experimental setup can be found in [27].)
This system produces a time-stamped range estimate between the mobile robot and stationary
nodes (landmarks) in the environment. The landmark radio nodes are placed atop traffic cones
approximately 138cm above the ground throughout the environment, and one node was placed
on top of the center of the robot’s coordinate frame (also 138cm above the ground). The robot
odometry (dead reckoning) comes from an onboard fiberoptic gyro and wheel encoders. The two
environmental setups, including the locations of the landmarks, the dead reckoning paths, and

1http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/index.html
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Figure 10.3: The autonomous lawn mower and spectral SLAM. A.) The robotic lawn mower
platform. B.) In the first experiment, the robot traveled 1.9km receiving 3,529 range measure-
ments. This path minimizes the effect of heading error by balancing the number of left turns
with an equal number of right turns in the robot’s odometry (a commonly used path pattern in
lawn mowing applications). The light blue path indicates the robot’s true path in the environ-
ment, light purple indicates dead-reckoning path, and dark blue indicates the spectral SLAM
localization result. C.) In the second experiment, the robot traveled 1.3km receiving 1,816 range
measurements. This path highlights the effect of heading error on dead reckoning performance
by turning in the same direction repeatedly. Again, spectral SLAM is able to accurately recover
the robot’s path.

the ground truth paths, are shown in Figure 10.3B-C. The ground truth paths have 2cm accuracy
according to [27].

The two Plaza datasets that we used to evaluate our algorithm have very different charac-
teristics. In “Plaza 1,” the robot travelled 1.9km, occupied 9,658 distinct poses, and received
3,529 range measurements. The path taken is a typical lawn mowing pattern that balances left
turns with an equal number of right turns; this type of pattern minimizes the effect of heading
error. In “Plaza 2,” the robot travelled 1.3km, occupied 4,091 poses, and received 1,816 range
measurements. The path taken is a loop which amplifies the effect of heading error. The two
data sets were both very sparse, with approximately 11 time steps (and up to 500 steps) be-
tween range readings for the worst landmark. We first interpolated the missing range readings
with the method of Section 10.3.4. Then we applied the rank-7 spectral SLAM algorithm of
Section 10.3.3; the results are depicted in Figure 10.3B-C. Qualitatively, we see that the robot’s
localization path conforms to the true path.

In addition to the qualitative results, we quantitatively compared spectral SLAM to a number
of different competing range-only SLAM algorithms. The localization root mean squared error
(RMSE) in meters for each algorithm is shown in Figure 10.4. The baseline is dead reckon-
ing (using only the robot’s odometry information). Next are several standard online range-only
SLAM algorithms, summarized in [27]. These algorithms included the Cartesian EKF, Fast-
SLAM [69] with 5,000 particles, and the ROP-EKF [28]. These previous results only reported
the RMSE for the last 10% of the path, which is typically the best 10% of the path (since it gives
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the most time to recover from initialization problems). The full path localization error can be
considerably worse, particularly for the initial portion of the path—see Fig. 5 (right) of [28].

We also compared to batch nonlinear optimization, via Gauss-Newton as implemented in
Matlab’s fminunc (see [53] for details). This approach to solving the range-only SLAM prob-
lem can be very data efficient, but is subject to local optima and is very computationally inten-
sive. We followed the suggestions of [53] and initialized with the dead-reckoning estimate of the
robot’s path. The algorithm took roughly 2.5 hours to converge on Plaza 1, and 45 minutes to
converge on Plaza 2. Under most evaluation metrics, the nonlinear batch algorithm handily beats
the EKF-based alternatives.

Finally, we ran our spectral SLAM algorithm on the same data sets. In contrast to Gauss-
Newton, spectral SLAM is statistically consistent, and much faster: the bulk of the computation
is the fixed-rank SVD, so the time complexity of the algorithm is O((2N)2T ) where N is the
number of landmarks and T is the number of time steps. Empirically, spectral SLAM produced
results that were comparable to batch optimization in 3-4 orders of magnitude less time (see
Figure 10.4).

Spectral SLAM can also be used as an initialization procedure for nonlinear batch optimiza-
tion. This strategy combines the best of both algorithms by allowing the locally optimal nonlinear
optimization procedure to start from a theoretically guaranteed good starting point. Therefore,
the local optimum found by nonlinear batch optimization should be no worse than the spectral
SLAM solution and likely much better than the batch optimization seeded by dead-reckoning.
Empirically, we found this to be the case (Figure 10.4). If time and computational resources are
scarce, then we believe that spectral SLAM is clearly the best approach; if computation is not
an issue, the best results will almost certainly be found by refining the spectral SLAM solution
using a nonlinear batch optimization procedure.

10.5 Conclusion
We proposed a novel solution for the range-only SLAM problem that differs substantially from
previous approaches. The essence of this new approach is to formulate SLAM as a factorization
problem, which allows us to derive a local-minimum free spectral learning method that is closely
related to SfM and spectral approaches to system identification. We provide theoretical guaran-
tees for our algorithm, discuss how to derive an online algorithm, and show how to generalize to
a full robot system identification algorithm. Finally, we demonstrate that our spectral approach to
SLAM beats other state-of-the-art SLAM approaches on real-world range-only SLAM problems.
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Method Plaza 1 Plaza 2
Dead Reckoning (full path) 15.92m 27.28m
Cartesian EKF (last, best 10%) 0.94m 0.92m
FastSLAM (last, best 10%) 0.73m 1.14m
ROP EKF (last, best 10%) 0.65m 0.87m
Batch Opt. (worst 10%) 1.04m 0.45m
Batch Opt. (last 10%) 1.01m 0.45m
Batch Opt. (best 10%) 0.56m 0.20m
Batch Opt. (full path) 0.79m 0.33m
Spectral SLAM (worst 10%) 1.01m 0.51m
Spectral SLAM (last 10%) 0.98m 0.51m
Spectral SLAM (best 10%) 0.59m 0.22m
Spectral SLAM (full path) 0.79m 0.35m
Spectral + Batch Optimization (worst 10%) 0.89m 0.40m
Spectral + Batch Optimization (last 10%) 0.81m 0.32m
Spectral + Batch Optimization (best 10%) 0.54m 0.18m
Spectral + Batch Optimization (full path) 0.69m 0.30m Plaza 1 Plaza 2

0.73 0.51

9264.55

2357.09

Batch Opt.

Spectral SLAM

~~
~~

Runtime (seconds)

Figure 10.4: Comparison of Range-Only SLAM Algorithms. The table shows Localization
RMSE. Spectral SLAM has localization accuracy comparable to batch optimization on its own.
The best results (boldface entries) are obtained by initializing nonlinear batch optimization with
the spectral SLAM solution. The graph compares runtime of Gauss-Newton batch optimization
with spectral SLAM. Empirically, spectral SLAM is 3-4 orders of magnitude faster than batch
optimization on the autonomous lawnmower datasets.
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Chapter 11

Discussion

Learning models of dynamical systems is a fundamental task for predicting, classifying, and sim-
ulating observations as well as reasoning about actions in time series. In this thesis we focused
on and combined two complimentary ideas: predictive representations that model state as an
expectation of the future and spectral algorithms for learning a low-dimensional state represen-
tation. The key idea is that predictive representations allow dynamical system parameters to be
written in terms of observable quantities; these observable quantities can then be leveraged to
find a valid state space and model parameters.

This framework contrasts sharply with previous approaches to reasoning about and learning
dynamical systems: the predominant class of probabilistic models for representing dynamical
systems is latent variable models, which assume that observations are generated by an unobserv-
able state. However, learning latent variable models is very difficult. The most popular approach
is the EM algorithm, a local search heuristic that alternatively posits values for the latent variables
and then uses these variables to estimate the system parameters. Unfortunately, EM is generally
not a great approach: the algorithm is highly sensitive to initial conditions, takes a long time to
converge, and is often numerically brittle in practice.

In contrast to latent variable models and EM, the algorithms presented in this thesis have
excellent theoretical properties that translate into good practical performance. In particular, the
spectral algorithms here are almost all statistically consistent and thus have no local optima.
Additionally, the matrix algebra that is used to learn these models is very fast and numerically
stable. We highlight some of the contributed algorithms here.

First, we provided a novel spectral algorithm for learning an observable representation of a
Kalman filter that is closely linked to the spectral learning algorithms for the more expressive
models that follow. We address the issue of instability in Kalman filters, proposing a constraint-
generation algorithm that outperforms previous methods in both efficiency and accuracy.

Second, we developed a novel spectral learning algorithm for learning predictive state repre-
sentations (PSRs) that outperforms previous approaches to learning these systems. Our approach
is fast, accurate, and statistically consistent. One of the drawbacks of PSRs is that if a dynamical
system has a very large number of different actions and observations, then learning the parame-
ters of such a system can be very difficult. Therefore, we extend our representation so that it can
be written in terms of features of actions and observations. We show that this algorithm is also
consistent and has good predictive accuracy. Additionally, we demonstrate that our algorithms
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can be used to learn accurate models of complex environments. In particular, we learn a repre-
sentation of an agent moving through a simulated visual environment and then plan in the learned
model. We show that the resulting plans were close to optima in the original environment. We
also show how to extend temporal difference learning using some of the theory developed for our
spectral system identification algorithm, and we show that the resulting extension outperforms
many competing algorithms. Finally, we show how dynamical systems can be represented non-
parameterically in reproducing kernel Hilbert spaces. We develop a spectral learning algorithm
for this case, show its consistency, and demonstrate that this approach can lead to very accurate
predictive models in practice.

Third, we develop a spectral learning approach to solving the range-only simultaneous lo-
calization and mapping problem. This is a different application of spectral learning compared
with the rest of the thesis, but the results demonstrate the basic approach to learning a dynamical
system state has applications beyond stochastic process modeling.

Together, the approaches enumerated here show how predictive representations and spectral
learning algorithms can be unified into a powerful framework for learning predictive dynamical
system models. The research presented in this thesis has the potential to positively impact many
fields where sequential data modeling is important: robot sensing and planning, video modeling,
activity recognition and user modeling, speech recognition, bioinformatics, and more.
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Chapter 12

Appendix

12.1 Predictive State Temporal Difference Learning

12.1.1 Determining the Compression Operator

We find a compression operator V that optimally predicts test-features through the CCA bot-
tleneck defined by Û . The least squares estimate can be found by minimizing the following
loss

L(V ) =
∥∥∥φT1:k − ÛV φH1:k

∥∥∥2

F

V̂ = arg min
V
L(V )

where ‖ · ‖F denotes the Frobenius norm. We can find V̂ by taking a derivative of this loss L
with respect to V , setting it to zero, and solving for V
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dV >Û>ÛV Σ̂H,H

)
=⇒ dL

dV >
= −2tr

(
Û>Σ̂T ,H

)
+ 2tr

(
Û>ÛV Σ̂H,H

)
=⇒ 0 = −Û>Σ̂T ,H + Û>ÛV Σ̂H,H

=⇒ V̂ = (Û>Û)−1Û>Σ̂T ,H(Σ̂H,H)−1

= Û>Σ̂T ,H(Σ̂H,H)−1
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12.1.2 Experimental Results
RR-POMDP

The RR-POMDP parameters are:

[m = 4 hidden states, n = 2 observations, k = 3 transition matrix rank].

T π =


0.7829 0.1036 0.0399 0.0736
0.1036 0.4237 0.4262 0.0465
0.0399 0.4262 0.4380 0.0959
0.0736 0.0465 0.0959 0.7840

 O =

[
1 0 1 0
0 1 0 1

]

The discount factor is γ = 0.9.

Pricing a financial derivative

Basis functions The fist 16 are the basis functions suggested by Van Roy; for full description
and justification see [23, 115]. The first functions consist of a constant, the reward, the minimal
and maximal returns, and how long ago they occurred:

φ1(x) = 1

φ2(x) = G(x)

φ3(x) = min
i=1,...,100

x(i)− 1

φ4(x) = max
i=1,...,100

x(i)− 1

φ5(x) = arg min
i=1,...,100

x(i)− 1

φ6(x) = arg max
i=1,...,100

x(i)− 1

The next set of basis functions summarize the characteristics of the basic shape of the 100 day
sample path. They are the inner product of the path with the first four Legendre polynomial
degrees. Let j = i/50− 1.

φ7(x) =
1

100

100∑
i=1

x(i)− 1√
2

φ8(x) =
1

100

100∑
i=1

x(i)

√
3

2
j

φ9(x) =
1

100

100∑
i=1

x(i)

√
5

2

(
3j2 − 1

2

)

φ10(x) =
1

100

100∑
i=1

x(i)

√
7

2

(
5j3 − 3j

2

)
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Nonlinear combinations of basis functions:

φ11(x) = φ2(x)φ3(x)

φ12(x) = φ2(x)φ4(x)

φ13(x) = φ2(x)φ7(x)

φ14(x) = φ2(x)φ8(x)

φ15(x) = φ2(x)φ9(x)

φ16(x) = φ2(x)φ10(x)

In order to improve our results, we added a large number of additional basis functions to these
hand-picked 16. PSTD will compress these features for us, so we can use as many additional
basis functions as we would like. First we defined 4 additional basis functions consisting of the
inner products of the 100 day sample path with the 5th and 6th Legende polynomials and we
added the corresponding nonlinear combinations of basis functions:

φ17(x) =
1

100

100∑
i=1

x(i)

√
9

2

(
35j4 − 30x2 + 3

8

)

φ18(x) =
1

100

100∑
i=1

x(i)

√
11

2

(
63j5 − 70j3 + 15j

8

)
φ19(x) = φ2(x)φ17(x)

φ20(x) = φ2(x)φ18(x)

Finally we added the the entire sample path and the squared sample path:

φ21:120 = x1:100

φ121:220 = x2
1:100

12.2 A Spectral Learning Approach to Range Only SLAM

12.2.1 Metric Upgrade for Learned Map
In the main body of the paper, we assumed that global position estimates of at least four land-
marks were known. When these landmarks are known, we can recover all of the estimated
landmark positions and robot locations.

In many cases, however, no global positions are known; the best we can hope to do is recover
landmark and robot positions up to an orthogonal transform (translation, rotation, and reflection).
It turns out that Eqs. (10.5–10.6) provide enough geometric constraints to perform this metric
upgrade, as long as we have at least 9 landmarks and at least 9 time steps, and as long as C and
X are nonsingular in the following sense: define the matrix C2, with the same number of rows
as C but 10 columns, whose ith row has elements ci,jci,k for 1 ≤ j ≤ k ≤ 4 (in any fixed order).
Note that the rank of C2 can be at most 9: from Eq. 10.5, we know that c2

i,2 + c2
i,3 − 2ci,4 = 0,

and each of the three terms in this function is a multiple of a column of C2. We will say that
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C is nonsingular if C2 has rank exactly 9, i.e., is rank deficient by exactly 1 dimension. The
conditions for X are analogous, swapping rows for columns.1

To derive the metric upgrade, suppose that we start from an N × 4 matrix U of learned
landmark coordinates and an 4 × N matrix V of learned robot coordinates from the algorithm
of Sec. 10.3.1. And, suppose that we have at least 9 nonsingular landmarks and robot positions.
We would like to transform the learned coordinates into two new matrices C and X such that

c1 ≈ 1 (12.1)

c4 ≈
1

2
c2

2 +
1

2
c2

3 (12.2)

x4 ≈ 1 (12.3)

x1 ≈
1

2
x2

2 +
1

2
x2

3 (12.4)

where c is a row of C and x is a column of X .
At a high level, we first fit a quadratic surface to the rows of U , then transform this surface so

that it satisfies Eq. 12.1–12.2, and scale the surface so that it satisfies Eq. 12.3. Our surface will
then automatically also satisfy Eq. 12.4, since X must be metrically correct if C is.

In more detail, we first (step i) linearly transform each row of U into approximately the form
(1, ri,1, ri,2, ri,3): we use linear regression to find a coefficient vector a ∈ R4 such that Ua ≈ 1,
then set R = UQ where Q ∈ R4×3 is an orthonormal basis for the nullspace of a>. After this
step, our factorization is (UT1)(T−1

1 V ), where T1 = (a Q).
Next (step ii) we fit an implicit quadratic surface to the rows of R by finding 10 coefficients

bjk (for 0 ≤ j ≤ k ≤ 3) such that

0 ≈ b00 + b01ri,1 + b02ri,2 + b03ri,3 +

b11r
2
i,1 + b12ri,1ri,2 + b13ri,1ri,3 + b22r

2
i,2 + b23ri,2ri,3 + b33r

2
i,3

To do so, we form a matrix S that has the same number of rows as U but 10 columns. The
elements of row i of S are ri,jri,k for 0 ≤ j ≤ k ≤ 3 (in any fixed order). Here, for convenience,
we define ri,0 = 1 for all i. Then we find a vector b ∈ R10 that is approximately in the nullspace
of S> by taking a singular value decomposition of S and selecting the right singular vector
corresponding to the smallest singular value. Using this vector, we can define our quadratic as
0 ≈ 1

2
r>Hr + `>r + b00, where r is a row of R, and the Hessian matrix H and linear part ` are

given by:

H =

 1
2
b11 b12 b13

b21
1
2
b22 b23

b31 b32
1
2
b33

 ` =

 b01

b02

b03


Over the next few steps we will transform the coordinates in R to bring our quadratic into the
form of Eq. 12.2: that is, one coordinate will be a quadratic function of the other two, there will
be no linear or constant terms, and the quadratic part will be spherical with coefficient 1

2
.

1For intuition, a set of landmarks or robot positions that all lie on the same quadratic surface (line, circle,
parabola, etc.) will be singular. Some higher-order constraints will also lead to singularity; e.g., a set of points will
be singular if they all satisfy 1

2 (x2i + y2i )xi + yi = 0, since each of the two terms in this function is a column of C2.

134



We start (step iii) by transforming coordinates so that our quadratic has no cross-terms, i.e.,
so that its Hessian matrix is diagonal. Using a 3× 3 singular value decomposition, we can factor
H = MH ′M> so that M is orthonormal and H ′ is diagonal. If we set R′ = RM and `′ = M`,
and write r′ for a row of R′, we can equivalently write our quadratic as 0 = 1

2
(r′)>H ′r′ +

(`′)>r′ + b00, which has a diagonal Hessian as desired. After this step, our factorization is
(UT1T2)(T−1

2 T−1
1 V ), where

T2 =

(
1 0
0 M

)
Our next step (step iv) is to turn our implicit quadratic surface into an explicit quadratic function.
For this purpose we pick one of the coordinates of R′ and write it as a function of the other
two. In order to do so, we must have zero as the corresponding diagonal element of the Hessian
H ′—else we cannot guarantee that we can solve for a unique value of the chosen coordinate. So,
we will take the index j such that H ′jj is minimal, and set H ′jj = 0. Suppose that we pick the
last coordinate, j = 3. (We can always reorder columns to make this true; SVD software will
typically do so automatically.) Then our quadratic becomes

0 =
1

2
H ′11(r′1)2 +

1

2
H ′22(r′2)2 + `′1r

′
1 + `′2r

′
2 + `′3r

′
3 + b00

r′3 = − 1

`′3

[
1

2
H ′11(r′1)2 +

1

2
H ′22(r′2)2 + `′1r

′
1 + `′2r

′
2 + b00

]
Now (step v) we can shift and rescale our coordinates one more time to get our quadratic in
the desired form: translate so that the linear and constant coefficients are 0, and rescale so that
the quadratic coefficients are 1

2
. For the translation, we define new coordinates r′′ = r′ + c for

c ∈ R3, so that our quadratic becomes

r′′3 = c3 −
1

`′3

[
1

2
H ′11(r′′1 − c1)2 +

1

2
H ′22(r′′2 − c2)2 + `′1(r′′1 − c1) + `′2(r′′2 − c2) + b00

]
By expanding and matching coefficients, we know c must satisfy

0 =
H ′11

`′3
c1 −

`′1
`′3

(coefficient of r′′1)

0 =
H ′22

`′3
c2 −

`′2
`′3

(coefficient of r′′2)

0 = c3 −
H ′11

2`′3
c2

1 −
H ′22

2`′3
c2

2 +
`′1
`′3
c1 +

`′2
`′3
c2 − b00/`

′
3 (constant)

The first two equations are linear in c1 and c2 (and don’t contain c3). So, we can solve directly
for c1 and c2; then we can plug their values into the last equation to find c3. For the scaling,
the coefficient of r′′1 is now −H′11

2`′3
, and that of r′′2 is now −H′22

2`′3
. So, we can just scale these two

coordinates separately to bring their coefficients to 1
2
.
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After this step, our factorization is U ′V ′, where U ′ = UT1T2T3 and V ′ = T−1
3 T−1

2 T−1
1 V , and

T3 =


1 0 0 0

c1 − `′3
H′11

0 0

c2 0 − `′3
H′22

0

c3 0 0 1


The left factor U ′ will now satisfy Eq. 12.1–12.2. We still have one last useful degree of freedom:
if we set C = U ′T4, where

T4 =


1 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 µ2


for any µ ∈ R, then C will still satisfy Eq. 12.1–12.2. So (step vi), we will pick µ to satisfy
Eq. 12.3: in particular, we set µ =

√
mean(V ′4,:), so that when we set X = T−1

4 V ′, the last row
of X will have mean 1.

If we have 7 learned coordinates in U as in Sec. 10.3.2, we need to find a subspace of 4
coordinates in order to perform metric upgrade. To do so, we take advantage of the special form
of the correct answer, given in Eq. 10.9: in the upper block of C in Eq. 10.9, three coordinates
are identically zero. Since U is a linear transformation of C, there will be three linear functions
of the top block of U that are identically zero (or approximately zero in the presence of noise).
As long as the landmark positions are nonsingular, we can use SVD on the top block of U to
find and remove these linear functions (by setting the smallest three singular values to zero), then
proceed as above with the four remaining coordinates.

12.2.2 Sample Complexity for the Measurement Model (Robot Map)

Here we provide the details on how our estimation error scales with the number T of training
examples—that is, the scaling of the difference between the estimated measurement model Û ,
which contains the location of the landmarks, and its population counterpart.

Our bound has two parts. First we use a standard concentration bound (the Azuma-Hoeffding
inequality) to show that each element of our estimated covariance M̂ = Ŷ Ŷ > approaches its
population value. We start by rewriting the empirical covariance matrix as a vector summed over
multiple samples:

vec
(
M̂
)

=
1

T

T∑
t=1

Υ:,t

where Υ = (Ŷ � Ŷ )> is the matrix of column-wise Kronecker products of the observations
Ŷ . We assume that each element of Υ minus its expectation EΥi is bounded by a constant
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c; we can derive c from bounds on anticipated errors in distance measurements and odometry
measurements.

|Υi,t − EΥi| ≤ c, ∀i,t

Then the Azuma-Hoeffding inequality bounds the probability that the empirical sum differs too
much from its population value: for any α ≥ 0 and any i,

P

[∣∣∣∣∣
T∑
t=1

(Υi,t − EΥi)

∣∣∣∣∣ ≥ α

]
≤ 2e−α

2/2Tc2

If we pick α =
√

2Tc2 log(T ), then we can rewrite the probability in terms of T :

P

[
1

T

∣∣∣∣∣
T∑
t=1

(Υi,t − EΥi)

∣∣∣∣∣ ≥ c

√
2 log(T )

T

]
≤ 2e− log(T )

which means that the probability decreases as O( 1
T

) and the threshold decreases as Õ( 1√
T

).

We can then use a union bound over all (2N)2 covariance elements (since Ŷ ∈ R2N×T ):

P

[
∀i

∣∣∣∣∣ 1

T

T∑
t=1

Υi,t − EΥi

∣∣∣∣∣ ≥ c

√
2 log(T )

T

]
≤ 8N2/T

That is, with high probability, the entire empirical covariance matrix M̂ will be close (in max-
norm) to its expectation.

Next we use the continuity of the SVD to show that the learned subspace approaches its true
value. Let M̂ = M + E, where E is the perturbation (so the largest element of E is bounded).
Let Û be the output of SVD, and let U be the population value (the top singular vectors of the
true M ). Let Ψ be the matrix of canonical angles between range(U) and range(Û). Since we
know the exact rank of the true M (either 4 or 7), the last (4th or 7th) singular value of M will
be positive; call it γ > 0. So, by Theorem 4.4 of Stewart and Sun [104],

|| sin Ψ||2 ≤
||E||2
γ

This result uses a 2-norm bound on E, but the bound we showed above is in terms of the largest
element of E. But, the 2-norm can be bounded in terms of the largest element:

||E||2 ≤ N max
ij
|Eij|

Finally, the result is that we can bound the canonical angle:

|| sin Ψ||2 ≤
Nc
√

2 log(T )
T

γ

In other words, the canonical angle shrinks at a rate of Õ( 1√
T

), with probability at least 1− 8N2

T
.
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12.2.3 The Robot as a Nonlinear Dynamical System

Once we have learned an interpretable state space via the algorithm of Section 10.3.3, we can
simply write down the nominal robot dynamics in this space. The accuracy of the resulting model
will depend on how well our sensors and actuators follow the nominal dynamics, as well as how
well we have learned the transformation S to the interpretable version of the state space.

In more detail, we model the robot as a controlled nonlinear dynamical system. The evolution
is governed by the following state space equations, which generalize (10.1):

st+1 = f(st, at) + εt (12.5)
ot = h(st) + νt (12.6)

Here st ∈ Rk denotes the hidden state, at ∈ Rl denotes the control signal, ot ∈ Rm denotes the
observation, εt ∈ Rk denotes the state noise, and νt ∈ Rm denotes the observation noise. For our
range-only system, following the decomposition of Section 10.3, we have:

st =



1
−xt
−yt

(x2
t + y2

t )/2
− cos(θt)
− sin(θt)

x2t+1−x2t+y2t+1−y2t
2vt


, ot =



d2
1t/2
...

d2
Nt/2

d21t+1−d21t
2vt...

d2Nt+1−d
2
Nt

2vt


, at =

 vt
cos(ωt)
sin(ωt)

 (12.7)

Here vt and ωt are the translation and rotation calculated from the robot’s odometry. A nice
property of this model is that expected observations are a linear function of state:

h(st) = Cst (12.8)

The dynamics, however, are nonlinear: see Eq. 12.9, which can easily be derived from the
basic kinematic motion model for a wheeled robot [111].

f(st, at) =



1
−xt − vt cos(θt)
−yt − vt sin(θt)

x2t+y
2
t

2
+ vtxt cos(θt) + vtyt sin(θt) +

v2t cos2(θt)+v2t sin2(θt)

2

− cos(θt) cos(ωt) + sin(θt) sin(ωt)
− sin(θt) cos(ωt) + cos(θt) sin(ωt)

[xt cos(θt) cos(ωt)− xt sin(θt) sin(ωt) + vt cos2(θt) cos(ωt) +
yt sin(θt) cos(ωt)− yt sin(ωt) cos(θt) + vt sin2(θt) cos(ωt)−

2vt cos(θt) sin(θt) sin(ωt)]


(12.9)
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Robot System Identification

To apply the model of Section 12.2.3, it is essential that we maintain states in the physical coor-
dinate frame, and not just the linearly transformed coordinate frame—i.e., Ĉ and not Û = ĈS−1.
So, to use this model, we must first learn S either by regression or by metric upgrade.

However, it is possible instead to use system identification to learn to filter directly in the raw
state space Û . We conjecture that it may be more robust to do so, since we will not be sensitive to
errors in the metric upgrade process (errors in learning S), and since we can learn to compensate
for some deviations from the nominal model of Section 12.2.3.

To derive our system identification algorithm, we can explicitly rewrite f(st, at) as a nonlin-
ear feature-expansion map followed by a linear projection. Our algorithm will then just be to use
linear regression to learn the linear part of f .

First, let’s look at the dynamics for the special case of S = I . Each additive term in Eq. 12.9
is the product of at most two terms in st and at most two terms in at. Therefore, we define
φ(st, at) := st ⊗ st ⊗ āt ⊗ āt, where āt = [1, at]

> and ⊗ is the Kronecker product. (Many of the
dimensions of φ(st, at) are duplicates; for efficiency we would delete these duplicates, but for
simplicity of notation we keep them.) Each additive term in Eq. 12.9 is a multiple of an element
of φ(st, at), so we can write the dynamics as:

st+1 = Nφ(st, at) + εt (12.10)

where N is a linear function that picks out the correct entries to form Eq. 12.9.
Now, given an invertible matrix S, we can rewrite f(st, at) as an equivalent function in the

transformed state space:

Sst+1 = f̄(Sst, at) + Sεt (12.11)

To do so, we use the identity (Ax)⊗ (By) = (A⊗B)(x⊗ y). Repeated application yields

φ(Sst, at) = Sst ⊗ Sst ⊗ āt ⊗ āt
= (S ⊗ S ⊗ I ⊗ I)(st ⊗ st ⊗ āt ⊗ āt)
= S̄ φ(st, at) (12.12)

where S̄ = S ⊗ S ⊗ I ⊗ I . Note that S̄ is invertible (since rank(A ⊗ B) = rank(A) rank(B));
so, we can write

f̄(Sst, at) = SNS̄−1S̄φ(st, at) = Sf(st, at) (12.13)

Using this representation, we can learn the linear part of f , SNS̄−1, directly from our state
estimates: we just do a linear regression from φ(Sst, at) to Sst+1.

For convenience, we summarize the entire learning algorithm (state space discovery followed
by system identification) as Algorithm 2.

Filtering with the Extended Kalman Filter

Whether we learn the dynamics through system identification or simply write them down in the
interpretable version of our state space, we will end up with a transition model of the form (12.10)
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and an observation model of the form (12.8). Given these models, it is easy to write down an
EKF which tracks the robot state. The measurement update is just a standard Kalman filter
update (see, e.g., [111]), since the observation model is linear. For the motion update, we need a
Taylor approximation of the expected state at time t + 1 around the current MAP state ŝt, given
the current action at:

st+1 − st ≈ N [φ(ŝt, at) + dφ
ds

∣∣
ŝt

(st − ŝt)] (12.14)
dφ
ds

∣∣
ŝ

= (ŝ⊗ I + I ⊗ ŝ)⊗ āt ⊗ āt (12.15)

We simply plug this Taylor approximation into the standard Kalman filter motion update (e.g., [111]).
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Algorithm 2 Robot System Identification
In: T i.i.d. pairs of observations {ot, at}Tt=1, measurement model for 4 landmarks C1:4 (by e.g.
GPS)
Out: measurement model Ĉ, motion model N̂ , robot states X̂ (the tth column is state st)

1: Collect observations and odometry into a matrix Ŷ (Eq. 10.7)
2: Find the the top 7 singular values and vectors: 〈Û , Λ̂, V̂ >〉 ← SVD(Ŷ , 7)

3: Find the transformed measurement matrix ĈS−1 = Û and robot states SX̂ = Λ̂V̂ >

4: Compute a matrix Φ with columns Φt = φ(Sst, at).
5: Compute dynamics: SN̂S̄−1 = SX̂2:T (Φ1:T−1)†

6: Compute the partial S−1: Ŝ−1 = C−1
1:4(Ĉ1:4S

−1) where ĈS−1 comes from step 3. Ŝ−1X̂

gives us the x, y coordinates of the states. These can be used to find X̂ (see Section 10.3.2)
7: Given X̂ , we can compute the full S as S = (SX̂)X̂†

8: Finally, from steps 3,5, and 7, we find the interpretable measurement model (ĈS−1)S and
motion model N = S−1(SNS̄−1)S̄.
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