
Stable, Concurrent Controller Composition for Multi-Objective
Robotic Tasks

Anqi Li†, Ching-An Cheng†, Byron Boots†, and Magnus Egerstedt†

Abstract— Robotic systems often need to consider multiple
tasks concurrently. This challenge calls for controller synthesis
algorithms that fulfill multiple control specifications while
maintaining the stability of the overall system. In this paper, we
decompose multi-objective tasks into subtasks, where individual
subtask controllers are designed independently and then com-
bined to generate the overall control policy. In particular, we
adopt Riemannian Motion Policies (RMPs), a recently proposed
controller structure in robotics, and, RMPflow, its associated
computational framework for combining RMP controllers. We
re-establish and extend the stability results of RMPflow through
a rigorous Control Lyapunov Function (CLF) treatment. We
then show that RMPflow can stably combine individually de-
signed subtask controllers that satisfy certain CLF constraints.
This new insight leads to an efficient CLF-based computational
framework to generate stable controllers that consider all the
subtasks simultaneously. Compared with the original usage of
RMPflow, our framework provides users the flexibility to in-
corporate design heuristics through nominal controllers for the
subtasks. We validate the proposed computational framework
through numerical simulation and robotic implementation.

I. INTRODUCTION

Multi-objective tasks are often involved in the control of
robotic systems [1]–[4]. For example, a group of robots may
be tasked with achieving a certain formation, moving toward
a goal region, while avoiding collisions with each other and
obstacles [2]. These types of problems call for algorithms
that can systematically generate a stable controller capable
of fulfilling multiple control specifications simultaneously.

A classic strategy is to first design a controller for each
individual control specification, and then provide a high-level
rule to switch among them. This idea has been frequently
exploited in robotics [5]. For example, it is common practice
to switch to a collision avoidance controller when the robot
risks colliding with obstacles [5]. The stability of switching
systems has been thoroughly investigated, e.g. by finding
a common or switched Lyapunov function for the systems
among all designed controllers [6]–[9]. However, a funda-
mental limitation shared by these switching approaches is
that only a single controller is active at a time and hence
only a subset of the control specifications is considered. If
not designed properly, some controllers for secondary tasks
might take over the operation for most of the time. For
example, when a robot navigates in a cluttered environment,

*This work was sponsored in part by Grant No. W911NF-17-2-0181 from
the U.S. Army Research Laboratory DCIST CRA.

†Anqi Li, Ching-An Cheng, Byron Boots, and Magnus Egerstedt are
with the Institute for Robotics and Intelligent Machines, Georgia Institute
of Technology, Atlanta, GA 30332, USA. Email: {anqi.li, cacheng,
magnus}@gatech.edu, bboots@cc.gatech.edu

the collision avoidance controller can dominate other con-
trollers and the primary tasks may never be considered [2].
Therefore, it may be more desirable to blend controllers
rather than impose a hard switch between them, so that all
tasks can be considered simultaneously.

In robotics, the strategy of weighting controllers for dif-
ferent tasks has been explored in potential field methods [5],
[10]. While easy to implement such schemes, it can be
difficult to provide formal stability guarantees for the overall
“blended” system, especially when the weights are state-
dependent. In some cases, the stability of the overall system
has been shown through a common Lyapunov function [7],
[8], but the existence of a common Lyapunov function is
not guaranteed. Finding a common Lyapunov function can
be particularly challenging for robotics applications because
the tasks can potentially conflict, e.g. the robot may need to
move through a cluttered environment to go to the goal.

The framework of null-space or hierarchical control han-
dles this problem by assigning priorities to the tasks, and
hence to the controllers [1], [11]. The performance of the
high-priority tasks can be guaranteed by forcing the lower-
priority controllers to act on the null space of high-priority
tasks. However, several problems surface as the number of
tasks increases. One problem is the algorithmic singularities
introduced by the usage of multiple levels of projections [1],
[11]. Most algorithms are designed under the assumption of
singular-free conditions. But this assumption is unlikely to
hold in practice, especially when there are a large number
of tasks, and the system can easily become unstable if the
algorithmic singularities occur. In addition, similar to the
switching scheme, it is possible that secondary controllers,
e.g. collision avoidance controllers, become the ones with
high-priorities and the primary task can not be achieved.
While several heuristics [12], [13] have been proposed to
shift the control priorities dynamically, whether such systems
can be globally stabilized in presence of the algorithmic
singularities is still an open question [14].

Control Lyapunov functions (CLFs) and control barrier
functions (CBFs) constitute another class of methods to en-
code multiple control specifications [2], [4], [15]. In the CLF
and CBF frameworks, the control specifications are encoded
as constraints on the time derivatives of Lyapunov or barrier
function candidates, and a control input that satisfies all
the constraints is solved through a constrained optimization
problem. However, in the case of conflicting specifications,
the CLF and CBF frameworks suffer from feasibility prob-
lems [16], i.e. there does not exist any controller that satisfies
all the control specifications. Although the CLF constraints



can be relaxed through slack variables [15], they also add a
new set of hyperparameters to trade off the importance of
different specifications; care must be taken in tuning these
hyperparameters in order to achieve desired performance
properties and maintain stability. Finally, it can be hard to
encode certain high-dimensional control specifications, such
as damping behaviors, as CLF or CBF constraints.

In this paper, we focus on weighting individual controllers.
We aim to address two interrelated questions:
• How can controllers be composed while guaranteeing

system stability?
• How should individual controllers be designed so that

they can be easily combined?
Although ensuring stability is challenging for arbitrary

blending schemes, we design a systematic process to com-
bine controllers so that the stability of the overall system is
guaranteed. Our framework considers all control specifica-
tions simultaneously, while providing the flexibility to vary
the importance of different controllers based on the robot
state. Moreover, instead of considering specifications in the
configuration space, we allow for controllers defined directly
on different spaces or manifolds1 for different specifications.

This separation can largely simplify the design and com-
putation of each individual controller, because it only con-
cerns a possibly lower-dimensional manifold that is directly
relevant to a particular control specification. For example,
controllers for different links of a robot manipulator can
be designed in their corresponding (possibly non-Euclidan)
workspaces. We leverage a recent approach to controller syn-
thesis in robotics, Riemannian Motion Policies (RMPs) [3]
and RMPflow [17], which have been successfully deployed
on robot manipulators [3], [17] and multi-robot systems [18].
An RMP is a mathematical object that is designed to describe
a controller on a manifold, and RMPflow is a computational
framework for combining RMPs designed on different task
manifolds into a controller for the entire system. A particular
feature of RMPflow is the use of state-dependent importance
weightings of controllers based on the properties of the
corresponding manifolds. It is show in [17] that when RMPs
are generated from Geometric Dynamical Systems (GDSs),
the combined controller is Lyapunov-stable.

RMPs and RMPflow were initially studied in terms of
the geometric structure of second-order differential equa-
tions [17], where Riemannian metrics on manifolds (of
GDSs) naturally provide a geometrically-consistent notion
of task importance and hence a mechanism to combine con-
trollers (i.e. RMPflow). While differential geometry provides
a mathematical interpretation of RMPflow, in practice, the
restriction to GDSs for control specifications could limit
performance and make controller design difficult.

To overcome this limitation, we revisit RMPflow with a
rigorous CLF treatment and show that the existing com-
putational framework of RMPflow actually ensures stability

1Specifications defined on non-Euclidean manifolds are common in
robotics; for example, in obstacle avoidance, obstacles become holes in
the space and the geodesics flow around them [3].

Root Node

Leaf Node

Other Node

Fig. 1: An example of an RMP-tree. See text for details.

for a larger class of systems than GDSs. This discovery is
made possible by an alternative stability analysis of RMPflow
and an induction lemma that characterizes how the stability
of individual controllers is propagated to the combined
controller in terms of CLF constraints. Hence, we can reuse
RMPflow to stably combine a range of controllers, not
limited to the ones consistent with GDSs. To demonstrate,
we introduce a computational framework called RMPflow–
CLF, where we augment RMPflow with CLF constraints
to generate a stable controller given user-specified nominal
controllers for each of the control specifications. This allows
users to incorporate additional design knowledge given by,
e.g. heuristics, motion planners, and human demonstrations,
without worrying about the geometric properties of the
associated manifolds. RMPflow–CLF can be viewed as a
soft version of the QP–CLF framework [4] that guarantees
the stability of the overall system, while ensuring feasibility
even when control specifications are conflicting.

II. BACKGROUND

We first review RMPflow [3], [17] and CLFs [4], [15],
which are different ways to combine control specifications.

A. Riemannian Motion Policies (RMPs) and RMPflow

Consider a robot with configuration space C which is a
smooth d-dimensional manifold. We assume that C admits
a global generalized coordinate q : C → Rd and follow the
assumption in [17] that the system can be feedback linearized
in such a way that it can be controlled directly through the
generalized acceleration2, i.e. q̈ = u(q, q̇). We call u a
control policy or a controller, and (q, q̇) the state.

The task is often defined on a different manifold from C
called the task space, denoted T . A task may admit further
structure as a composition of subtasks (e.g. reaching a goal,
avoiding collision with obstacles, etc.). In this case, we
can treat the task space as a collection of multiple lower-
dimensional subtask spaces, each of which is a manifold. In
other words, each subtask space is associated with a control
specification and together the task space T describes the
overall multi-objective control problem.

2This setup can be extended to torque controls as in [1].



Ratliff et al. [3] propose Riemannian Motion Policies
(RMPs) to represent control policies on manifolds. Consider
an m-dimensional manifold M with a global coordinate
x ∈ Rm. An RMP on M can be represented by two forms,
its canonical form (a,M)M and its natural form [f ,M]M,
where a : (x, ẋ) 7→ a(x, ẋ) is the desired acceleration,
M : (x, ẋ) 7→M(x, ẋ) ∈ Rm×m

+ is the inertial matrix, and
f = Ma is the desired force. It is important to note that M
and f do not necessarily correspond to physical quantities;
M defines the importance of an RMP when combined with
other RMPs, and f is proposed for computational efficiency.

RMPflow [17] is a recursive algorithm to generate control
policies on the configuration space given the RMPs of
subtasks. It introduces: 1) a data structure, the RMP-tree,
for computational efficiency; and 2) a set of operators, the
RMP-algebra, to propagate information across the RMP-tree.

An RMP-tree is a directed tree, which encodes the com-
putational structure of the task map from C to T (see Fig. 1).
In the RMP-tree, a node is associated with the state and the
RMP on a manifold, and an edge is augmented with a smooth
map from a parent-node manifold to a child-node manifold.
In particular, the root node r is associated with the state of
the robot (q, q̇) and its control policy on the configuration
space (ar,Mr)

C , and each leaf node lk is associated with
the RMP (alk ,Mlk)Tk for a subtask, where Tk is a subtask
manifold. Recall the collection {Tk}Kk=1 is the task space T ,
where K is the number of tasks.

To illustrate how the RMP-algebra operates, consider a
node u with N child nodes {vj}Nj=1. Let ej denote the edge
from u to vj and let ψej be the associated smooth map.
Suppose that u is associated with an RMP [fu,Mu]

M on a
manifold M with coordinate x, and vj is associated with
an RMP [fvj ,Mvj ]Nj on a manifold Nj with coordinate yj .
(Note that here we represent the RMPs in their natural form.)
The RMP-algebra consists of the following three operators:

1) pushforward is the operator to forward propagate
the state from the parent node u to its child nodes
{vj}Nj=1. Given the state (x, ẋ) from u, it computes
(yj , ẏj) = (ψej (x),Jej (x) ẋ) for each child node vj ,
where Jej = ∂xψej is the Jacobian matrix of ψej .

2) pullback is the operator to backward propagate the
RMPs from the child nodes to the parent node. Given
{[fvj ,Mvj ]Nj}Nj=1 from the child nodes, the RMP
[fu,Mu]

M for the parent node u is computed as,

fu =

N∑
j=1

J>ej (fvj −Mvj J̇ej ẋ), Mu =

N∑
j=1

J>ejMvjJej .

3) resolve maps an RMP from its natural form
to its canonical form. Given [fu,Mu]

M, it outputs
(au,Mu)

M with au = M† fu, where † denotes Moore-
Penrose inverse.

RMPflow performs control policy generation through run-
ning the RMP-algebra on the RMP-tree. It first performs a
forward pass, by recursively calling pushforward from
the root node to the leaf nodes to update the state associated
with each node on the RMP-tree. Second, every leaf node lk

evaluates its natural form RMP {(flk ,Mlk)Tlk }Kk=1 given its
associated state. Then, RMPflow performs a backward pass,
by recursively calling pullback from the leaf nodes to the
root node to back propagate the RMPs in the natural form.
Finally, resolve is applied to the root node to transform
the RMP [fr,Mr]

C into its canonical form (ar,Mr)
C and

set the control policy as u = ar.
RMPflow was originally analyzed based on a differential

geometric interpretation. Cheng et al. [17] consider the
inertial matrix M generated by a Riemannian metric on
the tangent bundle of the manifold M (denoted as TM).
Let G : (x, ẋ) 7→ G(x, ẋ) ∈ Rm×m

+ be a (projected)
Riemannian metric and define the curvature terms

ΞG(x, ẋ) :=
1

2

m∑
i=1

ẋi ∂ẋ gi(x, ẋ),

ξG(x, ẋ) :=
x

G(x, ẋ) ẋ− 1

2
∇x (ẋ>G(x, ẋ) ẋ),

(1)

where
x

G(x, ẋ) := [∂x gi(x, ẋ) ẋ]mi=1, gi(x, ẋ) is the ith
column of G(x, ẋ), and xi is the ith component of x. The
inertial matrix M(x, ẋ) is then related to G(x, ẋ) through,

M(x, ẋ) = G(x, ẋ) + ΞG(x, ẋ). (2)

Under this geometric interpretation, RMPs on a manifold
M can be (but not necessarily) generated from a class of
systems called Geometric Dynamical Systems (GDSs) [17],
whose dynamics are on the form of

M(x, ẋ) ẍ + ξG(x, ẋ) = −∇xΦ(x)−B(x, ẋ) ẋ, (3)

where B : Rm × Rm → Rm×m
+ is the damping ma-

trix, and Φ : Rm → R is the potential function. When
G(x, ẋ) = G(x), the GDSs reduce to the widely studied
Simple Mechanical Systems [19].

The stability properties of RMPflow is analyzed in [17] un-
der the assumption that every leaf-node RMP is specified as
a GDS (3). Before stating the stability theorem, let us define
the metric, damping matrix, and potential function for every
node in the RMP-tree: For a leaf node, its metric, damping
matrix, and potential are defined naturally by its underlying
GDS. For a non-leaf node u with N children {vj}Nj=1, these
terms are defined recursively by the relationship,

Gu =

N∑
j=1

J>
ej
GvjJej , Bu =

N∑
j=1

J>
ej
BvjJej , Φu =

N∑
j=1

Φvj ◦ ψej ,

(4)

where Gvj , Bvj and Φvj are the metric, damping matrix,
and potential function for the jth child. The stability results
for RMPflow are stated below.

Theorem II.1. [17] Let Gr, Br, and Φr be the metric,
damping matrix, and potential function of the root node
defined in (4). If each leaf node is given by a GDS, Gr,Br �
0, and Mr is non-singular, then the system converges to a
forward invariant set C∞ := {(q, q̇) : ∇qΦr = 0, q̇ = 0}.



B. Control Lyapunov Functions (CLFs)

Control Lyapunov Function (CLF) methods [4], [15], [20]
encode control specifications as Lyapunov function candi-
dates. In these methods, controllers are designed to satisfy the
inequality constraints on the time derivative of the Lyapunov
function candidates.

Consider a dynamical system in control-affine form,

η̇ = f(η) + g(η) u, (5)

where η ∈ Rn and u ∈ Rm are the state and control input
for the system. We assume that f and g are locally Lipschitz
continuous, and the system (5) is forward complete, i.e. η(t)
is defined for all t ≥ 0. For second-order systems considered
by RMPflow, we have η = [x> ẋ>]>,

f(η) ≡
[
0 I
0 0

]
, g(η) ≡

[
0
I

]
. (6)

Suppose that a Lypapunov function candidate V (η) is
designed for a control specification. The control input is then
required to satisfy a CLF constraint, e.g. V̇ ≤ −α(V ), where
α : R+ → R+ is a locally Lipschitz class K function [21]
(i.e. α is strictly increasing and α(0) = 0). In the case of
control-affine system, the CLF constraint becomes a linear
inequality constraint on control input u given state η,

LgV (η) u ≤ −LfV (η)− α(V (η)), (7)

where LfV and LgV are the Lie derivatives of V along f
and g, respectively.

When there are multiple control specifications, one can
design Lyapunov function candidates {Vk}Kk=1 separately.
Then the controller synthesis problem becomes finding a
controller that satisfies all the linear inequalities given by
the Lyapunov function candidates. Morris et al. [4] propose
a computational framework, QP–CLF, that solves for the
controller through a Quadratic programming (QP) problem
that augments the constraints with a quadratic objective:

min
u

1

2
u>H(η) u + F (η)> u

s.t. LgVk(η) u ≤ −LfVk(η)− αk(Vk(η)),

∀ k ∈ {1, . . . ,K}.

(8)

However, when the specifications are conflicting, it may
not be possible to enforce the CLF constraints for all
{Vk}Kk=1 since the optimization problem (8) can become
infeasible [4]. In [15], Ames et al. introduce slack variables
{δk}Kk=1 so that the optimization problem is always feasible.
Let ū = [u> δ1 . . . δK ]> denote all decision variables.
Then the relaxed optimization problem becomes,

min
ū

1

2
ū> H̄(η) ū + F̄ (η)> ū

s.t. LgVk(η) u ≤ −LfVk(η)− α(Vk(η)) + δk,

∀ k ∈ {1, . . . ,K},

(9)

where H̄(η) and F̄ (η) encode how the original objective
function and the CLF constraints are balanced. However, care
must be taken in tuning H̄(η) and F̄ (η) to achieve desired
performance properties and maintain stability.

III. THE CLF INTERPRETATION OF RMPFLOW

The goal of this paper is to combine control policies
specified for subtask manifolds into a control policy for
the robot with stability guarantees. RMPflow provides a
favorable computational framework but its original analysis
is limited to subtask control policies generated by GDSs.
This assumption is rather unsatisfying, as the users need to
encode the control specifications as GDS behaviors. Further,
this restriction can potentially limit the performance of the
subtasks and result in unnecessary energy consumption by
the system. Although empirically RMPflow has been shown
to work with non-GDS leaf policies [17], it is unclear if the
overall system is still stable.

In this section, we show that the RMP-algebra actually
preserves the stability of a wider range of leaf-node control
policies than GDSs. We relax the original GDS assumption
in [17] to a more general CLF constraint on each leaf node,
and provide a novel stability analysis of RMPflow. These
results allow us to reuse RMPflow for combining a more
general class of control policies, which we will demonstrate
by combining controllers based on CLF constraints.

A. An Induction Lemma

In order to establish CLF constraints on leaf nodes that
guarantee stability, we first need to understand how the RMP-
algebra, especially the pullback operator, connects the
stability results of the child nodes to the parent node.

Again, let us consider a node u with N child nodes
{vj}Nj=1, in which u is associated with a manifold M with
coordinate x, and v is associated with a manifold Nj with
coordinate yj . In addition, let ψej : x 7→ yj be the smooth
map between manifolds M and Nj . We furthur assume that
ψej is surjective, i.e., Nj = ψej (M).

Let us associate each child node vj with a proper, con-
tinuously differentiable and lower-bounded potential Φvj on
its manifold Nj along with a continuously differentiable
Riemannian metric Gvj on its tangent bundle T Nj . Then,
for node vj , there is a natural Lyapunov function candidate,

Vvj (yj , ẏj) =
1

2
ẏ>j Gvj (yj , ẏj) ẏj + Φvj (yj), (10)

and an associated natural-formed RMP [fvj ,Mvj ]Nj , where
fvj is the force policy, and Mvj is defined by Gvj as
in (2). We shall further assume that Mvj is locally Lipschitz
continuous for the ease of later analysis. By construction of
the RMP-algebra, these Lyapunov function candidates and
RMPs of the child nodes {vj}Nj=1 define, for the parent node
u, a Lyapunov function candidate

Vu(x, ẋ) =
1

2
x>Gu(x, ẋ) ẋ + Φu(x). (11)

where Gu and Φu are given in (4).
The following lemma states how the decay-rate of Vu is

connected to the decay-rates of {Vvj}Nj=1 via pullback.

Lemma III.1. For each child node vj , assume that fvj =

Mvj ÿj renders V̇vj (yj , ẏj) = −Uvj (yj , ẏj) for Vvj in (10).
If the parent node u follows dynamics fu = Mu(x, ẋ) ẍ,



where fu and Mu are given by pullback, then V̇u(x, ẋ) =
−
∑N

j=1 Uvj (yj , ẏj) for Vu in (11).

Proof. For notational convenience, we suppress the argu-
ments of functions. First, note that,

Vu =
1

2

N∑
j=1

x> J>
ej
Gvj Jej ẋ +

N∑
j=1

Φvj =

N∑
j=1

Vvj . (12)

As Gvj is a function in both y and ẏ, following a similar
derivation as in [17], we can show

V̇u =

N∑
j=1

ẏ>
j Mvj ÿj +

1

2
ẏ>
j

yj

Gvj ẏj + ẏ>
j ∇yj Φvj , (13)

where Mvj and
yj

Gvj are the inertial matrix and the curvature
term defined in Section II-A.

Note that ÿj = Jej ẍ + J̇ej ẋ, where ẍ is given by the
RMP [fu,Mu]

M. Hence, the first term can be rewritten as
N∑

j=1

ẏ>
j Mvj ÿj = ẋ>

(
N∑

j=1

J>
ej
Mvj

(
Jej ẍ + J̇ej ẋ

))

= ẋ> fu + ẋ>

(
N∑

j=1

J>
ej
Mvj J̇ej ẋ

)

= ẋ>

(
N∑

j=1

J>
ej

(fvj −Mvj J̇ej ẋ)

)
+ ẋ>

(
N∑

j=1

J>
ej
Mvj J̇ej ẋ

)

= ẋ>

(
N∑

j=1

J>
ej
fvj

)
=

N∑
j=1

ẏ>
j fvj .

The time-derivative of Vu can then be simplified as

V̇u =

N∑
j=1

ẏ>
j fvj +

1

2
ẏ>
j

yj

Gvj ẏj + ẏ>
j ∇yj Φvj . (14)

By assumption on vj , we also have

ẏ>
j fvj +

1

2
ẏ>
j

yj

Gvj ẏj + ẏ>
j ∇yj Φvj = −Uvj (yj , ẏj). (15)

The statement follows then from the two equalities. �

We can use Lemma III.1 to infer the overall stability of
RMPflow. For an RMP-tree with K leaf nodes, let leaf node
lk be defined on task space Tk with coordinates zk and has
a natural Lyapunov function candidate

Vlk(zk, żk) =
1

2
ż>k Glk(zk, żk) żk + Φlk(zk). (16)

for some potential function Φlk and positive-definite Rie-
mannian metric Glk defined as above. By Lemma III.1, if
each leaf node lk satisfies a CLF constraint,

V̇lk(zk, żk) = −Ulk (zk, żk), (17)

then a similar constraint is satisfied by the root node. This
observation is summarized below without proof.

Proposition III.2. For each leaf node lk, assume that flk =
Mlk z̈k renders (17) for (16). Consider the Lyapunov func-
tion candidate at the root node Vr(q, q̇) defined through (11).
Then, for the root node control policy of RMPflow, it
holds V̇r(q, q̇) = −

∑K
k=1 Ulk (ψr→lk(q),Jr→lk q̇), where

ψr→lk is the map from C to Tk, which can be obtained
through composing maps from the root node r to the leaf
node lk on the RMP-tree, and Jr→lk = ∂qψr→lk .

Note that Proposition III.2 provides an alternative way to
show the stability results of RMPflow.

Corollary III.2.1. For each leaf node lk, assume that
flk is given by a GDS (Tk,Glk ,Blk ,Φlk). Consider the
Lyapunov function candidate at the root node Vr(q, q̇)
defined recursively through (11). Then we have, V̇r(q, q̇) =
−q̇>Br(q, q̇) q̇ under the resulting control policies from
RMPflow, where Br is defined recursively through (4).

With Corollary III.2.1, we then can show Theorem II.1 by
invoking LaSalle’s invariance principle [21].

B. Global Stability Properties

More importantly, by Proposition III.2, we can find how
CLF constraints are propagated from the leaf nodes to the
root node through pullback.

Proposition III.3. For each leaf node lk, assume that flk =
Mlk z̈lk renders, for Vlk in (16),

V̇lk(zk, żk) ≤ −αk (‖żk‖), (18)

where αk is a locally Lipschitz continuous class K func-
tions [21]. Consider the Lyapunov function candidate at the
root node Vr(q, q̇) defined recursively through (11). Then

V̇r(q, q̇) ≤ −
K∑

k=1

αk (‖Jr→lk q̇‖) (19)

under the resulting control policies from RMPflow.

With this insight, we state a new stability theorem of
RMPflow by applying LaSalle’s invariance principle. We
assume that the inertia matrix at the root node Mr is
nonsingular for simplicity, so that the actual control input
can be solved through the resolve operation; a sufficient
condition for Mr being nonsingular is provided in [17].

Theorem III.4. For each leaf node lk, assume that flk =
Mlk z̈lk renders (18). Suppose that Mr is nonsingular, and
the task space T is an immersion of the configuration space
C. Then the control policy generated by RMPflow renders
the system converging to the forward invariant set

C∞ :=

(q, q̇) : q̇ = 0,

K∑
j=1

J>r→lk
flk = 0

 . (20)

Further if, for all leaf nodes, flk = −∇zk
Φlk(zk) when

żk = 0, the system converges to the forward invariant set

CΦ
∞ := {(q, q̇) : ∇qΦr(q) = 0, q̇ = 0}, (21)

where Φr is the potential in Vr defined recursively in (4).

Proof. By assumption, Vr is proper, continuously differen-
tiable and lower bounded. Hence, the system converges to the
largest invariant set in {(q, q̇) : V̇r(q, q̇) = 0} by LaSalle’s
invariance principle [21]. By (19) in Proposition III.3, V̇r = 0



if and only if Jr→lk q̇ = 0 for all k = 1, . . . ,K. Since C is
immersed in T , we have q̇ = 0. Hence, the system converges
to a forward invariant set C∞ := {(q, q̇) : q̇ = 0}. Any
forward invariant set in C∞ must have q̈ = 0, which implies
that fr = 0 as Mr is nonsingular. Note that fr is given by
the pullback operation recursively, hence,

0 = fr =

K∑
k=1

J>r→lk
(flk −Mlk J̇r→lk q̇) =

K∑
k=1

J>r→lk
flk

where the last equality follows from q̇ = 0. Thus, the system
converges to the forward invariant set in (20).

Now, assume that flk = −∇zk
Φlk(zk) when żk = 0

(which is implied by q̇ = 0). Notice that by the definition
of Φr in (4), Φr(q) =

∑K
k=1 Φlk(zk). By the chain rule,

∇qΦr(q) =

K∑
k=1

J>r→lk
∇zk

Φlk(zk) = −
K∑

k=1

J>r→lk
flk .

Hence
∑K

k=1 J>r→lk
flk = 0 implies ∇qΦr(q) = 0. Thus,

the system converges forwardly to (21). �

Theorem III.4 implies that subtask controllers satisfying
CLF constraints (18) can be stably combined by RMPflow.

IV. A COMPUTATIONAL FRAMEWORK FOR RMPFLOW
WITH CLF CONSTRAINTS

We introduce a computational framework for controller
synthesis based on the stability results presented in Sec-
tion III. The main idea is to leverage Proposition III.3,
which says that RMPflow is capable of preserving CLF
constraints in certain form. Recall that for leaf node vj , the
constraint on the time-derivative of the Lyapunov function
in Proposition III.3 is V̇lk(zk, żk) ≤ −αk (‖żk‖). Combined
with the particular choice of leaf-node Lyapunov function
candidate in (16), this yields a CLF constraint3

ż>k flk ≤ −ż>k

(
∇zk

Φlk + ξGlk

)
− αk(‖żk‖), (22)

where ξGlk
is defined in (1). Proposition III.3 shows that,

when the leaf-node control policies satisfy (22), RMPflow
will yield a stable controller under suitable conditions. This
provides a constructive principle to synthesize controllers.

A. Algorithm Details

Assume that some nominal controller ud
lk

is provided
by the specification of subtask k. We design the leaf-node
controller as a minimally invasive controller that modifies the
nominal controller as little as possible while satisfying the
CLF constraint (22):

f∗lk = arg minflk
‖flk −Mlk ud

lk
‖2Plk

(23)

s.t. ż>k flk ≤ −ż>k

(
∇zk

Φlk + ξGlk

)
− αk(‖żk‖)

where Plk � 0 and Mlk is given by Glk through (2).
Possible choices of Plk include the identity matrix I and
the inverse of the inertial matrix M−1

lk
. In particular, Plk =

3This a linear constraint with respect to flk . When żk = 0, the constraint
(22) holds trivially because both sides equal 0.

M−1
lk

yields an objective function equivalent to ‖alk −
ud
lk
‖2Mlk

, where alk is the acceleration policy of the node.
We combine this minimally invasive controller design with

RMPflow as a new computational framework for controller
synthesis, called RMPflow–CLF. RMPflow–CLF follows the
same procedure as the original RMPflow [17] as is discussed
in Section II-A. The difference is that the leaf nodes solve for
the RMPs based on the optimization problem (23) during the
evaluation step. Note that (23) is a QP problem with a single
linear constraint, so it can be solved analytically by project-
ing Mlkud

lk
onto the half-plane given by the constraint.

B. Stability Properties

The form of (23) together with Theorem III.4 and the
results of [4] yields the following theorem:

Theorem IV.1. Under the assumptions in Theorem III.4, if
{ud

lk
}Kk=1, {Mlk}Kk=1, all edge Jacobians and their deriva-

tives are locally Lipschitz continuous, then the control policy
generated by RMPflow–CLF is locally Lipschitz continuous
and renders the system converging forwardly to (20).

Proof. By Theorem III.4, the system converges to (20).
By [4], for all k ∈ {1, . . . ,K}, flk is locally Lipschitz. Since
under the assumption pullback and resolve preserves
Lipschitz continuity; the statement follows. �

Note that RMPflow can be interpreted as a soft version of
the QP–CLF formulation [4] that enforces the decay-rates of
all Lyapunov function candidates (8). Meanwhile, compared
with the QP–CLF framework with slack variables [15] that
requires the users to design the objective function trade off
between control specifications, RMPflow provides a struc-
tured way to implicitly generate such an objective function
so that the system is always stable.

It should be noted that the system can also be stabilized by
directly enforcing a single constraint on the time derivative
of the combined Lyapunov function candidate (19) at the root
node, rather than enforcing the CLF constraint at every leaf
node (18). However, this can be less desirable: although the
stability can be guaranteed for the resulting controller, the
behavior of each individual subtask is no longer explicitly
regulated. By contrast, the approach with leaf-node CLF
constraints allows the users to design and test the controllers
from (23) independently. This allows for designing con-
trollers that can be applied to robots with different kinematic
structures, which is a significant feature of RMPflow [17].

V. EXPERIMENTAL RESULTS

In this section, we compare the proposed RMPflow–CLF
framework with the original RMPflow framework [17]. A
video of the experimental results can be found at https://
youtu.be/eU_x8Yklv-4. The original RMPflow frame-
work [17] is referred to as RMPflow–GDS to differentiate it
from RMPflow–CLF.

A. Simulation Results

We present two simulated examples, a 2-dimensional goal
reaching task and a multi-robot goal reaching example.

https://youtu.be/eU_x8Yklv-4
https://youtu.be/eU_x8Yklv-4


Potent ial

Spiral

Sinusoidal

GDS

Goal

Start

(a) RMPflow–CLF (b) RMPflow–GDS [17]

Fig. 2: 2D goal reaching task with a circular obstacle (grey).
(a) RMPflow–CLF with three choices of nominal controllers,
resulting in different goal reaching behaviors. (b) RMPflow–
GDS with the goal attractor given by a GDS. The behavior is
limited by the choice of the metric and the potential function.

1) 2D Goal Reaching: We first consider the 2D goal
reaching task presented in [17]. In this example, a planar
robot with double-integrator dynamics is expected to move to
a goal position without colliding into a circular obstacle. As
is in [17], the RMP-tree has a collision avoidance leaf-node
RMP and a goal attractor leaf-node RMP. For the RMPflow–
CLF framework, we use the collision avoidance RMP in [17]
and keep the choice of metrics and potential functions for
the goal attractor RMP consistent with [17]. For the goal
attractor RMP, we present several nominal controllers: (i)
a pure potential-based nominal controller fdpt = Mud

pt =
−∇Φ; (ii) a spiral nominal controller fdsp = −∇Φ + ‖ż‖v,
where v is the potential-based controller rotated by π/2, i.e.
v = −R(π/2)∇Φ with R(·) being the rotation matrix; and
(iii) a sinusoidal controller fdsn = −∇Φ+sin(t/4) ‖ż‖v. For
the minimally invasive controller, we use P = I to minimize
the Euclidean distance between the nominal controller and
the solution to the optimization problem (23). We implement
the RMPflow–GDS framework with the same choice of
parameters as [17]. The trajectories under different nominal
controllers are shown in Fig. 2. Although it is possible that
similar behaviors can be realized with the RMPflow–GDS
framework with a careful redesign of the metric and po-
tential function, the RMPflow–CLF framework can produce
a rich class of behaviors without being concerned with the
geometric properties of the subtask manifold.

2) Multi-Robot Goal Reaching: RMPflow–CLF guaran-
tees system stability even when the nominal controllers are
not inherently stable or asymptotically stable. Therefore, the
user can incorporate design knowledge given by, e.g. motion
planners, human demonstrations or even heuristics, into the
nominal controllers. To illustrate this, we consider a multi-
robot goal reaching task, where the robots are tasked with
moving to the opposite side of the arena without colliding.
If the robots move in straight lines, their trajectories would
intersect near the center of the arena. Due to the symmetric
configuration, the system can easily deadlock with robots
moving very slowly or stopping near the center to avoid col-
lisions. This problem can be fixed if the symmetry is broken.
One possible solution is to design nominal controllers for the
goal attractors so that the robots move along curves.

We compare the spiral goal attractor RMP with the GDS

Trajectories

Goal

Start

(a) RMPflow–CLF (b) RMPflow–GDS [17]

Fig. 3: Multi-robot goal reaching task. (a) RMPflow–CLF
with spiral nominal controllers. The robots move to their goal
smoothly. (b) RMPflow–GDS with the goal attractor given by
a GDS. Due to the symmetry of the configuration, the system
suffers from deadlock when the robots are near the center:
the robots oscillate around the deadlock configuration.

goal attractor RMP presented in [18]. In both cases, an RMP-
tree structure similar to the centralized RMP-tree structure
in [18] is used. We define collision avoidance for pairs of
robots in the RMP-tree with the same choice of parameters.
The trajectories of the robots under the spiral nominal con-
trollers are shown in Fig. 3a. The spiral controllers produce
smooth motion, whereas the GDS goal attractors produce
jerky motion when the robots are near the center due to
deadlock caused by the symmetric configuration (Fig. 3b).

B. Robotic Implementation

We present an experiment conducted on the Robotar-
ium [22], a remotely accessible swarm robotics platform.
In the experiment, five robots are tasked with preserving
a regular pentagon formation while the leader has an ad-
ditional task of reaching a goal. We use the same RMP-
tree structure and parameters for most leaf-node RMPs as
described in the formation preservation experiment in [18].
The only difference is that we replace the GDS goal attractor
in [18] with the spiral nominal controller augmented with the
CLF condition (23). Fig. 4 presents the snapshots from the
formation preservation experiment. In Fig. 4a–Fig. 4c, we see
that the leader approaches the goal with a spiral trajectory
specified by the nominal controller, while other subtask con-
trollers preserve distances and avoid collision. This shows the
efficacy of our controller synthesis framework. By contrast,
the robot moves in straight lines under the goal attractor
given by the GDS (see Fig. 4d-Fig. 4f). Although it could
be possible to redesign the subtask manifold such that there
exists a GDS that produces similar behaviors, the RMPflow–
CLF framework provides the user additional flexibility to
shape the behaviors without worrying about the geometric
properties of the subtask manifolds.

VI. CONCLUSIONS

We consider robot control with multiple control specifi-
cations by adopting Riemannian Motion Policies (RMPs),
a recent concept in robotics for describing control poli-
cies on manifolds, and RMPflow, the computational struc-
ture to combine these controllers. The stability results of
RMPflow is re-established and extended through a rigorous



(a) Spiral CLF controller: t = 0s (b) Spiral CLF controller: t = 18s (c) Spiral CLF controller: t = 38s

(d) GDS controller: t = 0s (e) GDS controller: t = 8s (f) GDS controller: t = 19s

Fig. 4: Multi-robot formation preservation task. The robots are tasked with preserving a regular pentagon formation while the
leader has an additional task of reaching a goal position. (a) RMPflow–CLF with a spiral nominal controller. (b) RMPflow–
GDS. The goal (red star) and the trajectories (blue curves) of the leader robot are projected onto the environment through
an overhead projector. RMPflow–CLF shapes the goal-reaching behavior through a spiral nominal controller.

CLF treatment. This new analysis suggests that any subtask
controllers satisfying certain CLF constraints can be stably
combined by RMPflow, while the original analysis given
in [17] only provides stability guarantees for a limited type
of controller. Based on this analysis, we propose a new
computational framework, RMPflow–CLF, to stably combine
individually designed subtask controllers. This formulation
provides users the flexibility of shaping behaviors of subtasks
through nominal subtask controllers given by, e.g. heuristics,
human demonstrations, and motion planners. The proposed
RMPflow–CLF framework is validated through numerical
simulation and deployment on real robots.

REFERENCES

[1] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, “A uni-
fying framework for robot control with redundant dofs,” Autonomous
Robots, vol. 24, no. 1, pp. 1–12, 2008.

[2] L. Wang, A. D. Ames, and M. Egerstedt, “Multi-objective composi-
tions for collision-free connectivity maintenance in teams of mobile
robots,” in IEEE 55th Conference on Decision and Control, pp. 2659–
2664, IEEE, 2016.

[3] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” arXiv preprint arXiv:1801.02854, 2018.

[4] B. Morris, M. J. Powell, and A. D. Ames, “Sufficient conditions for the
lipschitz continuity of qp-based multi-objective control of humanoid
robots,” in 52nd IEEE Conference on Decision and Control, pp. 2920–
2926, IEEE, 2013.

[5] R. C. Arkin et al., Behavior-based robotics. MIT press, 1998.
[6] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of switched

systems: a lie-algebraic condition,” Systems & Control Letters, vol. 37,
no. 3, pp. 117–122, 1999.

[7] L. Vu and D. Liberzon, “Common Lyapunov functions for families
of commuting nonlinear systems,” Systems & control letters, vol. 54,
no. 5, pp. 405–416, 2005.

[8] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function
for stable lti systems with commuting a-matrices,” IEEE Transactions
on Automatic Control, vol. 39, no. 12, pp. 2469–2471, 1994.

[9] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and con-
trol synthesis for switched systems: a switched Lyapunov function
approach,” IEEE Transactions on Automatic Control, vol. 47, no. 11,
pp. 1883–1887, 2002.

[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE International Conference on Robotics and Automa-
tion, vol. 2, pp. 500–505, Mar 1985.

[11] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[12] A. Dietrich, A. Albu-Schäffer, and G. Hirzinger, “On continuous
null space projections for torque-based, hierarchical, multi-objective
manipulation,” in IEEE International Conference on Robotics and
Automation, pp. 2978–2985, IEEE, 2012.

[13] J. Lee, N. Mansard, and J. Park, “Intermediate desired value approach
for task transition of robots in kinematic control,” IEEE Transactions
on Robotics, vol. 28, no. 6, pp. 1260–1277, 2012.

[14] A. Dietrich, C. Ott, and J. Park, “The hierarchical operational space
formulation: stability analysis for the regulation case,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 1120–1127, 2018.

[15] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in IEEE 53rd Annual Conference on Decision and Control, pp. 6271–
6278, IEEE, 2014.

[16] E. Squires, P. Pierpaoli, and M. Egerstedt, “Constructive barrier cer-
tificates with applications to fixed-wing aircraft collision avoidance,”
in 2018 IEEE Conference on Control Technology and Applications,
pp. 1656–1661, IEEE, 2018.

[17] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots,
and N. Ratliff, “RMPflow: A computational graph for automatic
motion policy generation,” in The 13th International Workshop on
the Algorithmic Foundations of Robotics, 2018.

[18] A. Li, M. Mukadam, M. Egerstedt, and B. Boots, “Multi-objective
policy generation for multi-robot systems using Riemannian motion
policies,” in The 19th International Symposium on Robotics Research,
2019.

[19] F. Bullo and A. D. Lewis, Geometric control of mechanical systems:
modeling, analysis, and design for simple mechanical control systems,
vol. 49. Springer Science & Business Media, 2004.

[20] E. D. Sontag, “A Lyapunov-like characterization of asymptotic con-
trollability,” SIAM Journal on Control and Optimization, vol. 21, no. 3,
pp. 462–471, 1983.

[21] H. K. Khalil, “Noninear systems,” Prentice-Hall, New Jersey, vol. 2,
no. 5, pp. 5–1, 1996.

[22] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in IEEE International Conference on Robotics and
Automation, pp. 1699–1706, IEEE, 2017.


	Introduction
	Background
	Riemannian Motion Policies (RMPs) and RMPflow
	Control Lyapunov Functions (CLFs)

	The CLF Interpretation of RMPflow
	An Induction Lemma
	Global Stability Properties

	A Computational Framework for RMPflow with CLF Constraints
	Algorithm Details
	Stability Properties

	Experimental Results
	Simulation Results
	2D Goal Reaching
	Multi-Robot Goal Reaching

	Robotic Implementation

	Conclusions
	References

