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Abstract: Complex manipulation tasks often require non-trivial and coordinated
movements of different parts of a robot. In this work, we address the challenges
associated with learning and reproducing the skills required to execute such com-
plex tasks. Specifically, we decompose a task into multiple subtasks and learn to
reproduce the subtasks by learning stable policies from demonstrations. By lever-
aging the RMPflow framework for motion generation, our approach finds a stable
global policy in the configuration space that enables simultaneous execution of
various learned subtasks. The resulting global policy is a weighted combination
of the learned policies such that the motions are coordinated and feasible under
the robot’s kinematic and environmental constraints. We demonstrate the neces-
sity and efficacy of the proposed approach in the context of multiple constrained
manipulation tasks performed by a Franka Emika robot.

Keywords: Learning from demonstration

1 Introduction
Learning from demonstration (LfD) [1] provides a paradigm for introducing robots to skills required
for executing complex tasks. Hand-specifying such skills can otherwise be hard or infeasible, es-
pecially for inexperienced end-users. A given task may require specific, coordinated, and adaptive
movements of different parts of the robot. For example, consider a wiping task. In addition to requir-
ing the end-effector to maintain contact, it may be desirable to maintain a specific elbow orientation
in order to effectively wipe the surface. Movements of the elbow and the end-effector are also inter-
dependent, requiring coordination. All the robot parts must also adapt to environmental changes,
such as displacement of the surface to be wiped, or introduction of a new obstacle. Thus, each part
of the robot can be viewed as executing multiple individual subtasks, dictating desired behaviors.

While previous work has detailed how to learn goal-directed reactive policies from demonstra-
tions [2, 3, 4], these approaches cannot combine multiple policies, each dictating the behavior in
a certain subtask space, while maintaining stability properties. A recently introduced motion gen-
eration approach, RMPflow [5], enables geometrically-consistent combination of multiple reactive
motion policies [5, 6]. The policies employed in RMPflow however are hand-designed, potentially
limiting its use to scenarios in which the individual policies can be easily specified and are known
a priori. In this paper, we learn stable reactive subtask policies from human demonstrations and
utilize RMPflow to combine them. As a result, we contribute a new LfD method capable of learning
and reproducing desired behaviors simultaneously in multiple subtask spaces.

We view human demonstrations as motions in potentially non-Euclidean subtask spaces, governed
by Riemannian Motion Policies (RMPs) [6]. An RMP is a mathematical object composed of an
acceleration policy along with a Riemannian metric, which defines the underlying non-Euclidean
geometry of the subtask space. Subtask spaces are often not independent and thus must be coor-
dinated while satisfying constraints, such as those enforced by the robot kinematics. Toward this
end, we utilize RMPflow [5], a method to combine policies associated with different subtask spaces.
Specifically, for each subtask space, we independently learn a stable RMP. RMPflow is then utilized
to enforce correlations and constraints among the subtask policies as dictated by the kinematics of
the robot. The combined policy from RMPflow preserves stability, while the learned subtask Rie-
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mannian metrics assist in policy resolution by acting as state-dependent weights associated with
subtask acceleration policies.

In summary, we contribute an LfD approach that: (i) learns stable time-invariant policies from
demonstrations defined in multiple subtask spaces; and (ii) combines the learned policies by ex-
plicitly taking into account the robot kinematics, while ensuring that the combined overall policy is
Lyapunov stable. We demonstrate the effectiveness of the proposed approach on door reaching and
drawer closing tasks and illustrate the necessity of learning policies in multiple subtasks spaces.

2 Related Work
Motion generation techniques for articulated robots can be grouped into motion planning [7, 8,
9] and reactive policy synthesis [5, 10]. While motion planning methods, particularly trajectory
optimization-based methods [11, 12, 13], seek to minimize a cost functional over a given time-
horizon, reactive policy methods generate actions based on the instantaneous state. Typically, the
cost functional or the policy are hand-specified to generate smooth and collision-free motions. This
is sometimes infeasible for complex manipulation tasks. Learning from demonstration seeks to
overcome this challenge by learning either a cost functional [14, 15, 16, 17, 18], a time-dependent
motion representation [19, 20, 21], or a time-invariant (reactive) policy [2, 3, 4, 21].

In practice, stable reactive methods are well suited for dynamic environments since they allow in-
stantaneous adaptation to environmental changes while also providing convergence guarantees to
a target. In this work, we focus on learning reactive motion policies from demonstrations. Ex-
isting methods learn reactive policies for the robot end-effector only, without considering the de-
sired behaviors for other parts of the robot. Perhaps, a potential approach to simultaneously en-
coding the role of different parts of the robot could learn motions in the robot’s joint space. Prior
work has explored learning policies in either robot’s joint space only or in conjunction with its
workspace [19, 20, 22, 23]. These methods, however, provide time-dependent policies, and are
thus prone to failure when execution timing drifts away from demonstrated timing. Furthermore,
learning policies in joint-space can sometimes be over-constraining, especially for redundant ma-
nipulators, whereby the particular joint values are not as critical as the movement in the relevant
subtask spaces. Lastly, reactive policy learning methods generally do not account for the robot’s
kinematic constraints and/or joint limits.

To the best of our knowledge, no existing work learns stable time-invariant policies from demon-
strations capable of simultaneously reproducing the desired behaviors in multiple subtask spaces.

3 Background: Riemannian Motion Policies
Consider a robot with its configuration space C given by a smooth manifold, admitting a global
generalized coordinate q ∈ Rd. Oftentimes, it is more convenient to describe the specifications of
the robot motion on another manifold called the task space, denoted T , where there exists a smooth
task map ψ : C → T that maps the configuration space to the task space. The RMP framework [5, 6]
assumes that the overall task can be decomposed into a set of subtasks defined on different subtask
spaces. Examples of subtasks include goal reaching or trajectory following for the end-effector,
collision avoidance for a certian part of the robot, etc. The task space T can thereby be represented
as the collection of multiple subtask spaces. The goal of RMPs and RMPflow [6, 5] is to generate
an acceleration policy ar = π(q, q̇) on the configuration space C such that the transformed policies
exhibit the desired behaviors in each of the subtask spaces.

3.1 Riemannian Motion Policies (RMPs)
A Riemannian Motion Policy (RMP) [5, 6] is a mathematical object describing motions on mani-
folds. Consider an m-dimensional manifold M with generalized coordinates x ∈ Rm. An RMP
on the manifoldM can be succinctly represented by its canonical form as a pair (a,M)M. Here,
the first component, a ∈ Rm is an acceleration policy governing motions on the manifold, while
the second component, M ∈ Rm×m+ is a Riemannian metric, that is a positive definite matrix defin-
ing the structure of the underlying manifold. An alternative parameterization of RMP which will
become useful later is given by the natural form [f ,M]M where f := Ma is the desired force map.

One realization of an RMP is a virtual dynamical system [5],

a = M(x)−1
(
−∇Φ(x)−B(x) ẋ− ξM(x, ẋ)

)
, (1)
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where, as in Geometric Mechanics [24], the Riemannian metric M(x) : Rm → Rm×m+ serves as
the inertia matrix, B(x) : Rm → Rm×m+ is the damping matrix and Φ(x) : Rm → R+ the potential
function. The system in (1) dictates the motion on a manifold under the influence of a damped virtual
potential field. An important property of this system is that it is inherently Lyapunov stable.

The Riemannian metric M also induces the curvature term ξM. The ith component of the curvature
term, denoted (ξM)i, is given by

(ξM)i =

n∑
j=1

n∑
k=1

1

2

(
∂Mij(x)

∂ xk
+
∂Mki(x)

∂ xj
− ∂Mjk(x)

∂ xi

)
ẋj ẋk, (2)

where we use Mij to denote an entry of a matrix M and xi to denote a component of a vector x.
Intuitively, the curvature term ξM bends the trajectories to follow geodesics on the manifold in the
absence of the potential and damping terms. It should be noted that the Riemannian metric M(x)
employed in this paper is only position dependent. In the case when the Riemannian metric is both
position and velocity-dependent, a generalization of the system (1), called Geometric Dynamical
System (GDS) [5], can be used instead.

For simple tasks like reaching a goal without any additional specifications, a system that generates
the RMP can be hand-specified as is done in [6]. However, for more complex behaviors, it can be
hard or sometimes infeasible for an end-user to design RMPs. To mitigate this problem, in Section 4
we detail a method which can instead learn RMPs of the form (1) from human demonstrations.

3.2 RMPflow
RMPflow [5] is a computational framework to generate reactive policies by combining RMPs. Given
multiple individually specified (or learned in the subsequent sections) RMPs for different subtasks,
RMPflow combines these policies into one global configuration space policy.

The core data structure of RMPflow is the RMP-tree, a directed tree encoding the structure of the
task map. Specifically, each node v along the RMP-tree is made up of a state (x, ẋ) on a manifold
along with an associated RMP (av,Mv)

M. Each edge e in the RMP-tree corresponds to a smooth
map ψe from the given parent node manifold to the child node manifold. The root node in the RMP-
tree, r, is associated with the state (q, q̇) in the configuration space C and its policy (ar,Mr)

C . Let
K be the number of leaf nodes in the RMP-tree. The leaf nodes {lk}Kk=1 are associated with subtask
RMPs {(alk ,Mlk)Tlk }Kk=1. Each subtask RMP encodes a desired subtask acceleration policy, while
the associated Riemannian metric assigns a state-dependent importance weight to the policy when
combined with other policies. An example RMP-tree is shown in Figure 1a. Recursive application
of RMP-algebra (cf. Appendix A) along the RMP-tree enables a weighted combination of the leaf
node RMPs to generate a global configuration space policy ar = π(q, q̇).

One important feature of RMPflow is that it preserves the stability property of leaf node policies: if
all subtask RMPs are generated by systems in the form of (1), the combined policy in the configu-
ration space is also in the form of (1) and hence Lyapunov stable. In the following section, we will
make full use of the stability property of RMPflow to learn RMPs that can be combined (with both
hand-specified RMPs and learned RMPs) into a stable policy.

4 Skill Reproduction via RMPflow
For robot manipulators, a skill may involve coordinated and constrained motion of different parts of
a robot. To encode a skill, we first construct an RMP-tree with root node in the configuration space,
specifically the joint space of the robot. The relevant robot body parts are added as child nodes of the
root in the RMP-tree with edges given by the forward kinematics of the robot. Branching out further
from these nodes are leaf nodes, corresponding to various subtask spaces. We propose to learn leaf
node RMPs from human demonstrations. A human can choose to provide demonstrations for each
subtask space either independently or simultaneously. Additional hand-specified leaf RMPs, for
example obstacle avoidance and joint-limit RMPs [5] can be added along the RMP-tree to ensure
feasibility of robot motions. The overall configuration space policy ar is found using RMPflow as
described previously. It should be noted here that in order to ensure stability of the configuration
space policy, all RMPs employed in this work are of the form (1).

4.1 Human-Guided Riemannian Motion Policies
In the kth subtask space Tlk , corresponding to leaf node lk, our aim is to learn an RMP of the form
(1). In lieu of this, we assume the availability of N human demonstrations {ζ(k)

i }Ni=1. Here the
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Figure 1: (a) An example RMP-tree: both learned leaf node policies (blue) and hand specified policies can
be combined to generate a global (root node) policy at the configuration space. (b) Vector field introduced by
the learned potential function: every point in the trajectory are attracted to the single demonstration (red) with
which the potential function is learned. (c) Vector field generated by the learned potential and metric: the space
is warped by the learned metric so that the demonstrations can be reproduced.

ith trajectory demonstration is composed of Ti datapoints ζ(k)
i = {ζ(k)

i,t }
Ti
t=0, and all subtask space

trajectories converge and come to rest at a common target position ζ
(k)
i,Ti

= ζ
(k)
T . For notational

clarity, we will drop the subtask space subscript k in the remainder of this section. However we will
always refer to a particular subtask unless otherwise stated.

We observe here that the desired motion generated by the system (1) is mainly governed by the
component −M(x)−1∇Φ(x), which can be seen as setting ẍd along the negative natural gradient
of the potential function on the manifold. The remaining components: the damping acceleration
−M(x)−1 B(x) ẋ and the curvature acceleration −M(x)−1 ξM(x, ẋ), simply ensure stable and
geometrically consistent behavior. Hence, we view the learning from demonstration problem as
equivalent to learning the aforementioned natural gradient descent subsystem. The damping compo-
nent is pre-specified as B(x) = γdM(x), such that the damping acceleration M(x)−1 B(x) ≡ γd I
is always independent of the choice of metric.

The problem of learning the natural gradient descent subsystem is highly under-constrained, that is,
there can be many different potential and metric combinations that can result in the same desired
acceleration policy. We choose to bias the solution of this learning problem via a two-step process.
Specifically, we first learn a less expressive potential function and then learn a Riemannian metric
which warps the gradient of the potential such that the overall policy is expressive enough to accu-
rately reproduce the demonstrations. According to [5], for M(x),B(x) ∈ Rm×m+ , the system in
(1) converges to the forward invariant set C∞ := {(x, ẋ) : ∇Φ(x) = 0, ẋ = 0} [5]. Hence, we
require our learned potential to have a minima at the target and our learned Riemannian metric to be
globally positive definite. The remainder of this section details our learning procedure.

4.2 Learning Nominal Potential from Demonstrations
In order to learn a subtask space potential function, we first select a nominal demonstration ζ∗ which
is the least dissimilar from the other demonstrations in terms of geometric features. One such metric
of dissimilarity is Dynamic Time Warping (DTW) distance. The nominal demonstration is therefore
given by the demonstration with the least mean DTW distance from other demonstrations.

Given the nominal trajectory demonstration ζ∗, we learn a potential Φ(x), which generates a dis-
sipative field −∇Φ(x) that produces motions which: (i) converge smoothly towards the nominal
trajectory, and (ii) follow the remaining trajectory after convergence. Furthermore, to ensure stabil-
ity we also enforce

∇Φ(ζT ) = 0, Φ(x)→∞ as x→∞, (3)

so that the trajectories can always be bounded following the dynamics (1). Figure 1b shows a
vector field generated by the negative gradient of an example potential field with aforementioned
properties. We use an approach similar to that used by [25]. Specifically, the overall potential is
given by a convex combination of potential elements centered at each trajectory point ζ∗t ,

Φ(x) =

t=T∑
t=1

wt(x)φt(x), where wt(x) =
k(x, ζ∗t )∑t′=T
t′=1 k(x, ζ∗t′)

, k(x, ζ∗t ) = e−
‖x−ζ∗t ‖

2

2σ2 (4)
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Furthermore, each contributing potential element here is a summation of two components: φt(x) =
φ⊥t (x) + φ0t , whereby the component φ⊥t : Rm 7→ R+ is a strictly convex function with a global
minima at ζ∗t and φ0t ∈ R+ is a bias term. As a consequence of the aforementioned decomposition,
the gradient of the overall warped potential in (4) can also be decomposed as,

∇Φ(x) = ∇Φ⊥(x) +∇Φ//(x) (5)

where the gradient component ∇Φ⊥(x) causes attractive pull towards the demonstration while the
component ∇Φ//(x) produces accelerations along the direction of motion of the demonstration.
The motion along the trajectory is direct consequence of monotonically decreasing bias terms φ0t ,
such that the negative of the potential gradient aligns with the demonstrated motion. Due to this
decomposition, we independently hand-design the function φ⊥t (x) as per our desired attractive ac-
celerations towards the demonstration. Next, we learn the bias terms φ0t such that the direction of
motion governed by the potential at each data-point ζ∗t matches the demonstration.

As a first step in this procedure, we choose to go with the following attractive potential element [5],

φ⊥t (x) =
1

η
log

(
eη‖x−ζ

∗
t ‖ + e−η‖x−ζ

∗
t ‖
)
, ∇φ⊥t (x) = sη

(
‖x− ζ∗t ‖

) x− ζ∗t
‖x− ζ∗t ‖

(6)

where η > 0 defines the effective smoothing radius of the function at the origin and sη(0) = 0
and sη(r) → 1 as r → 0. For a sufficiently large η, this choice of potential function ensures that
the attractive acceleration always has a unit magnitude except in the neighborhood of the center
ζ∗t where it smoothly decreases to zero. A trivial alternative to this function is a quadratic as used
by Khansarizadeh et al [25]. However, the gradient of a quadratic function increases linearly with
distance which can cause undesirably large accelerations far away from the demonstrations.

Towards the second step in the procedure, we learn the bias terms {φ0t}. As mentioned before, we
require negative natural gradient to match the accelerations from zero velocity. Also, we are only
concerned with the direction of motion. Hence the potential learning problem becomes,

min
{φ0

t}

1

T

t=T∑
t=1

‖ˆ̇ζ∗t +∇Φ
(
ζ∗t ; {φ0t}

)
‖2 + λ‖φ0t‖2

s.t. 0 ≤ φ0T ≤ φ0t+1 ≤ φ0t ∀t = 1, . . . , (T − 1)

∇Φ(ζ∗T ) = 0

(7)

where ˆ̇
ζ∗t =

ζ̇∗t
‖ζ̇∗t ‖

is the direction of motion (with unit magnitude) and λ is the regularization parame-
ter. Furthermore, the optimization constraints enforce the potential to decrease monotonically along
the demonstration with a stationary point at the goal location ζT . The aforementioned optimization
problem can be solved efficiently with off-the-shelf solvers, e.g. CVX [26].

4.3 Learning Riemannian Metric from Multiple Demonstrations
While a single demonstration can imply certain traits of motions, multiple demonstrations can fur-
ther capture certain properties of the skill that can not be encoded by a single trajectory. For example,
if all the demonstrations stay close to each other in a particular region of the state space, it informs
that the motion is highly constrained in the region. In such part of the state space, the reproduced
trajectories should follow the demonstrations closely so that the skill specifications are satisfied.
Therefore, we choose to learn a Riemannian metric M(x) on the subtask space (manifold) to warp
the learned potential function (4). The metric expands or contracts the space so that the attractive
component is no longer uniform along the trajectories. Figure 1c shows an example vector field
given by negative gradient of a nominal potential warped by a learned Riemannian metric.

To ensure the stability of the learned system, the Riemannian metric M(x) needs to be positive
definite. Hence, we parameterize the metric by its Cholesky decomposition, M(x) = L(x)L(x)>,
where L ∈ Rn×n is a lower-triangular matrix with positive diagonal entries. Let ld(x) ∈ Rn and
lo(x) ∈ R 1

2 (n
2−n) denote the vector given by collecting the diagonal and off-diagonal entries of

L(x), respectively. In order for L(x) to be a Cholesky decomposition of the positive definite matrix
M(x), we require each entries of ld(x) to be strictly positive.

We represent the metric matrix as a neural-network with parameter θ. The neural network takes in
the coordinate x ∈ Rn and outputs ld(x; θ) and lo(x; θ) (Figure 2). To ensure that ld(x; θ) is strictly
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Figure 2: The structure of the neural network for metric learning. The first two layers are fully connected
layers with Relu activation functions. The diagonal and off-diagonal elements of the lower triangular matrix
L is then predicted through another fully connected layer. In order to ensure that the diagonal elements are
strictly positive, the absolute value of the output of the layer is taken and a positive offset is added. Then, the
inverse of the metric matrix computed to calculate the loss for training the network.

positive for all x ∈ Rn, we take absolute value of the output of the linear layer and add it with
a small positive offset ε > 0. Hence, lower-triangular matrix L(x; θ) is always invertible and the
Riemannian metric M(x; θ) is guaranteed to be positive definite. The Riemannian metric learning
problem seeks to find the parameters of the neural network such that final natural gradient descent
subsystem (negative warped potential gradient) reproduces the demonstrated normalized velocities
along the demonstrations,

arg min
θ

N∑
i=1

Ti∑
t=1

L
(
−M(ζi,t; θ)

−1∇Φ(ζi,t),
ˆ̇
ζi,t
)

s.t. M(ζi,t; θ) = L(ζi,t; θ)L(ζi,t; θ)
>,

(8)

where L(·, ·) can be any regression loss function, e.g. L2 loss, smooth L1 loss, and their regular-
ized version. It is noteworthy that M(·; θ) need not be explicitly computed during training since
M(x; θ)−1 = L(x; θ)−>L(x; θ)−1, and L(x; θ)−1 can be efficiently computed through forward-
substitution due to the fact that L(x; θ) is a lower-triangular matrix. Although the training is done
on the first-order system. While executing the learned policy, the curvature term ξM(x, ẋ; θ) needs
to be computed as well. By definition of the curvature term (2), its calculation involves computing
the partial derivatives ∂Mij(x;θ)

∂xk
, which can be computed through back-propagation using standard

deep learning frameworks such as PyTorch [27].

Limitations: First, we assume in this work that only the geometric features (i.e. positions and
direction of motion/shape) of the demonstrated motions are important for the task. Reproducing
the speed profiles of demonstrations would perhaps require learning the entire second-order system
in (1) with a loss defined on the weighted-combination of policies given by RMPflow. Second,
the Riemannian metric can not rotate the attractive potential field by more than 90 degrees. This
limitation will manifest itself when demonstrations have large variations in their geometric features.

5 Experimental Evaluation
We evaluated the proposed approach on two manipulation tasks, including door reaching and drawer
closing2. Both tasks were demonstrated on a 7-DOF Franka Emika robot with configuration space
coordinate q ∈ R7. For each skill, a human subject provided 6 demonstrations via kinesthetic
teaching, starting from various joint angles of the robot. The demonstrations were recorded in the
joint space such that the ith demonstration is defined as ζqi := {ζqi,t}

Ti
t=0, where ζqi,t ∈ R7.

The desired tasks require coordinated motion of the entire hand of the robot with respect to the target
objects. To encode the motion of the entire wrist, we pick k = 3 control points on the hand; one
defined at the center of the gripper and one each at the tips of the two-fingered gripper. We setup
an RMP-tree with root in the joint space of the robot and leaf nodes representing 3-dimensional
subtasks, one per control point, under the mappings {ψ(k)}3k=1. Specifically, a subtask map is
defined as a composition ψ(k) := g(k) ◦ f (k). Here f (k) : R7 7→ R3 maps the joint angles to the kth

2Video available at: https://youtu.be/9jvz5fE 1dM.
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control point position under the robot’s forward kinematics. On the other hand, g(k)(x) = x− p(k)

defines a translation such that the target location p(k) ∈ R3 coincides with the origin of the subtask
space 3. For each subtask, we independently learn a human-guided RMP of the form (1) under the
transformed subtask space demonstrations {ζ(k)

i }Ni=1. Appendix B provides additional details on
the learning pipeline and the integrated system.

To execute the skill in a new environment, additional hand-specified joint limit RMPs, and obstacle
avoidance RMPs are also added as leaf RMPs to the RMP-tree. These hand-specified RMPs dictate
the kinematic and environmental constraints as detailed in [5]. All the policies are resolved in real-
time under the learned and hand-specified Riemannian metrics by recursively running RMPflow on
the RMP-tree. It should be noted that the kinematic constraints enforced along the RMP-tree ensures
the coordination of motion in various subtask spaces.

The drawer closing task required the robot to reach the handle of a drawer from a given initial posi-
tion and push it closed. Figure 4a–4b shows the demonstrations transformed in the 3 aforementioned
subtask spaces. It should be noted that the closing motion not only requires a straight line motion
by the end-effector after making contact with the drawer handle, but also requires the wrist to align
with the face of the handle. Figure 4c–4d shows the reproductions from the same initial positions as
the demonstrations while Figure 5 shows an instance of reproduction on the real robot. Among all
the 6 trials, the robot is able to successfully reproduce the demonstrations and close the drawer.
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Figure 3: Reproductions of the drawer
closing task with a cylindrical obstacle (in
black) in the scene. The positions of the 3
control points on robot hand are shown as
vertices of a triangle.

The door reaching task required the robot to start from in-
side a cabinet, going around the cabinet door and reaching
for the door handle outside the door. The robot is required
to stop at a standoff position a small distance away from
the drawer handle. This task requires a highly constrained
motion that results in the end-effector moving along a C-
shaped arc. Furthermore, as before, the entire wrist trajec-
tory is important here since the robot is required to reach
the handle at a certain relative angle. Figure 6a–6b shows
the demonstrated trajectories while Figure 6c–6d shows
the reproductions from the same set of initial positions.
Figure 7 shows snapshots of a task reproduction on the
real robot. Once again we notice all the reproductions to
successfully achieve the task. Furthermore, to test the re-
active behavior of our policy, we displace the door during
execution. As noticeable in Figure 8, the robot success-
fully react to the the change in goal location and hence
complete the task.

Another important feature our approach inherits from RMPflow is obstacle avoidance. We desire
the generated motions to be collision-free in order to be feasible in any new environment. To test the
obstacle avoidance behavior, we place a cylindrical obstacle in the environment such that it hinders
the robot’s motion towards the drawer for the drawer closing task. We notice successful completion
of the task as the robot is able to go around the obstacles in all 6 trials (Figure 3).

6 Conclusion
We introduced an approach for learning and reproducing complex tasks, composed of multiple inter-
related subtasks. Our approach is capable of learning inherently-stable reactive polices in these
subtask spaces directly from human demonstrations. For task reproduction, our method utilizes
RMPflow to carry out policy resolution and generate a stable joint-space policy that enables simul-
taneous execution of various learned subtasks. Furthermore, the motions generated by the combined
policy adhere to the robot’s kinematics and environmental constraints. Experimental results demon-
strate that the proposed approach can capture the desired behaviors of multiple robot links in order
to accomplish constrained manipulation tasks.
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3Target location p(k) is attached to the target object. This enables the policy to react to object displacement.
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Figure 4: Trajectories for the drawer closing task. (a), (c): The motion of 3 control points on the robot hand,
shown as vertices of a triangle, along the demonstrated and reproduced trajectories respectively. (b), (d): The
demonstrated and reproduced end-effector (center of hand) trajectories.

Figure 5: The drawer closing task. The robot successfully closes the drawer from a new initial configuration.
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Figure 6: Trajectories for the cabinet door reaching task. (a), (c): The motion of 3 control points on the robot
hand, shown as vertices of a triangle, along the demonstrated and reproduced trajectories respectively. (b), (d):
The demonstrated and reproduced end-effector (center of hand) trajectories.

Figure 7: The cabinet door reaching task. The robot manages to reach the cabinet door handle despite of the
new initial configuration and new door configuration.

Figure 8: Reactivity. The door handle location is displaced during execution and the robot can be seen to
adapting to the new target.
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Appendices

A RMPflow

In this appendix, we provide a brief introduction of RMPflow [5], the computational framework for
policy generation with RMPs. We refer the readers to [5] for detailed introduction and theoretical
analysis of RMPflow.

Two components that form the basis of RMPflow include: 1) RMP-tree: a directed tree encoding
the structure of the task map, and 2) RMP-algebra: a set of operations to propagate information
across the RMP-tree. An RMP-tree is a directed tree initiating at the root node, branching out and
culminating at the leaf nodes, with edges connecting the parent-child node pairs. Specifically, each
node v along the RMP-tree is made up of a state (x, ẋ) on a manifold along with an associated RMP
(av,Mv)

M. Each edge e in the RMP-tree corresponds to a smooth map ψe from the given parent
node manifold to the child node manifold. The root node in the RMP-tree, r, is associated with the
state (q, q̇) in the configuration space C and its policy (ar,Mr)

C . LetK be the number of leaf nodes
in the RMP-tree. The leaf nodes {lk}Kk=1 are associated with subtask policies {(alk ,Mlk)Tlk }Kk=1.

The subtask policies along the RMP-tree are combined using RMP-algebra. To illustrate how RMP-
algebra operates, consider a node u in the RMP-tree with N child nodes {vj}Nj=1 (see Figure 9).
Let {ej}Nj=1 denote the edge between the parent node u and the child nodes {vj}Nj=1. RMP-algebra
consists of three operators:

(i) pushforward propagates the state of a node in the RMP-tree to update the states of its
child nodes. Let (x, ẋ) and {yj , ẏj}Nj=1 be the state associated with the parent node and
the child nodes, respectively. The state of its jth child node vj is computed as (yj , ẏj) =
(ψej (x),Jej (x) ẋ), where ψej is the smooth map associated with the edge ej and Jej =
∂xψej is the Jacobian matrix.

(ii) pullback propagates the natural form of RMPs {[fvj ,Mvj ]
Nj}Nj=1 from the child nodes

to the parent node. The RMP associated with the parent node [fu,Mu]
M is computed as,

fu =

N∑
j=1

J>ej (fvj −Mvj J̇ej ẋ), Mu =

N∑
j=1

J>ejMvjJej . (9)

The natural form of RMPs are used since they more efficient to combine.

(iii) resolve maps an RMP from its natural form [fu,Mu]
M to its canonical form (au,Mu)

M

with au = M†u fu, where † denotes Moore-Penrose inverse.

Given configurations state (q(t), q̇(t)) at time t, RMPflow computes the global policy
π(q(t), q̇(t)) = ar(q(t), q̇(t)) through the following procedure. The pushforward operator is
first recursively applied to the RMP-tree to propagate the state associated with each node in the
RMP-tree. Then, the subtask policies {(flk ,Mlk)}Kk=1 are evaluated by the leaf nodes and com-
bined recursively along the RMP-tree by the pullback operator. the resolve operator is finally
applied on the root node to compute the acceleration policy ar(q(t), q̇(t)).

B Details of the Experiments

Here we provide some details of the experiments, including the learning pipeline and the integrated
perception and control system.

B.1 The Learning Pipeline

Data Collection For both the drawer closing experiment and the cabinet door reaching experiment,
we collect 6 human demonstrations starting from different initial configurations of the robot through
kinesthetic teaching. The initial configuration of the environment, i.e., the cabinet door and the
drawer, respectively, remains fixed across different demonstrations. For the drawer closing experi-
ment, in particular, the initial configuration of the drawer is always fixed across the data collection
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Figure 9: An example RMP-tree. The root of RMP-tree is associated with the configuration space while the
leaf nodes are associated with subtasks. The policies for the subtasks can be either hand-designed or learned.
The RMP-algebra propagates information along the tree. The green block contains a segment of the RMP-tree
to illustrate the RMP-algebra.

phase and the testing phase. In the cabinet door reaching experiment, however, the initial configu-
ration of the cabinet door is recorded by the perception system (see Appendix B.2). In the testing
phase, we vary the initial configuration of the cabinet door across different trials. The demonstra-
tions are recorded in the joint space.

Data Preprocessing We define the subtask spaces in the reference frame of the object, i.e., the
cabinet door handle and the center of the drawer front, respectively. In particular, we consider 3
control points on the wrist of the robot making up 3 subtask spaces of R3. We also translate the origin
of the subtask spaces such that all demonstrations converge to the origin in each subtask spaces.
Hence, given the demonstrations in the joint space, we transfer the demonstrations into the subtask
spaces using the forward kinematics of the robot composited with a rigid body transformation.

To preprocess the demonstrated trajectories, we first remove the static segments in the trajectories.
The trajectories are then smoothed with a Savitzky-Golay filter. We resample the trajectories with
200 sample points evenly spaced in time using cubic interpolation. The velocity at the sample points
are computed through finite-difference. Since we assume that the magnitude of the velocities are
not important to the skill, we rescale the velocity at each sample point so that the trajectory has unit
velocity for each sample point.

Metric Learning The number of nodes in the two fully connected layers are 128 and 64, respec-
tively. The neural network is trained by the Adam optimizer [28] with a learning rate of 0.005 and
weight decay of 3× 10−5. Since the size of the training set is relatively small, we use batch update
and terminate training after 1000 updates. The average training time for metric learning on a subtask
space is 15.76s. The reported training time is an average over 10 runs on a CPU machine with an
Intel Core i7 processor.

B.2 The Integrated System

Drawer Closing Experiment No perception systems are used for the drawer closing experiment.
The initial configuration of the drawer is fixed throughout data collection and testing. The robot is
considered moving in an empty space except for the trial where a simulated cylinder-shaped obstacle
is added to the environment.

Cabinet Door Reaching Experiment In the cabinet door reaching experiment, the configuration of
the robot and the environment, e.g., cabinet door, is tracked by an overhead RGB-D kinect camera
using DART [29]. The perception system updates the state of the robot and the environment at 30Hz.

Hand-crafted RMPs In addition to the learned RMPs, obstacle avoidance RMPs and joint limit
RMPs detailed in [5] are also active during the testing phase to avoid collision with obstacles and
exceeding the joint limits.

Control Frequency The learned RMPs operate at 50Hz during execution while the other hand-
crafted RMPs operate at 1000Hz.
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