
Learning a Contact-Adaptive Controller for
Robust, Efficient Legged Locomotion

Xingye Da∗, Zhaoming Xie∗†, David Hoeller∗, Byron Boots∗‡,
Animashree Anandkumar∗§, Yuke Zhu∗], Buck Babich∗, Animesh Garg?∗

Abstract: We present a hierarchical framework that combines model-based
control and reinforcement learning (RL) to synthesize robust controllers for a
quadruped (the Unitree Laikago). The system consists of a high-level controller
that learns to choose from a set of primitives in response to changes in the en-
vironment and a low-level controller that utilizes an established control method
to robustly execute the primitives. Our framework learns a controller that can
adapt to challenging environmental changes on the fly, including novel scenarios
not seen during training. The learned controller is up to 85 percent more energy
efficient and is more robust compared to baseline methods. We also deploy the
controller on a physical robot without any randomization or adaptation scheme.

Keywords: Legged Locomotion, Hierarchical Control, Reinforcement Learning

1 Introduction

Quadruped locomotion is often characterized in terms of gaits (walking, trotting, galloping, bound-
ing, etc.) that have been well-studied in animals [1] and reproduced on robots [2, 3]. A gait is a
periodic contact sequence that defines a specific contact timing for each foot. Controllers designed
for these gaits have demonstrated robust behaviors on flat ground and rough terrain locomotion.
However, it is rarer to find controllers that can change gaits or contact sequences to adapt to envi-
ronmental changes. An adaptive gait can reduce energy usage by removing unnecessary movement,
as suggested in horse studies [1]. It is also required for completing more challenging scenarios such
as riding a skateboard or recovery from leg slipping, as shown in Figure 1 (a, b).

In most model-based and learning-based control designs, the contact sequence is fixed or prede-
fined [2, 3, 4, 5, 6, 7, 8]. Dynamic adaptation of the contact sequence is challenging because of
the hybrid nature of legged locomotion dynamics as well as the inherent instability of such systems.
While it is possible to generate adaptive contact schemes via trajectory optimization [9, 10, 11], such
approaches are generally too compute-intensive for real-time use.

Here we present a hierarchical control framework for quadrupedal locomotion that learns to adap-
tively change contact sequences in real-time. A high-level controller is trained with reinforcement
learning (RL) to specify the contact configuration of the feet, which is then taken as input by a low-
level controller to generate ground reaction forces via quadratic programming (QP). At inference
time, the high-level controller needs only evaluate a small multi-layer neural network, avoiding the
use of an expensive model predictive control (MPC) strategy that might otherwise be required to
optimize for long-term performance. The low-level controller provides high-bandwidth feedback
to track base and foot positions and also helps ensure that learning is sample-efficient. The frame-
work produces a controller that is up to 85 percent more energy efficient and also more robust than
baseline approaches.

We train our controller with a simulated Unitree Laikago [12] on a split-belt treadmill, as shown
in Figure 1 (c). The two belts can adjust speed independently, and we change the robot orientation
to increase variation. In addition to comparing energy use and robustness to the baselines, we also
demonstrate zero-shot transferability by testing the controller in novel situations such as one where
a foot encounters a slippery surface (e.g., with zero friction), which we call the “banana peel” test.
∗NVIDIA, †Univ. of British Columbia, ‡Univ. of Washington, §Caltech,]UT Austin, ?Univ. of Toronto,

Vector Institute. Work done at NVIDIA. Correspondence: xda@nvidia.com, zxie47@cs.ubc.ca

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

(a) (c)(b)

Figure 1: (a) Riding a skateboard requires a contact sequence that only moves the feet on the ground
while keeping the feet on the board still. (b) ”banana peel” test: we put a frictionless mat under a
foot to test robustness. (c) We train and test the robot on a split-belt treadmill where the speeds of
the two belts are changed separately with the robot facing different directions.

Furthermore, we show that the controller learns to generate novel contact sequences that have not
been previously shown in either the model-based or learning-based approaches. Finally, we deploy
the controller on a physical robot to demonstrate sim-to-real transfer,2 which succeeds without any
randomization or adaptation scheme due to the robustness of the low-level controller.

Summary of Contributions:

1. We introduce a hierarchical control structure that combines model-based control design and
model-free reinforcement learning for legged locomotion.

2. We demonstrate that our framework allows sample-efficient learning, zero-shot adaptation to
novel scenarios, and direct sim-to-real transfer without randomization or adaptation schemes.

3. Our framework learns adaptive contact sequences that are not present in either model-based or
learning-based methods in real-time control. This is evidenced in the natural-looking behaviors
that minimize unnecessary movement and energy usage in our split-belt treadmill scenarios.

2 Related Work

Model-based Legged Locomotion Control Model-based control designs [2, 4, 5, 6] use trajec-
tory optimization and model predictive control methods that optimize the performance for a finite
horizon, where the input includes a predefined contact sequence. Although one can change the
control sequence externally to demonstrate various gaits, it cannot adapt to changes in the environ-
ment. Contact-implicit optimization [9, 10, 11] is used to solve non-convex, stiff problems that are
not amenable to real-time use. The work in [13] introduced the Feasible Impulse Set which allows
online gait adaptation in planar models, but no 3D work has been presented.

Learning Legged Locomotion Recently there has been significant work investigating the use of
reinforcement learning to obtain locomotion policies for legged robots [3, 7, 8, 14]. However, the
resulting policies are often either less robust compared to controllers obtained from model-based
methods (e.g., [3, 7]) or require the design of complicated reward functions and a large number of
training samples, e.g [8]. A learned policy is often brittle and can fail under mild environmental
changes. Many approaches like meta learning [15] or Bayesian Optimization in behavior space [16]
have been proposed to adaptively update the policies. This usually requires the policy to interact
with the target environment to collect additional data. In contrast to these approaches, our method
can adapt to a changing environment without any online data collection.

Hierarchical Control Hierarchical framework can greatly improve learning efficiency, as shown
in many prior works, e.g., [17]. In robotics tasks, it is beneficial to decompose a controller into
modules and obtain controllers in a hierarchical manner. A low-level controller can be model-based
[18, 19, 20] or learned [21, 22] such that it can achieve subgoals specified by a learned high-level
controller. Specifically for locomotion tasks, it is natural to decompose a controller into direction-
following and navigation modules [21, 22, 23, 24, 25]. We also adopt a hierarchical structure,
however, our work is distinguished from previous work in that the goal of the high-level controller
is to choose a low-level primitive in order to adapt to environmental changes instead of specifying

2Due to the COVID-19 pandemic, access to the physical robot has been limited. We thus focus our quanti-
tative analysis on simulation while demonstrating only qualitative results on the physical robot.
Video https://youtu.be/JJOmFZKpYTo
Website https://sites.google.com/view/learn-contact-controller/home

2

https://youtu.be/JJOmFZKpYTo
https://sites.google.com/view/learn-contact-controller/home

Stand

Trot1

Pace1

Step4

RL-based
High-Level Controller

(2.5 Hz)

Low-Level Controller
(500 Hz)

Robot

𝑃𝑡∈ {𝑃𝑖}𝑖=1
9

𝑠𝑡

𝑓𝑠𝑤𝑖𝑛𝑔

𝑝𝑑 𝑓𝑠𝑡𝑎𝑛𝑐𝑒

𝜏 = 𝐽⊺𝑓

foot
placement

position
control

𝑝𝑑

𝑠𝑡

𝑓𝑠𝑤𝑖𝑛𝑔

Pace1

Step2

. . .

pace1

{𝑃𝑖}𝑖=1
9 =

. . .

Primitive
Set

Model-based

PD control

QP Solver

ሷ𝑞𝑑

𝑓𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑡

Figure 2: Overview of our system. Left: Primitives Pi are distinguished by the contact configura-
tion. The stance legs in each primitive are colored orange. Center: Hierarchical structure of the
controller. The high-level controller chooses from a set of primitives based on the robot state st,
and the low-level controller computes the motor torques τ based on the robot state and the primitive
chosen. Right: The low-level controller uses stance foot forces to control the base pose and moves
the swing feet to their target positions.

subgoals. This does not preclude other high-level policies or behaviors; e.g.. one could easily add a
navigation module in our framework.

3 Method

We propose a hierarchical framework to perform locomotion that combines model-based control
with reinforcement learning. The system is visualized in Figure 2.

The state of the robot s = (q, q̇, pfoot) consists of the base pose q ∈ R3×S3, containing the position
pbody and orientation Θ of the robot’s body, the velocity vector q̇ ∈ R6, and the four Cartesian foot
positions pfoot = (p1, p2, p3, p4) ∈ R12 relative to the base. A primitive P = {0 : Stance, 1 :
Swing}4 ∈ Z4 is a Boolean array that specifies the stance/swing state of the four feet. The high-
level controller chooses the appropriate primitive and the low-level controller uses the stance feet
to generate ground reaction forces by solving a QP for base pose control and moves the swing
feet based on a foot-placement algorithm. The low-level controller runs at 500 Hz for high-speed
feedback and the high-level controller runs at 2.5 Hz to match the primitive execution time.

The high-level controller can be designed manually. If we set all foot states to Stance, the result
is a standing gait. If we instead synchronize diagonally opposed feet and switch the state at every
time step, the result is the trotting gait. As we demonstrate, however, a more adaptive high-level
controller is needed to reduce energy consumption, reject disturbance, or react to friction changes.

In this section, we first define the primitives that are used in the controller. We then give details on
the low-level controller that implements these primitives and on the high-level controller that learns
to select from these primitives to complete multiple tasks.

3.1 Primitives

A primitive P represents a contact configuration for the four feet. Each foot is in either a Stance or
Swing state, and there are thus 24 = 16 possible primitives in total. We only use 9 primitives that
are commonly used in quadruped locomotion, as summarized in the following table:

Primitive Stand Trot1 Trot2 Pace1 Pace2
Feet State [0 0 0 0] [1 0 0 1] [0 1 1 0] [0 1 0 1] [1 0 1 0]
Primitive Step1 Step2 Step3 Step4
Feet State [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]

3

where 0 indicates that the corresponding foot is a stance foot and 1 indicates otherwise. The order
of the foot states is {Left Front, Right Front, Left Rear, Right Rear} or {LF, RF, LR, RR} in short.

3.2 Low-Level Controller

We implement each primitive with a low-level torque controller. We find that a simple model-based
method is sufficient to complete most of our tasks and is straightforward to transfer to the real robot.

Base Pose Control The low-level controller receives a primitive Pt from the high-level controller.
It also receives the target base pose qd and velocity q̇d from user command. The controller computes
foot forces by solving a QP, so the base pose can track the target pose and respect contact constraints.

Similar to [2], we approximates the quadruped dynamics as a linearized centroidal dynamics,

q̈ = Mf − g̃, (1)

where M ∈ R6×12 is the inverse inertia matrix, f = (f1, f2, f3, f4) ∈ R12 is the column vector of
Cartesian forces for each foot, and g̃ = (g, 03) ∈ R6 is the augmented gravity vector. The detailed
derivation is given in Appendix A.

Given a target base pose qd and velocity q̇d, we use PD control to compute the target acceleration
q̈d = kp(qd − q) + kd(q̇d − q̇). (2)

This is then used to construct a QP to find foot forces that minimize the acceleration error while
respecting the contact configuration and friction constraints

min
f

||Mf − g̃ − q̈d||Q + ||f ||R

subject to fz,i ≥ fz,min if Pt,i is Stance
fz,i = 0 if Pt,i is Swing

− µ fx ≤ fz ≤ µ fx
− µ fy ≤ fz ≤ µ fy,

(3)

where Q and R are diagonal matrices that adjust weights in the cost function.

Swing Foot Control The desired foot position pd,i for foot i is computed by a linear foot-
placement heuristic

pd,i = p0,i + k(ṗbody − ṗd,body), (4)
that adjusts position from the default state p0,i.

A position controller is then used to compute the swing foot force by
fi = kp,i(pd,i − pi)− kd,iṗi. (5)

Torque Control The foot forces computed via pose control and swing foot control are converted
to motor torques by τ = JT f , where J ∈ R12×12 is the feet positions Jacobian matrix with respect
to motor states. This is updated at 500 Hz.

3.3 High-level Controller

Our high-level controller selects primitives based on the current robot state and is queried at 2.5 Hz.
Here we describe how we use RL to learn the high-level controller in detail.

State Space and Action Space We model the environment as a partially observable Markov deci-
sion process (POMDP). Specifically, the high-level controller takes the body pose q, excluding the
x, y linear positions, and the relative foot positions pfoot as input. To endow the controller with the
capability to learn common gaits such as pacing and trotting that alternate between primitives, we
also include the previously-used primitive as an input. The output of the controller is a 9-dimensional
one-hot vector that indicates which primitive will be selected for the low-level controller. Assuming
the environment is deterministic, the input provided is enough to determine the next robot state.
However, environments are often parameterized by some unobserved random variables, causing the
transition dynamics to be stochastic with high variance. The goal of the high-level controller is then
to choose primitives that can adapt to this high variance environment while optimizing for simple
objectives such as energy efficiency and stability.

4

Figure 3: Training and Testing scenarios. Scenarios (a)-(c) scenarios are used during training where
we vary the treadmill speeds, the number of moving belts, and the orientation of the robot. Scenarios
(d)-(e) are introduced only during testing. Scenario (d) introduces a fixed plywood bridge on top of
the treadmill, and scenario (e) inserts a frictionless mat under the feet of the robot to test stability.

Policy Representation Since the action space is discrete, instead of learning a policy directly, we
choose to learn a Q-function that takes the state and action as input, and output the sum of discounted
future rewards. At test time, the action that yields the maximum Q value is selected.

Reward Design We use a simple reward function of the form

r = 1− 0.0025
1

T

∑
‖τ‖2 − 1

T

∑
‖ṗd,body − ṗbody‖2 , (6)

where the constant 1 ensures that the reward is positive, τ, pd,body and ṗbody are control torques,
body linear velocity, and desired body linear velocity respectively. T is the number of simulation
timesteps within a primitive cycle.

Training We adopt a DQN-like [26] training procedure, and implement a double Q-function [27]
and delayed target network update [28]. In addition, instead of using an epsilon greedy strategy
during training, the probability of applying an action is based on Q value estimates normalized by the
softmax operator. More specifically, let {Q1, Q2, . . . , Q9} be the Q value estimates of the different
actions at a particular state, and let the maximum Q value be Qmax = max(Q1, Q2, . . . , Q9),
the probability of an action i being sampled will be proportional to exp(−ν Qi

Qmax
), where ν is a

hyperparameter controlling how sensitive the sampling probability distribution is to the Q value.
The pseudocode of the algorithm is described in Appendix B.

The Q-function for the high-level policies is implemented as a two-layer feedforward neural network
with ReLU activation functions, each layer has 64 neurons. We set the temperature ν = 5 and
update the Q-function every 100 samples, with 50 stochastic gradient descents and mini-batch size
of 512. The learned policy already performs well with 105 samples, and we collect a maximum of
5 × 105 samples. Note that this is orders of magnitude fewer samples than used in previous work
that employed RL with similar-scale quadrupeds like the ANYmal or Laikago [3, 8, 29].

4 Results

We use a GPU-accelerated simulator [30] Isaac Gym to train the Laikago robot and to compare
different controllers. This simulator has been used for various robotics manipulation sim-to-real
tasks [31, 32] and is validated to simulate rigid body physics with reasonable accuracy. In this
section, we describe the experiments we use to validate our framework and show improvement over
baseline methods.

4.1 Baseline Controllers

As a baseline, we have created five manually-designed high-level controllers. These are comparable
to those used in typical model-based control approaches to quadrupedal locomotion [2, 4]. Here we
briefly describe how they work.

Standing Only the Stand primitive is used in this controller. It is the most energy efficient con-
troller in the absence of perturbations but also the least robust one if perturbations are present.

Trotting The trotting controller alternates between Trot1 and Trot2 and displays a trotting gait. It
is commonly used for quadruped locomotion due to its stability.

5

0.00 0.05 0.10 0.15 0.20 0.25 0.30
treadmill speed (m/s)

0

500

1000

1500

2000

2500

en
er

gy
(∑

τ
2)

stand

trot

pace

walk

heurstic

rl

(a) Energy comparison over different speeds.

0 100 200 300
yaw (deg)

0

500

1000

1500

2000

2500

en
er

gy
(∑

τ
2)

trot

pace

rl

(b) Energy comparison over different yaws.

Figure 4: Comparison of the average energy used. (a) The standing, walking and heuristic con-
trollers fails at high speed, while trotting and pacing controllers remain on high-energy level. The
learned controller (rl) can handle all speed variation and more energy efficient. (b) The only base-
line controllers that can handle split-treadmill are trotting and pacing. The learned controller is
50 percent more energy efficient on average. Energy for the learned controller drops significantly at
yaw = 150 deg because only one foot moves while two feet move in nearby orientations.

Pacing The pacing controller alternates between Pace1 and Pace2. It is another commonly used
gait in quadrupedal locomotion but usually less stable and less energy efficient than trotting.

Walking The walking controller lifts one foot at a time by switching between four stepping prim-
itives in the order: Step1→ Step4→ Step2→ Step3→ Step1→ . . .

Heuristic-Based Controller In this controller, we create a heuristic Q-function Q̂i = Q̂(Pi) for
each primitive and the controller executes the primitive with the largest Q̂. We define

Q̂i = JQP,i + kq

4∑

j=1

||pd,j − pj ||2, (7)

where JQP,i is the QP cost in Equation 3 for primitive Pi. This represents a trade-off between the
pose control and the swing feet control. When more feet are in Stance state, JQP,i will be smaller
because of the contact constraints. When more feet are in Swing state, the foot position error will be
smaller since only the swing feet can move to the target position. The heuristic-based controller is
able to adapt contact behaviors in a few scenarios but is less robust overall.

End-to-end Learned Controller We can also directly learn a control policy end-to-end instead
of using the hierarchical framework proposed here. However, a purely learned policy on similar
scale quadrupeds like the ANYmal and Laikago requires a training sample count on the order of
108 to 109, with careful reward shaping [3, 8, 29], while with the hierarchical framework, we use
simple reward specification and get good performance at around 105 samples. We train a controller
similar to [3], where the robot is tracking a reference trotting motion. The resulting controller is
not as robust as the manually designed trotting controller and fails in most of our testing scenarios.
This is consistent with [3], where it is also found that a purely learned controller is not robust,
and a sophisticated adaptation scheme is needed to deal with environmental changes. Given these
drawbacks, we do not compare with the end-to-end learned controller.

4.2 Training Scenarios

We use a split-belt treadmill to train the policy so that the policy learns to choose different primitives
to adapt to changing dynamics. During a new rollout, the speed of the treadmill is sampled from
[−0.3, 0.3] m/s, see Figure 3 (a). We also randomly pause one side of the treadmill and command
the robot to face different orientations. this is shown in Figure 3 (b) and (c), where the plywood
represents the side of the treadmill that is not moving. This provides a rich set of changing dynamics
that the policy must learn to adapt to. Note the policy have no knowledge of the underlying treadmill

6

Figure 5: Contact sequence of different high-level controllers under different scenarios. A filled
green block indicates that the corresponding foot is in contact with the ground. The three baseline
controllers (standing, walking, and trotting) each use a fixed contact sequence for all scenarios, while
the learned controller adapts the contact sequence to the scenario.

parameters. The low-level controller is commanded to stay at the origin with a target velocity of
0 m/s.

4.3 Comparison

Energy We compare the energy use across different high-level controllers, shown in Figure 4. The
energy is computed as an average of sum square motor torques over ten seconds.

First, we compare the energy consumption in a scenario shown in Figure 3 (a) where the treadmill
is moving parallel to the robot in speed range [0, 0.3] m/s. The standing gait is the most energy
efficient gait which uses 76.7%, 83.3%, and 85.7% less energy than the walking, trotting and pacing
gaits respectively. The downside is that it can be only used at zero speed. The heuristic and learned
(rl) controllers can start with the same lowest energy level and gradually increase the energy level as
speed increases. As the treadmill speed reaches 0.2 m/s, the heuristic controller quickly fails while
the learned controller’s energy usage is comparable to the walking controller. The walking controller
fails when the treadmill speed exceeds 0.2 m/s while the learned controller adjusts the primitive
such that the energy is the same as the trotting controller. The trotting and pacing controllers are
able to cover the full speed range but consume more energy due to unnecessary leg movements.

We then compare the energy consumption in scenarios similar to Figure 3 (b) and (c) where only one
side of the treadmill is moving at 0.3 m/s and the robot is commanded to face different directions.
Most of the baseline controllers fail except trotting and pacing. The learned controller consumes on
average 40.1% and 50.4% less energy than the trotting and pacing controllers respectively.

Contact Sequence The energy efficiency of the learned controller is mostly due to adaptive con-
tact planning. Figure 5 shows the contact pattern of baseline and learned controllers. (a), (b), and
(c) show the fixed pattern of standing, walking and trotting. Note that they use the same contact
sequence for all scenarios. Contrarily, the learned controller adapts contact sequence in different
scenarios. When speed increases, the learned controller transients from standing gait to trotting gait,
shown in (d), (e), and (f). We highlight the contact pattern in (e), where the learned controller uses
a combination of Stand, Trot and Step primitives at speed 0.15 m/s. In (g), only one belt is mov-
ing and we replace the other non-moving belt with plywood for clarity, the learned controller only
moves the two right feet, thus more energy efficient compared to trotting or pacing. (h) and (i) are
two scenarios not seen in training and the learned controller demonstrates novel contact sequences.

4.4 Zero-Shot Adaptation to Novel Scenarios

We test the learned controller in novel scenarios that are not present during training to show that
the policy can generalize. A purely learned controller usually overfits the training dynamics and
requires the collection of additional data in the target environment to make the adaptation [3]. With
our hierarchical framework, the learned controller is able to adapt to these scenarios directly.

7

Figure 6: Real robot tests.
Left: Timelapse of forward walking.
Right: The left rear leg is perturbed.

Bridge Test We test the learned policy on a scenario where the treadmill is placed parallel to the
robot while the front legs of the robot are placed on a fixed bridge, see Figure 3 (d). This scenario
is not present during training while the learned policy is able to adapt and choose not to move the
front legs while adjusting the rear legs based on the movement of the treadmill.

Banana peel stability test We test the robot in another scenario where the treadmill is not moving
while a frictionless mat is placed under a foot, represented by a banana peel in Figure 3 (e). The only
baseline controller that can recover is the heuristic controller, where the slipping foot is adjusted.
The learned controller performs similarly to the heuristic controller even though it never sees this
situation during training. One can also pass this test with a freeze-joint standing controller, but we
emphasize that the high-level contact adjustment can improve the robustness without changing the
low-level controller.

4.5 Sim-to-Real Test

We validate the learned controller on the physical robot; snapshots of the experiment are shown in
Figure 6. Due to the robustness of the low-level controller, we observe that the sim-to-real gap is
small compared to other approaches [3], and the controller is able to perform well without tuning.

Walking Forward To emulate the treadmill, we send the low-level controller command speeds
so that the body will move forward and the high-level controller will need to choose primitives
to stay balanced. At low speed, the high-level controller first adopts the Stand primitive with the
body leaning forward; as the robot is close to falling over, other primitives are used to move the leg
forward to regain balance. At high speed, the robot mostly uses the Trot primitives.

Leg Perturbation We perturb the legs of the robot by manually pulling them in different direc-
tions. The learned controller is able to adopt the corresponding Step primitive to move the perturbed
leg back to the nominal position while keeping the unperturbed legs still.

5 Conclusion

We have presented a hierarchical framework that combines model-based control and reinforcement
learning. By leveraging the advantages of both paradigms, we obtain a contact-adaptive controller
that is more robust and energy efficient than those employing a fixed contact sequence. The learned
controller generates novel contact sequences that are generally not produced by either approach
alone, at least in the context of real-time control. We demonstrate our framework using a Laikago
quadruped in various challenging scenarios such as walking on a split-belt treadmill with only one
side moving or stepping onto a ”banana peel.” We also validate the controller on the physical robot,
finding that sim-to-real transfer is relatively straightforward. We believe this is a promising step
toward combining the best features of model-based control and reinforcement learning.

8

Acknowledgments

We thank the NVIDIA Isaac Gym team, especially Viktor Makoviychuk, Lukasz Wawrzyniak,
Gavriel State, and many others, for all the kind help they provided in GPU-based simulation and
RL training.

References

[1] D. F. Hoyt and C. R. Taylor. Gait and the energetics of locomotion in horses. Nature, 292
(5820):239–240, 1981.

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the mit
cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1–9. IEEE, 2018.

[3] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals, 2020.

[4] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli. Real-time motion planning
of legged robots: A model predictive control approach. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pages 577–584. IEEE, 2017.

[5] A. W. Winkler, D. C. Bellicoso, M. Hutter, and J. Buchli. Gait and trajectory optimization
for legged systems through phase-based end-effector parameterization. IEEE Robotics and
Automation Letters (RA-L), 3:1560–1567, July 2018. doi:10.1109/LRA.2018.2798285.

[6] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, S. Vi-
jayakumar, and N. Mansard. Crocoddyl: An efficient and versatile framework for multi-contact
optimal control. arXiv preprint arXiv:1909.04947, 2019.

[7] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-
to-real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332,
2018.

[8] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26), 2019.

[9] M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory optimization of rigid bodies
through contact. The International Journal of Robotics Research, 33(1):69–81, 2014.

[10] Z. Manchester and S. Kuindersma. Variational contact-implicit trajectory optimization. In
Robotics Research, pages 985–1000. Springer, 2020.

[11] I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-
invariant optimization. ACM Transactions on Graphics (TOG), 31(4):1–8, 2012.

[12] Laikago website. URL http://www.unitree.cc/e/action/ShowInfo.php?classid=6&
id=1#.

[13] C. Boussema, M. J. Powell, G. Bledt, A. J. Ijspeert, P. M. Wensing, and S. Kim. Online
gait transitions and disturbance recovery for legged robots via the feasible impulse set. IEEE
Robotics and Automation Letters, 4(2):1611–1618, 2019.

[14] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne. Learning locomotion skills
for cassie: Iterative design and sim-to-real. In Proc. Conference on Robot Learning (CORL
2019), 2019.

[15] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha. Learning fast adaptation with meta strategy
optimization. IEEE Robotics and Automation Letters, 5(2):2950–2957, 2020.

[16] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature,
521(7553):503–507, 2015.

[17] D. Precup. Temporal abstraction in reinforcement learning. 2001.

9

http://dx.doi.org/10.1109/LRA.2018.2798285
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1#
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1#

[18] T. Li, K. Srinivasan, M. Q.-H. Meng, W. Yuan, and J. Bohg. Learning hierarchical control for
robust in-hand manipulation. arXiv preprint arXiv:1910.10985, 2019.

[19] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal. Learning to switch between
sensorimotor primitives using multimodal haptic signals. In International Conference on Sim-
ulation of Adaptive Behavior, pages 170–182. Springer, 2016.

[20] X. B. Peng, G. Berseth, and M. van de Panne. Terrain-adaptive locomotion skills using deep
reinforcement learning. ACM Trans. Graph., 35(4):81:1–81:12, July 2016. ISSN 0730-0301.
doi:10.1145/2897824.2925881. URL http://doi.acm.org/10.1145/2897824.2925881.

[21] O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar. Multi-agent manipulation via locomotion
using hierarchical sim2real. arXiv preprint arXiv:1908.05224, 2019.

[22] X. B. Peng, G. Berseth, K. Yin, and M. van de Panne. Deeploco: Dynamic locomotion skills
using hierarchical deep reinforcement learning. ACM Transactions on Graphics (Proc. SIG-
GRAPH 2017), 36(4), 2017.

[23] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In Advances in Neural Information Processing Systems, pages 3303–3313, 2018.

[24] D. Jain, A. Iscen, and K. Caluwaerts. Hierarchical reinforcement learning for quadruped loco-
motion. arXiv preprint arXiv:1905.08926, 2019.

[25] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter. Deepgait: Planning and control of
quadrupedal gaits using deep reinforcement learning. IEEE Robotics and Automation Letters,
5(2):3699–3706, 2020.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[27] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Thirtieth AAAI conference on artificial intelligence, 2016.

[28] S. Fujimoto, H. Van Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods. arXiv preprint arXiv:1802.09477, 2018.

[29] S. Gangapurwala, A. Mitchell, and I. Havoutis. Guided constrained policy optimization for
dynamic quadrupedal robot locomotion. IEEE Robotics and Automation Letters, 5(2):3642–
3649, 2020.

[30] NVIDIA. Isaac Gym - Preview Release, 2020. URL https://developer.nvidia.com/
isaac-gym.

[31] J. Liang, A. Handa, K. Van Wyk, V. Makoviychuk, O. Kroemer, and D. Fox. In-hand object
pose tracking via contact feedback and gpu-accelerated robotic simulation. arXiv preprint
arXiv:2002.12160, 2020.

[32] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019
International Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

10

http://dx.doi.org/10.1145/2897824.2925881
http://doi.acm.org/10.1145/2897824.2925881
https://developer.nvidia.com/isaac-gym
https://developer.nvidia.com/isaac-gym

A Linearized Centroidal Dynamics

The dynamics is similar to [2] with a few modifications. The general centroidal dynamics is

p̈body =

∑4
i=1 fi
m

− g, (8)

Iω̇ =

4∑

i=1

pi × fi, (9)

where p̈body is the base linear acceleration, fi is the ground reaction force on each foot, and m,
g are the mass and gravity vector respectively. The I is the mass inertia, ω̇ is the derivative of
angular velocity. The pi is the foot position respect to the base. All variables are represented in the
world frame. We ignore the Coriolis force ω × (Iω) since it does not contribute significantly to the
dynamics of the robot.

We use the small angular assumption to linearize the dynamics. The robot’s orientation is expressed
as a vector of Z-Y-X Euler angles Θ = [φ θ ψ]>, where φ is roll, θ is pitch, and ψ is yaw. For small
values of roll and pitch (φ, θ), the angular velocity is approximated by

ω ≈ Rz(ψ)Θ̇, (10)

where

Rz(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]

is the rotation matrix of yaw. The inertia matrix in the world frame can be approximated by

I ≈ Rz(ψ) BI R
>
z (ψ), (11)

where BI is the inertia matrix in body frame.

The linearized dynamic is

q̈ = Mf −
[
g
03

]
, (12)

where

M =

[
13/m . . . 13/m

R>z BI
−1 [p1]× . . . R>z BI

−1 [p4]×

]
. (13)

11

B Q-Learning Algorithm

We use DQN like algorithm to train our high-level policy. Details are shown in Algorithm 1.

Algorithm 1: Q Learning
initialization Q-function parameters θ1.θ2 for Qθ1 , Qθ2 , empty replay buffer D ;
set target network parameters θtarg,1, θtarg,2 ← θ1, θ2 for Qθtarg,1

, Qθtarg,2
;

while not done do
observe current state s ;
sample action a based on Q-function;
observe next state s′, reward r and done signal d;
store (s, a, r, d, s′) in replay buffer D;
if d is True or time limit reached then

reset environment;
end
if time to update then

for j = 1, 2, . . . number of update do
sample batch of transition data B = {s, a, r, d, s′};
compute a′ = arg maxaQθ(s

′, a);
compute target qtarg = r + (1− d)γmini=1,2(Qθtarg,i

(s′, a′));
update θ1, θ2 by taking gradient descent w.r.t the objective function

1
|B|
∑

(s,a,r,d,s′)∈B((Qθ1(s, a)− qtarg)2 + (Qθ2(s, a)− qtarg)2) ;
if j mod 2 = 1 then

θtarg,1 ← ρθtarg,1 + (1− ρ)θ1 ;
θtarg,2 ← ρθtarg,2 + (1− ρ)θ2 ;

end
end

end
end

12

	Introduction
	Related Work
	Method
	Primitives
	Low-Level Controller
	High-level Controller

	Results
	Baseline Controllers
	Training Scenarios
	Comparison
	Zero-Shot Adaptation to Novel Scenarios
	Sim-to-Real Test

	Conclusion
	Linearized Centroidal Dynamics
	Q-Learning Algorithm

