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Abstract

Inverse optimal control (IOC) is a powerful approach for learning robotic con-
trollers from demonstration that estimates a cost function which rationalizes
demonstrated control trajectories. Unfortunately, its applicability is difficult in
settings where optimal control can only be solved approximately. Local IOC ap-
proaches rationalize demonstrated trajectories based on a linear-quadratic approxi-
mation around a good reference trajectory (i.e., the demonstrated trajectory itself).
Without this same reference trajectory, however, dissimilar control results. We ad-
dress the complementary problem of using IOC to find appropriate reference tra-
jectories in these computationally challenging control tasks. After discussing the
inherent difficulties of learning within this setting, we present a projection tech-
nique from the original trajectory space to a discrete and tractable trajectory space
and perform IOC on this space. Control trajectories are projected back to the origi-
nal space and locally optimized. We demonstrate the effectiveness of the approach
with experiments conducted on a 7-degree of freedom robotic arm.

Introduction
Robotic manipulation in environments shared with humans is a difficult task. Not only must the
robot succeed at grasping and placing objects, but its motion trajectories should also be predictable
and legible to people who share the same workspace [1, 2]. Recent advances in planning [3] are very
successful for the former objective, but less so for the latter. One reason is that even though recogniz-
ing human-acceptable trajectories is fairly easy, specifying an evaluation criteria that produces them
is not. Fortunately, human-acceptable trajectories are often easy to produce through teleoperation.
This makes inverse optimal control (IOC) [4, 5, 6, 7, 8] an attractive option since appropriate manip-
ulation trajectories may be learned from these human demonstrations. IOC estimates a cost function
for a decision process that (partially) rationalizes demonstrated sequential behavior by making it
(near) optimal. The key advantage of IOC—as opposed to directly estimating a control policy—is
that this estimated cost function can generalize to new situations (e.g., re-arrangement of obstacles)
that are characterized by different decision processes. IOC has been employed to construct con-
trollers and planners for helicopter flight [9], field robot navigation [7], locomotion through crowds
[10], and behavior prediction tasks for human-robot interaction applications [1].

The number of degrees of freedom (DoF) for typical manipulation tasks poses significant chal-
lenges for IOC. IOC relies on solving the optimal control problem which is difficult for high-DoF
problems and is therefore often solved without optimality guarantees in practice. Previous IOC ap-
plications either employ discrete, but low-dimensional, decision process representations [4, 5] or
make linear-quadratic assumptions about the state dynamics and cost function [8, 11]. Unfortu-
nately, these assumptions rarely hold in manipulation tasks. The desirable space of manipulation
trajectories is often multi-modal and non-linear due to collision avoidance with discrete obstacles.
Thus, the linear-quadratic assumption is limited to obtaining cost function estimates that locally ra-
tionalize demonstrated trajectories around one of these modes (in practice: the mode defined by the
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demonstrated trajectory itself) [8]. However, when the controller applies the resulting cost function
to a new situation, the correct mode needed as a starting point is unknown. Other modes may pro-
duce inherently non-human-acceptable manipulation trajectories—even when the best of those is
locally selected.

In this work, we propose a complementary approach to linearization and quadratic approximation
for learning human-acceptable manipulation trajectories. First we project continuous control trajec-
tories into a discrete graph-based representation. We then employ maximum entropy inverse optimal
control [5] in the graph to find a distribution over approximate reference modes. Finally, we locally
optimize samples from this distribution in the original trajectory space. We demonstrate the effec-
tiveness of this approach with experiments conducted on a 7-DOF robotic arm.

Background and Related Work

Maximum entropy inverse optimal control

Maximum entropy inverse optimal control (MaxEnt IOC) [5] combines reward-based guarantees of
inverse reinforcement learning [4] with predictive guarantees of robust statistical estimation [12, 13].
It obtains the stochastic policy that is least biased while still matching feature counts [4]. Its resulting
predictive policy estimate, P (at|st) ∝ eQ(st,at), is recursively defined using a softened version of
the Bellman equation:

Q(st, at) , EP (st+1|at,st)[softmax
at+1

Q(St+1, at+1)]− costθ,f (st, at); costθ,f (st, at) , θTf(at, st), (1)

where softmaxx f(x) = log
∑

x e
f(x) and f(at, st) is a vector of features characterizing the state-

action pair. The term θTf(at, st) is analogous to the cost function of optimal control. Parameters θ
are estimated by maximizing the (regularized) training data likelihood under the MaxEnt distribu-
tion, which for deterministic planning settings are Boltzmann distributions over state sequences:

P (s1:T ,a1:T ) =
e−θ

T ∑T
t=1 f(st,at)∑

s′
1:T

,a′
1:T

e−θ
T

∑T
t=1 f(s′t,a

′
t)
∝ e−costθ(s1:T ,a1:T ), (2)

MaxEnt IOC has been developed for both discrete and continuous state and action settings. We detail
both settings here.

Discrete: Discrete state-action representations can incorporate arbitrary dynamics and features,
but are limited by the O(|S||A|T ) complexity of dynamic programming algorithms that compute
Eqn. 1. This limits the approach to low-dimensional settings.

Continuous: This recursion (Eqn. 1) can be analytically solved for continuous state-action repre-
sentations of high-dimensional settings, but only when the dynamics are linear, ~st+1 = A~st + B~at,
and the features are quadratic, with parameter matrix Θ, cost(~s1:T ) = Θ ·

∑T
t=1 ~st~s

T
t =∑T

t=1 ~s
T
t Θ~st [14, 11, 8]. Any continuous state-action space can be locally approximated by a linear-

quadratic model around a reference trajectory [8]. However, finding an appropriate reference trajec-
tory is an open problem.

Trajectory planning
Motion planning based on trajectory optimization has recently been very successful in solving
hard, high dimensional planning problems. Algorithms like CHOMP [3] and STOMP [15] gen-
erate collision-free paths by minimizing a cost function based on trajectory smoothness and dis-
tance, while TrajOpt [16] uses sequential convex optimization with collision avoidance constraints.
These methods do have drawbacks. They compute locally optimal paths with no bounds on the
sub-optimality of the resulting path. Further, they do not produce trajectories that are predictive and
legible by humans sharing the environment.

By learning the cost functions used by these algorithms, one could generate human-like trajectories
that generalize sufficiently well across tasks. While the sub-optimality of the planner can be incor-
porated into IOC with some additional slack in the feature-matching leading to regularized learning
[17]), it is the non-convexity and discontinuity of the solution’s cost as a function of cost parameters
that poses significant theoretical challenges for IOC. Standard gradient-based optimization methods
cannot be safely employed to optimize the cost parameters of such functions since local optima cre-
ated by these discontinuities leads to inappropriate parameter estimates in both theory and practice.
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Two-Level Hybrid Inverse Optimal Control Approach
Motivated by the respective strengths of discrete IOC (arbitrary dynamics and features) and con-
tinuous IOC (high-dimensionality), we employ a two-level hybrid inverse optimal control approach
for learning human-like robotic manipulation from demonstration. As even solving optimal con-
trol problems is computationally impractical for high-dimensional manipulation tasks, our aim is to
construct a probability distribution from which sampled trajectories will be qualitatively similar to
human-like demonstrations. This is in contrast to typical inverse optimal control techniques [6, 4]
that attempt to make demonstrated manipulation trajectories optimal. Our approach simplifies the
manipulation task into two computationally tractable models: an IOC model for a sparse discrete
space that learns to avoid obstacles and follow general topological trajectory preferences; and a
linear-quadratic continuous space IOC model that learns smoothness properties of human-like ma-
nipulation trajectories. We condition the trajectory distribution of our continuous model on a path
through the discrete space. Figure 1 gives an overview of the steps in our approach.

Figure 1: Two-Level Hybrid Inverse Optimal Control

The simplifications of our abstract representa-
tions intentionally ignore important aspects of
the manipulation task that are computationally
difficult to fully incorporate; for instance, not
employing strict collision detection with cer-
tain obstacles. However, by appropriately inte-
grating uncertainty into our trajectory distribu-
tion estimate, we can take many samples from
our trajectory distribution and discard trajecto-
ries that violate any previously ignored aspects
of the manipulation task. Key then is finding a
representation of the manipulation task that bal-
ances computational tractability against the realizable similarity between demonstrated trajectories
and the estimated trajectory distribution. We now present details on the two major components of
our approach: the discrete IOC model and the continuous LQR model.

Discrete IOC in path space
We construct a sparse discrete path space to tractably approximate our continuous trajectory space.
This path space is represented as a graph in the robot’s configuration space. We project the demon-
strations onto this graph and use discrete MaxEnt IOC to learn a distribution over graph paths that
matches the projections. Samples from this distribution are inputs to the LQR system.
Graph generation: To ensure that the graph construction is unbiased by the demonstrated trajec-
tories, we use only the start and goal configurations to generate the graph ( available to the system at
test time). We discretize the straight line trajectory from start to goal and sample nodes from gaus-
sians centered around these waypoints, accounting for joint limits. The co-variances (diagonal) and
the number of sampled points from each gaussian is dependent on the distance of the gaussian center
from the center of the straight line trajectory. Gaussians near the center have high variance and more
points are sampled from them and those near the start and goal configurations have lower variance
and give out lesser samples. Finally, we connect each node to it’s k-Nearest Neighbours (kNN) to
generate an undirected graph. Fig. 3 shows the resulting graph from a simple 2D example.

Figure 2: Gaussian ellipses (2σ) around waypoints
on a straight line (Blue) between two points in 2D.
Demonstrated trajectory shown in green. Larger el-
lipses (darker) near center have larger covariances.

Figure 3: Sampled graph with 1000 nodes and 5NN
connected edges (blue) with the projection (black) of
demonstrated trajectory (green).
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From Continuous Trajectories to Discrete Paths: Discrete MaxEnt IOC aims to find the least
biased distribution of paths that matches the feature counts of the demonstrations. For this to be
feasible, the demonstrations need to be among the set of all possible paths in the graph. This can be
done by adding the demonstration to the graph, but this introduces bias. To avoid this, we compute
the closest match to the demonstrated trajectory on the graph. For this projection, we use a modified
Dijkstra’s algorithm which finds the shortest path on the graph that is close to the demonstration.
This projection does not exactly represent the demonstration, but in practice tends to be a good
approximate. Fig.3 shows the demonstrated trajectory and its projection for a simple 2D example.

Discrete MaxEnt IOC: Given the graphs and the projections of demonstrations, we learn a distri-
bution over graph paths by maximizing the probability of the projections under the MaxEnt distri-
bution (Eqn. 2), the learnt parameters being the feature weights (θ):

θ? = argmax
θ

L(sdemo1:T ) = argmax
θ

e−θ
T ∑T

t=1 f(sdemot )∑
s′
1:T

e−θ
T

∑T
t=1 f(s′t)

(3)

The features (f(st)) are task dependent and solely state-based for computational reasons. The opti-
mal weights (θ?) are found using gradient based optimizers, making use of efficient softmax infer-
ence (Eqn. 1) via an optimized value iteration algorithm for gradient and likelihood computation.

Sampling paths from discrete graph: We can sample paths from our discrete graph in two ways.
First, we can probabilistically sample goal-directed paths directly from our learnt path distribution.
Alternatively, we can deterministically find the path that minimizes the cost of traversal through the
graph (cost(st) = θ?T f(st)). In practice, we use rejection sampling to generate paths until they
satisfy certain task criteria. These sampled paths typically avoid obstacles and match many of the
qualitative properties of demonstrations, but lack the smoothness of demonstrated trajectories due
to their discrete nature.

Waypoint-based MaxEnt Inverse Linear-Quadratic Regulation
To better imitate the dynamics of continuous demonstrated trajectories, we construct a continuous
MaxEnt IOC model that estimates a distribution of trajectories given a discrete path through our
approximation graph. We learn a continuous path distribution through the discrete graphs that match
the preferences elicited in the demonstrated trajectories. This allows for us to infer a path through
the graph that correlates to the discretely inferred trajectory described previously while retaining the
same continous motion patterns of the the demonstrated examples.

LQR model: We form a quadratic cost function, cost(st,at) =

[
at
st

]T
Θ

[
at
st

]
, dependent on the

state, st, and action, at, at time t and Θ which is the set of learned parameters used to form the
cost function. In addition to this state-action cost, we incorporate temporally dependent waypoint
penalties which influence our inferred trajectories to align with the discretely inferred path through
the graph. The value of a state is dependent on both the cost function and a learned penalty for
deviating from an associated waypoint position (sw), with the association dictated by an indicator
function, It∈tw . This results in a value function similar to the one in [11]. Here Θw is the cost
parameter matrix for the waypoints, and Θf is the cost parameter matrix for the final state where
the deviation from the expected final waypoint, sG, has a unique penalty.

Q(st,at) , cost(st,at)+

E
P (st+1|at,st)

[{
I

t+1∈tw
(st+1 − swt+1)

TΘw(st+1 − swt+1) + softmax(Q(st+1,at+1)), t+ 1 < T

(st+1 − sG)
TΘf (st+1 − sG)], t+ 1 = T

]

The path’s sequence of graph states serve as waypoints in our model with a learned quadratic term
that penalizes deviation from the graph states. Sampling from this trajectory distribution projects our
discrete paths back into the continuous space by smoothing the resulting discrete graph path. MaxEnt
IOC includes uncertainty estimates in its probabilistic predictions. This suggests that, should an
available computational budget allow for it, multiple paths in the discrete representation can be
obtained based on the MaxEnt IOC distribution, smoothed to provide continuous trajectories, and
then the best of those selected.

Learning Motion Preferences: The parameters of the above model can then be trained on a set of
demonstrated trajectories and an associated set of discrete waypoints for each trajectory. This forms
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a convex optimization problem where the gradients are formed via expectation matching:

∇L(Θ) = Eπ̂

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
− Eπ̃

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
,

∇L(Θw) = Eπ̂

[∑
t∈tw

(st − sw)(st − sw)
T

]
− Eπ̃

[∑
t∈tw

(st − sw)(st − sw)
T

]
,

∇L(Θf ) = Eπ̂
[
(sT − sG)(sT − sG)

T
]
− Eπ̃

[
(sT − sG)(sT − sG)

T
]
.

From Discrete Paths to Continuous Trajectories: We generate samples from our estimated prob-
ability distribution in a two-step process. We first sample a set of paths through our sparse, discrete
graph representation. The graph nodes of this path then serve as waypoints for our continuous tra-
jectory distribution estimate. A set of trajectory samples are obtained by conditioning on the graph
path sample. The fitness of these sampled trajectories are evaluated by considering aspects of the
manipulation task that were ignored or only partially incorporated in our abstract representations. In
practice, LQR trajectory samples tend to be much smoother than our discrete paths and can directly
be executed on the manipulator.

Evaluation
Experimental setup and Data Collection

Figure 4: BarrettWAM and three objects
with Start (transparent) and Goal (solid)
configurations from the Approach-Right
(T1) task. The target is the object closest to
the end-effector.

We evaluate our approach on three separate tasks with a
7-DOF Barrett Whole Arm Manipulator (BarrettWAM).
The tasks involve the arm moving in a specific manner
through a tabletop scene to reach a target object while
avoiding obstacles. The tasks are:

T1. Approach the target object from the right side
(from the arm’s perspective)

T2. Approach the target object from the left side
T3. Carry a liquid filled can to a target destination

without spilling

For each task, we collected demonstrations from four dif-
ferent users. Half had never used the robotic platform
while the rest had some experience with it. For each task, we collected 16 demonstrations from
each user with different start and goal configurations and different obstacle locations. We recorded
the joint angles of the demonstrated trajectories as well as the obstacle positions in each case. We
use the OpenRAVE [18] virtual environment for testing our system as it provides good primitives
for manipulator kinematics, geometry and visualization. Fig. 4 shows an OpenRAVE render of a
tabletop scene from one of our datasets.

Cost function features
We use the following state-based features (f(st)) to characterize trajectories in our lower-
dimensional representation:

1. Distance from robot to objects (min, average, target distance from end-effector, etc.);
2. Histogram over distance to objects;
3. Self-collision distances and corresponding histograms;
4. Histograms of position differences between end effector and target, right/left flags; and
5. Histograms over difference in end-effector orientation from start configuration

and additional features based on the start, goal and target object and a constant feature. In total,
we have 95 features for all of our tasks, a majority being integer or binary features and the rest
individually scaled to be between 0-1.

For linear-quadratic regulation (LQR) we define the state, st = [φ1t , ..., φ
7
t , φ̇

1
t , ..., φ̇

7
t , φ̈

1
t , ..., φ̈

7
t , 1]T ,

and action, at = [φ̇1t , ..., φ̇
7
t ]T , at time t where (φ1, ..., φ7) denotes the joint angles, (φ̇1, ..., φ̇7)

the joint velocities, and (φ̈1, ..., φ̈7) the joint accelerations. A unit constant is added to the state
representation to incorporate linear features into the quadratic cost function formulation.
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Task Collision-Free (%) Completes Task (%) Overall Success (%)

Approach-Right
Test 93 96 90

Random 96 99 96

Approach-Left
Test 98 91 88

Random 90 93 86

Can-Moving
Test 92 70 66

Random 95 58 58

Table 1: Learning performance on the withheld set (Test) and the randomly generated set (Random).

Evaluation measures
We evaluate the suitability of trajectories generated from our approach by comparing them against
the true demonstrations. Learned trajectories need to be collision-free. Additionally, they need to
satisfy task-dependent metrics. For the Can-Moving task, we require that the end-effector’s maxi-
mum deviation in pitch and roll from the start configuration be less than that of the demonstration.
For the Approach tasks, we compute the percentage of the final 25% of the demonstration that stays
on the desired side of the target. We require that the learned trajectory match or exceed this.

Additionally, we test on randomly generated scenes. Each scene has a varying number of randomly
generated box shaped objects (random number and size) in random configurations. The target object,
the start and goal configuration of the robot are also chosen randomly (subject to task constraints).
The metrics are similar for the random tests, but fixed apriori.

Results
For each task, we trained our system using 70% of the demonstrations and test it on the rest. We also
generated 20 random scenes per run. In all tests, the discrete graph had 210000 nodes with 15NN
edges. We trained the LQR model on the fly using least-cost graph trajectories post learning and
the training demonstrations. Table 1 shows the performance from our learned LQR model, averaged
over six random trials.

On the two Approach tasks the algorithm performs very well, avoiding obstacles and successfully
completing the task on more than 85% of the scenes. The algorithm also generalizes well on random
scenarios. For the Can-Moving task, the algorithm learns to avoid obstacles but fails to satisfy the
task metric in nearly 30% of the scenes. Performance on random scenes is slightly poor, but overall,
the results are highly encouraging. One reason for reduced performance on the Can-Moving task
could be the sparseness of the graph and projections, leading to a poor representation of the small
pitch and roll changes in the demonstrations, ultimately resulting in learned distributions that do
not satisfy the maximum orientation difference metric. Sampling many paths and LQR smoothing
improves results significantly (66% with LQR to 45% without), but falls short of fixing it completely.

Discussion
We presented a two stage algorithm for Maximum Entropy Inverse Optimal Control and applied
it to three test scenarios with a 7DOF robot manipulator. The first stage is a discrete graph based
representation used to learn a distribution of paths matching projections of demonstrations. The
second stage generates a continuous trajectory from a sample graph path via a waypoint based
LQR formulation. The final trajectory is evaluated against a held-out set of user demonstrations
and random tests; showing that the algorithm is capable of generating human-like trajectories.

The key strengths and weaknesses of the approach lie in the discrete graph representation. It has
many merits; representing the space as a graph preserves the theoretical guarantees of MaxEnt IOC,
permits the use of optimized value iteration for inference, and results in better generalization. The
downsides are the sparseness of the graph, inexact representation of the demonstrations and expo-
nential complexity with increasing problem dimension. Clever sampling and projection techniques
can alleviate these to a certain extent, but it is hard to beat the curse of dimensionality. Additionally,
generating a solution at test-time involves generating a new graph, which is time-consuming.

While current results are promising, a more thorough evaluation is needed. A good way to mea-
sure performance would be to conduct user studies comparing the learned trajectories with human-
demonstrations for the same task. The user could be allowed to choose the more human-like trajec-
tory, establishing a clear success metric. Additionally, the algorithm needs to be tested on harder and
varied manipulation tasks. Also, tests comparing performance with respect to graph sparsity, pro-
jection error and different feature databases should give good insights. Implementing better graph
generation and projection schemes should improve performance and are clear areas for future work.
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