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Abstract— Generating robot motion that fulfills multiple
tasks simultaneously is challenging due to the geometric con-
straints imposed on the robot. In this paper, we propose to
solve multi-task problems through learning structured policies
from human demonstrations. Our structured policy is inspired
by RMPflow, a framework for combining subtask policies on
different spaces. The policy structure provides the user an
interface to 1) specifying the spaces that are directly relevant
to the completion of the tasks, and 2) designing policies for
certain tasks that do not need to be learned. We derive an
end-to-end learning objective that is suitable for the multi-task
problem, emphasizing the distance between generated motions
and demonstrations measured on task spaces. Furthermore, the
motion generated from the learned policy class is guaranteed to
be stable. We validate the effectiveness of our proposed learning
framework through qualitative and quantitative evaluations on
three robotic tasks on a 7-DOF Rethink Sawyer robot.

I. INTRODUCTION

Robotic systems often need to consider multiple tasks si-
multaneously to achieve their overall missions. Consider the
task of placing an object on a shelf. The end-effector of the
robot needs to reach a goal location, while the whole body
of the robot is required to avoid collisions with the shelf.
Generating motions that fulfills all tasks simultaneously is
challenging, as the execution of each task is not independent
due to the geometric constraints of the robot.

Recently, a framework, called RMPflow [1], has been
proposed for solving the aforementioned multi-task problem.
RMPflow generates robot motion by combining task policies
defined on different (and potentially correlated) spaces. It
provides each task with an acceleration policy and a state-
dependent importance weight matrix. The tuple containing
the acceleration policy and the importance weight is called
a Riemannian motion policy (RMP) [2]. These RMPs are
then combined into a configuration space policy through
an algorithm called RMPflow that solves a weighted least-
squares problem [3]. It has been shown in [1] that, when
the RMPs satisfy certain geometric conditions, the motion
generated by RMPflow is Lyapunov stable. Due to its sta-
bility properties and computational efficiency, RMPflow has
be applied to a variety of robotic systems for generating
complex motions in multi-task setting, e.g. [4]–[8].

Despite its rich expressivity, it is in general hard to
design an RMP: it requires designing the state-dependent
importance weight matrix, which, for the stability properties
to hold, also adds complications to policy design. One way
to overcome this design difficulty is through learning RMPs
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Fig. 1: A human providing demonstrations to the robot for
a manipulation task through kinesthetic teaching.

from human demonstrations, in particular, kinesthetic teach-
ing, as it provides the user an intuitive way communicate
desired behaviors with the robot.

Using the RMPflow structure for learning from demon-
strations (LfD) has the following benefits. First, the learned
motions are guaranteed to be stable as long as all task
RMPs are properly designed or parameterized [5]. Second, it
provides the user a convenient interface to specifying which
spaces are relevant to the tasks. For instance, if the end-
effector position is what matters to the tasks, the human may
provide joint space trajectories that seem conflicting with one
another (although they are consistent when viewed in the
workspace). Directly regressing on the joint space trajectories
will produce large errors both in the joint space and in the
workspace. Lastly, it also allows policies to be hand-designed
for certain tasks, e.g. joint damping, redundancy resolution,
collision avoidance, while the other policies are learned from
data. This provides the user with freedom in deciding which
task policies should be learned.

Existing work [9] has explored learning RMPs from hu-
man demonstrations on complex robotic tasks. In [9], each
RMP is independently learned to reproduce the demonstrated
trajectories mapped to the corresponding task space. After
learning, these independently learned RMPs, as well as
hand-designed ones, are combined together by the RMPflow
algorithm [1] to produce the configuration space policy. It
empirically demonstrates that the learned RMPs can be com-
bined with hand-designed RMPs, such as collision avoidance
and joint limit RMPs, after learning to satisfy task constraints
and generalize to new obstacle configurations. The major
limitation of this work is that the learned importance weight
matrices are not learned to provide the proper trade-offs
between policies, as each policy is learned independently.
In addition, the geometric constraints (e.g. induced by the



kinematics of the robot) between tasks are not considered
during learning. Despite its empirical success, the approach
introduced in [9] is not able to fully exploit the benefits pro-
vided by the RMPflow structure. We will further demonstrate
these limitations in the experiments.

In this paper, we propose a velocity-control1 motion
generation algorithm similar to RMPflow. We show that
this new velocity-control formulation enjoys all the benefits
of RMPflow mentioned above, while providing a simpler
structure for parameterizing stable policies. Furthermore, we
provide a principled approach to learning structured policies
from human-demonstrations in an end-to-end fashion. In
contrast to [9], during learning, we jointly consider all RMPs
being learned as well as the hand-specified ones. A new ob-
jective function is proposed to measure the distance between
the human demonstrations and the learned motions in all task
spaces. We differentiate through the weighted least-squares
optimization procedure induced by the proposed RMPflow-
type algorithm so that the geometric constraints between task
spaces are accounted during learning. Finally, we incorporate
an expressive parameterization of RMPs through learning
a latent space policy, which is inspired a recent work in
learning diffeomorphisms [10].

II. RELATED WORK

Motion Generation for Multi-Task Problems: A gen-
eral strategy for solving this multi-task motion generation
problem is to generate (through either designing or learning)
controllers or policies for each task independently, and then
provide a high-level rule to combine them. Null-space or
hierarchical operational control assigns priorities to the tasks,
and only allows the lower-priority policies to act on the
null space of high-priority tasks [11]–[14]. However, these
approaches could suffer from algorithmic singularities, due to
multiple projections, that may arise when there are a large
number of tasks. If this occurs, the system can easily be-
come unstable [15]. Instead of assigning priorities, RMPflow
provide each task with a state-dependent importance weight
matrix, and the motion is generated through solving a
weighted least-squares problem defined by the importance
weight matrix [3]. As is discussed in Section I, the motion
generated by RMPflow is Lyapunov stable as long as all
RMPs follow certain geometric structure.

Learning from Human Demonstrations: Several ap-
proaches seek to learn policies from human demonstrations.
These methods are typically grouped into two categories:
1) time-dependent policy learning [16], [17], and 2) time-
invariant policy learning [10], [18]–[20]. As elaborated
in [18], time-dependent methods, including the well-known
dynamic movement primitives [17], [21], are susceptible
to fail when either the environment or the time-horizon
of motions is dynamic. On the other hand, time-invariant
policies, in the absence of stability guarantees, are likely
to suffer from the compounding error problem [22]. Most

1This is practical as modern robots often have a good low-level tracking
control, allowing position and velocity-based control interfaces.

previous approaches for learning stable time-invariant poli-
cies [10], [18]–[20], however, are limited to learning motions
associated with a single task assigned to a given robot body
part (e.g. center of the end-effector).

Learning Riemannian Motion Policies: Recent works
have explored learning RMPs from data [7], [9], [23], [24].
Meng et al. [7] learn to map perception input to RMPs
through imitating hand-designed RMPs in an autonomous
navigation setting. However, the learned RMPs does not
satisfy the geometric condition for generating stable motions.
To fine-tune the motion generated by fixed hand-designed
policies, Mukadam et al. [23] add learnable scalar weights to
the RMPflow algorithm. The expressively of this policy class,
however, is limited by the fixed, hand-designed policies.
Aljalbout et al. [24] propose to learn collision avoidance
RMPs through reinforcement learning, although the learned
policy is not guaranteed to be stable.

The work most relevant to this paper is [9], where it also
learns RMPs from human demonstrations. To provide stabil-
ity guarantees to the learned policy, it incorporates a neural
network architecture to ensure the positive-definiteness of
the importance weight matrix. However, as is mentioned in
Section I, this work has the limitation due to the fact that the
policies are learned independently, and also that the policy
parameterization has limited capacity.

III. MOTION GENERATION WITH TRANSFORM TREES

In this section, we propose a new motion generation for
velocity-based motion control inspired by RMPflow [1]. In
Section III.B, we introduce the optimization problem for
the velocity-based control problem. We then introduce our
proposed algorithm in Section III.C and analyze the stability
property of the algorithm in Section III.D.

A. Motion Generation for Multi-task Problems

The goal of motion generation is to provide a configuration
space trajectory given the desired behaviors on the task
space. We consider multi-task problems, where the robot
can be tasked with multiple specifications, which we call
subtasks, simultaneously. For example, consider the task of
placing an object on a shelf. The end-effector of the robot
needs to reach a goal location, while the whole body of the
robot is required to avoid collisions with the shelf. A subtask
can sometimes be more easily specified on its individual
space, rather than the joint configuration space. For example,
collision avoidance can be described as a behavior on the 1-
dimensional distance field. This yields a motion generation
problem with subtasks defined on different subtask spaces.

It should be noted that, the substask spaces are often not
independent but intertwined together as the image of the
common configuration space. Therefore, solving the multi-
task problem requires coordination between multiple robot
body parts in a complex way.

B. Optimization Problem for Velocity-based Control

Consider a robot with its configuration space, denoted
C, given by a smooth d-dimensional manifold. We assume



Fig. 2: A transform tree with root in the configuration
space alongside hand-specified subtask/leaf nodes (grey) and
learned subtask nodes (blue). Each learned subtask node is
linked to a latent subtask node (green) under a chained map
ψlk→dk = ψ1 ◦ · · · ◦ ψM .

that the configuration space C admits global coordinates,
called generalized coordinates, denoted q ∈ Rd. An example
of generalized coordinates is the joint angles for a robot
manipulator. In contrast to RMPflow [1], which considers
acceleration policies, we are interested instead in encoding
robot motion as a feedback velocity policy, i.e. q̇ = π(q).
Such velocity-control problem usually occurs when there is
a low-level tracking controller [25] applied in conjunction
with the policy π.

We assume that the overall task can be decomposed as
a set of K subtasks defined on different subtask spaces,
denoted {Tk}Kk=1. Let ψk : C → Tk be the subtask map
for the k-th subtask, and let zk ∈ Rn be the generalized
coordinates on the subtask space Tk, i.e., zk = ψk(q). We
describe the k-th subtask policy as a tuple (vk,Mk), consist-
ing of a nominal velocity policy vk : Rn → Rn along with
a state-dependent matrix-valued importance weight matrix
Mk : Rn → Rn×n++ . The importance weight matrix Mk(zk)
denotes the directional importance of the velocity policy
vk(zk) at point zk.

Given a collection of subtask policies {(vk,Mk)}Kk=1, our
goal is to generate a structured configuration space velocity
policy π which trades off the errors to the velocity policies
vk viewed on each subtask space with an importance weight
defined by Mk. Formally, the policy is given by the solution
to the following weighted least-squares problem:

π(q) := arg min
u

K∑
k=1

∥∥vk(ψk(q))− Jk(q)u
∥∥2
Mk(ψk(q))

(1)

where Jk = ∂qψk is the Jacobian of the subtask map ψk.
To look deeper into the objective (1), the term vk(ψk(q)) =
vk(zk) is the desired velocity in the subtask space Tk, and
the term Jk(q)u is the velocity in the substask space Tk
if we apply configuration space velocity u. Therefore, the
objective function (1) seeks to minimize the sum of deviation
in each subtask space weighted by the importance weight
Mk(ψk(q)) = Mk(zk).

C. The Algorithm for Policy Composition

Although the subtask maps {ψk}Kk=1 can be viewed as in-
dependent when solving (1), the evaluation of {ψk}Kk=1, and
similarly, their Jacobians {Jk}Kk=1, can benefit from reusing
computation. As an example, for robots with kinematic chain
structure, the poses of the earlier links (closer to the base) are
implicitly computed while evaluating the poses of the end
effector. Such structure in the subtask maps can therefore
lend itself amenable to computationally efficient algorithms.

Similar to RMPflow [1], we use a transform tree to
describe a tree-structured map from the configuration space
to subtask spaces. Each node u along the transform tree is
associated with a manifold M, each edge ej corresponds to
a smooth map ψej := ψvj ;u from the parent node manifold to
the manifold associated with child node vj . The root node
in the transform tree, r, corresponds to the configuration
space C, and the leaf nodes {lk}Kk=1 are associated with
subtask spaces {Tk}Kk=1. The subtask map is then computed
as ψk = ψlk;r, i.e., through aggregating the maps from the
root node all the way to the leaf node lk.

We propose a computational framework for solving (1)
through propagating information along the transform tree.
The algorithm consists of the following four stages:
1) Forward pass: From the root node to the leaf nodes,

the coordinate associated with each intermediate node is
calculated based on the coordinate of its parent node:
yj = ψej (x), where x and yj are the coordinates for
the parent and the child node, respectively, and ψej is
the map associated with the edge. The Jacobian matrix
associated with each edge, Jej , is also evaluated.

2) Leaf evaluation: For each leaf node, evaluate the subtask
velocity policy vk(zk) and Mk(zk). Then compute their
product pk(zk) = Mk(zk)vk(zk).

3) Backward pass: From the leaf nodes to the root node,
recursively compute the polices at each node based the
policies at the child nodes: Consider a node u with N
child nodes {vj}Nj=1. The policy at u is calculated as,

pu =
∑N
j=1 J>ej pvj , Mu =

∑N
j=1 J>ej Mvj Jej . (2)

where ej is the edge from u to vj .
4) Resolve: At the root node, the velocity policy is solved

as π(q) = M−1r pr.

D. Stability Properties of the Proposed Algorithm

The configuration space motions governed by (1) exhibit
several desirable properties if the leaf node velocity policies
on the transform tree take the form:

vk(zk) = −M−1k (zk)∇zkΦk(zk), (3)

where Φk : Rn → R is called the potential function. We
call (3) the natural gradient flow dynamics, which can be
viewed as a continuous-time version of natural gradient de-
scent [26]. It evolves along steepest descent direction of Φk
on a Riemannian manifold defined by the Riemannian metric
Mk. Under the assumption that each leaf node policy is



given by a natural gradient flow dynamics (3), the following
properties hold for the generated root node velocity policy:
• Closure: the motion follows natural gradient flow with

metric Mr =
∑K
k=1 J

>
kMkJk, and potential function

Φr =
∑K
k=1 Φk ◦ψk, where ◦ denotes map composition;

• Stability: the system converges to the stationary points
of the potential function Φr.

Formally, the above properties are stated in the following
theorem:

Theorem III.1. Assume that the importance weight matrix
at the root node is non-singular, i.e. Mr � 0. If each
subtask policy is given by natural gradient flow (3), the
root node policy is given by natural gradient flow q̇ =
−M−1r ∇qΦr, where Φr =

∑K
k=1 Φk ◦ ψk. Further, if Φr

is proper, continuously differentiable and lower bounded,
the system q̇ = π(q) converges to a forward invariant set
C∞ := {q : ∇qΦr = 0}.

Proof sketch: Assume each subtask policy is given by
natural gradient flow, pk = Mk vk = −∇zkΦk, for all
k ∈ {1, . . . ,K}. We now prove that each node follows
natural gradient flow: Consider any non-leaf node u. Let
{vj}Nj=1 be the child nodes of u. Suppose each child node vj
follows natural gradient flow with potential Φvj and metric
Mvj . At node u, by (2),

pu =
∑N
j=1 J>ej pvj =

∑N
j=1 J>ej ∇yjΦvj = ∇xΦu, (4)

where Φu :=

N∑
j=1

Φvj ◦ ψej

Therefore, by recursively applying the analysis from the leaf
nodes to the root node, we have that the root node also
follows natural gradient flow pr = ∇qΦr. Hence, we have,

d

dt
Φr = q̇>∇qΦr = −

(
∇qΦr

)>
M−1r ∇qΦr (5)

Under the assumption Mr � 0, by LaSalle’s invariance
principle [27], the system converges to the forward invariant
set C∞ = {q : ∇qΦr = 0}.

The Benefit of Velocity-based Motion Control: The
main benefit of our proposed velocity-based motion control
framework, compared to RMPflow [1], is its simplicity.
The forward pass and backward pass of RMPflow requires
computing additional curvature terms J̇kq̇ resulting from
pushing forward accelerations. More importantly, to ensure
the stability of the generated motion, it also requires the leaf
policies to take a more complicated form, known as geomet-
rical dynamical systems [1], which involves curvature terms
of the importance weight matrices {Mk}Kk=1. This creates a
huge amount of computational overhead for learning when
the importance weight matrices are parameterized, and also
makes the optimization problem more complicated.

IV. LEARNING STRUCTURED MOTION POLICIES FOR
HUMAN DEMONSTRATIONS

In this section, we provide details of our approach to
learning motion policies (1) from human demonstrations.

A. Problem Statement

Consider the problem of kinesthetic teaching, where the
human provide demonstrations by moving the robot, pro-
viding a number of trajectory demonstrations in the joint
configuration space. Additionally, we allow the human to
specify a number of subtask spaces2, where the motion on the
these subtask spaces is relevant to the achieving the overall
task. For example, for a goal-reaching subtask, the user may
specify, as a subtask space, the 3-dimensional Euclidean
workspace of the end-effector position. The goal for our
learning problem is to learn a parameterized policy πθ which
can generate motion similar to the human demonstrations
when viewed in these subtask spaces.

Consider N trajectory demonstrations in the configuration
space of the robot, each composed of Ti position-velocity
pairs, denoted by {{(qdi,t, q̇di,t)}

Ti
t=1}Ni=1. On possible way of

learning is to directly regress joint space velocity so that it
matches the joint velocity of the demonstrations, i.e.,

θ?C = arg min
θ

N∑
i=1

Ti∑
t=1

∥∥∥∥q̇di,t − πθ(qdi,t)∥∥∥∥2︸ ︷︷ ︸
LC(θ)

. (6)

Presumably, if the learned joint velocity policy perfectly
matches the demonstrated joint velocities, it should also
perfectly matches the demonstrations in the subtask spaces.
However, in practice, there usually does not exist a policy
such that LC(θ) = 0. This is because, when providing
demonstrations, the human primarily cares about the motion
on spaces that are directly relevant to achieving the task
(i.e. the subtask spaces). As a result, the demonstrations can
be conflicting in the joint space (providing vastly different
velocities at the same joint position), even though they
can be consistent in the subtask spaces. Therefore, directly
regressing on the joint space trajectories (6) will produce
large error both in the joint space and in the workspace.

Given the observation that the trajectory demonstrations
are the most informative when considered in the subtask
spaces, we proposed an alternative objective function that
direct penalize the deviation in the subtask spaces:

θ? = arg min
θ

N∑
i=1

Ti∑
t=1

K∑
k=1

λk
∥∥Jkq̇di,t − Jkπ

θ(qdi,t)
∥∥2

= arg min
θ

N∑
i=1

Ti∑
t=1

K∑
k=1

λk
∥∥q̇di,t − πθ(qdi,t)∥∥2J>

k Jk︸ ︷︷ ︸
L(θ)

,
(7)

where λk > 0 is the user-specified weight for the k-th
subtask. In contrast to (6), our proposed objective only
penalizes the deviation of velocities in the subtask spaces.
The velocities in each subtask spaces are given by the
pushforward operator q 7→ Jk(q).

2In most existing learning from demonstrations literature [10], [16]–[20],
only a single (subtask) space is considered, and it is usually either the
configuration space, or the (3-d or 6-d) end-effector workspace.



Fig. 3: Top: Structure of the network defining a single map
ψm in the diffeomorphism chain [10]. Bottom: Structure of
the network for defining latent subtask metric Mdk [9].

Let us now consider policy learning with the structured
policy class introduced in Section III. As the subtask spaces
are provided by the demonstrator, we can represent the
joint space velocity as the solution to the motion generation
problem described in Section III, where the subtask policies
are parameterized, i.e.,

πθ(q) = arg min
u

K∑
k=1

∥∥vθkk (ψk(q))− Jk u
∥∥2
M
θk
k

. (8)

We can then optimize for the objective function (7)
through, e.g. gradient descent:

θ ← θ − α∇θL(C)

← θ − α
N∑
i=1

Ti∑
t=1

∂πθ(qdi,t)

∂θ
∇πθ(qdi,t)L(θ),

(9)

where the term
∂πθ(qdi,t)

∂θ can be computed by back-
propagating through the motion generation algorithm de-
scribed in Section III-C.

Note that the policy parameterization πθ in (8) also allows
for certain subtask policies to be fixed during learning,
i.e., θk = ∅. This provides the user with the freedom to
manually design subtask policies, for, e.g., joint damping,
respecting joint limit, collision avoidance, etc. In this case,
the parameterized subtask policies also learn to trade off
against the hand-designed policies through the importance
weight matrices. For the remainder of this section, we present
an expressive class of stable learnable subtask policies which
result in a stable configuration space velocity policy under
Theorem III.1.

B. A Class of Stable Subtask Policies

We seek to paramterize subtask policies {(vθkk ,M
θk
k )}Kk=1

so that the resulting configuration space policy is stable.
According to Theorem III.1, the resulting motion is stable as
long as the subtask policy follows natural gradient flow (3).
Therefore, we choose to parameterize the subtask policy

(vk,Mk) through the tuple (Φθkk ,M
θk
k ), where Φk is the

potential function. The velocity policy is then given by vθkk =
(Mθk

k )−1∇Φθkk . To ensure stability of the combined policy
in the configuration space, we need the importance weight
matrix Mθk

k to be always positive definite. Additionally, we
require Φk to have a unique minimum at a desired goal
location z∗k as we care primarily about goal-directed motions.

1) From subtasks to latent subtasks: The main challenge
for representing the subtask policy is finding a expressive
parameterization of the potential function without introduc-
ing spurious attractive points. While direct parameterization
with such property is in general challenging, recent work [10]
has demonstrate success through parameterizing diffeomor-
phisms to latent spaces, where a simple potential function is
defined there. We adopt this approach as it shows expressive-
ness in representing complex motions without introducing
undesired local minima.

Conveniently, in our transform tree formulation (Sec-
tion III-C), this is equivalent to adding a child node, dk,
to the original “leaf” node lk (see Fig.2). The map between
dk and lk is a learnable map, φθkk : zk 7→ wk.

Then, in the latent space, we can use a simple pre-specified
potential function, e.g. Φdk(wk) = 0.5‖wk − φθkk (z∗k)‖2,
and any positive-definite parameterization of the importance
weight matrix3 Mθk

dk
. Then, by properties of diffeomor-

phisms [10], the generated motion is guaranteed stable.
Next, we introduce the parameterizations we choose for the
diffeomorphism and importance weight matrix, respectively.

2) Diffeomorphisms parameterized by flow networks: To
realize a diffeomorphism, we rely on the formulation in [10]
(see Fig.3). Specifically, we view φθkk as a chain of M
simpler maps, i.e. φθkk = ψ1◦· · ·◦ψM . Assuming coordinates
ym ∈ Rn for the co-domain of ψm i.e. ym = ψm(ym−1),
y0 = zk, and yM = wk, we define,

ym =

[
yam
ybm

]
=

[
yam−1

ybm−1 � exp
(
sm(yam−1)

)
+ tm(yam−1)

]
,

(10)
where � and exp denote pointwise product and exponential
respectively. sm : Rbn/2c → Rdn/2e and tm : Rbn/2c →
Rdn/2e are learnable scaling and translation functions. The
components yam−1 ∈ Rbn/2c and ybm−1 ∈ Rdn/2e constitute
alternate input dimensions, with the pattern of alternation
reversed after each mapping in the chain. We parameterize
the scaling and translation functions as linear combinations
of random Fourier features (10) i.e. sm(·) := sm(· ; θsm) =
ϕ(·)>θsm , and tm(·) := tm(· ; θtm) = ϕ(·)>θtm . The feature

ϕ(·) =
√

2

D

[
cos(α>1 (·)+β1), . . . , cos(α

>
D(·)+βD)

]>⊗I, (11)

is a D-dimensional Fourier feature approximation of
a matrix-valued Gaussian separable kernel [28], [29],
K(y,y′) = exp(−‖y−y

′‖2
2l2 )I with length-scale l. Due to

the choice of parameterization in (10)-(11), ψm is a smooth
and affine bijective map, and thus a diffeomorphism. Con-
squently, the chain φθkk is a diffeormorphism.

3One can also choose to parameterize the matrix in the subtask space
instead of the latent space.



3) Importance weight matrix via Cholesky decomposition:
Similar to [9], we represent a latent subtask inertia matrix
Mdk by its Cholesky decomposition parameterized by a
matrix-valued neural network (see Fig.3). This parameter-
ization has been previously introduced in [9]. Concretely,
we construct Mdk := LdkL

>
dk

, where Ldk(wk) ∈ Rn×n is
a lower-triangular matrix. We parameterize the vectorized
diagonal and off-diagonal entries of Ldk , i.e. ld(wk; θld) ∈
Rn and lo(wk; θlo) ∈ R 1

2 (n
2−n), as fully-connected neural

networks with RELU activations. Furthermore, the networks
for lo and ld share parameters for all the layers except
their output layers. To ensure Ldk is a valid Cholesky
decomposition, and consequently Mdk is positive definite,
we require the entries of ld to be strictly positive. In lieu of
this, we take the absolute value of the output linear layer of
ld and add a small positive bias ε > 0.

C. Discussion

At first glance, our approach may seems very similar
to [9] as we both learn multiple subtask policies and, during
execution, combine them together. However, mathematically,
they are fundamentally different.

In [9], each subtask policy is independently learned to
imitate the demonstrated trajectories mapped the the corre-
sponding space, i.e.,

θ?k = arg min
θk

N∑
i=1

Ti∑
t=1

∥∥Jkq̇di,t − (Mθk
k )−1∇Φθkk

∥∥2. (12)

The combination of these individually-learned policy only
happens after learning, i.e., during the execution of the
policy. This strategy has the following limitations. First,
the learned importance weight matrices are not learned to
provide the proper trade-offs between policies, as each policy
is learned independently. Due to this, additional manual scal-
ing of the importance weight matrices is needed especially
when combined with hand-designed policies. Second, the
geometric constraints (e.g. induced by the kinematics of the
robot) between tasks are not considered during learning,
which contributions to errors during execution. In summary,
despite its empirical success, the approach introduced in [9]
is not able to fully exploit the benefits provided by the policy
structure. Whereas our approach, by properly formulating the
learning problem (7) and differentiable through the structured
policy (8), is able to take full advantage over the policy
structure during learning. We will further demonstrate this
through experiments in upcoming section.

V. EXPERIMENTAL RESULTS

We evaluated our approach on three manipulations tasks4

on a 7-DOF Rethink Sawyer robot with configuration space
coordinates q ∈ R7. We consider 3 tasks including inspec-
tion, placing-1, and placing-2. For details about the task
specifications, the reader is referred to Figs. 6–8. For each
task, a human subject provided multiple configuration space

4Accompanying video is available at: https://youtu.be/
hwcxzLnxZPQ.

demonstrations via kinesthetic teaching: 14 demonstrations
for inspection, 9 for placing-1, and 12 for placing-2.

Subtasks: Each of the tasks is decomposed into learnable
subtasks assigned to 3 robot body parts, whereby each
body part is represented by a unique control point (see
Fig. 5 for details). Given our choice of control points, the
subtask policies effectively control the end-effector pose
(i.e. position and orientation). However, we stress that our
learning approach is not only limited to learning policies for
robot poses. In fact, one may instead, for instance, choose to
learn motion policies dictating a partial pose (by removing a
control point), or pose alongside the robot elbow (by adding
an additional control point). Furthermore, there is a hand-
specified default subtask policy pulling the end-effector in
straight-line towards a desired goal pose. It is governed by
a convex potential and a constant inertia matrix M = 10I.
Additionally, to ensure the root importance weight matrix
Mr is always non-singular and well-conditioned, we add a
small offset εr = 0.02 to its diagonal entries.

Baselines: To evaluate the performance of our approach,
we establish two baselines: (i) an independent learning ver-
sion whereby the subtask policies are learned independently,
which reproduces the setup of [9], and (ii) a single link
learning version where just a single control point (i.e. end-
effector) is chosen and the associated subtask policy is again
learned independently.

Learning Details: As is introduced in Section IV, the
subtask policies are defined by a set of diffeomorphisms
{φθkk }3k=1 and a set of latent importance weight matrices
{Mθk

dk
}3k=1. In our parameterization, each diffeomorphism

is composed of M = 10 chained diffeomorphisms, each
parameterized by D = 200 random Fourier features with
length-scale l = 0.45. On the other hand, each latent impor-
tance weight matrix Mdk has two hidden layers with 128
and 64 dimensions respectively. The optimization problem
in (7) was solved with Adam optimizer [30] with a learning
rate of 1× 10−4 and weight decay 1× 10−8.

Results Fig. 5 shows example reproductions of end-
effector pose trajectories under the aforementioned variants
of our algorithm. Our coordinated learning approach is ob-
served to successfully reproduce the demonstrated motions.
However, the baselines either fail to reproduce the position
profile or the orientations. To quantitatively evaluate the
capacity of our approach to reproduce demonstrations, we
employ two error metrics, mean position error and mean
orientation error. We evaluate position errors in terms of
the Euclidean distance i.e. error(p1(t),p2(t)) = ‖p1(t) −
p2(t)‖2, where p1(t) and p2(t) are end-effector positions on
the demonstrated and reproduced trajectory at time stamp
t, respectively. On the other hand, for orientation errors
we employ error(o1(t),o2(t)) = arccos(|o1(t) · o2(t)|),
where o1(t) and o2(t) are unit quaternions representing
end-effector orientations. For each comparison metric, we
take the mean of the errors accumulated over the duration
of a trajectory. Fig. 4 reports these comparisons as box
plots. For the two placing tasks, our approach outperforms
the baselines by a significant margin. A major contributor

https://youtu.be/hwcxzLnxZPQ
https://youtu.be/hwcxzLnxZPQ


(a) (b) (c)

Fig. 4: Comparison of our approach against baselines based on (a) mean position error, (b) mean orientation error, and (c)
generalization success rate over 10 executions.

(a)

(b)

Fig. 5: (a) Visualization of the 3 control points (in green), with the end-effector control point denoted by a square while
the two control points for gripper tips are given by dots. Overlaid is an end-effector position trajectory (in blue), and a line
directed from the end-effector to the center of the gripper (in red) denoting instantaneous end-effector orientation. (b) Plots
showing pose trajectories starting from an initial end-effector pose (yellow circle) governed by our approach (Coordinated)
and baselines (Independent [9] and Single Link). Also shown in the background, is the demonstration starting from the same
initial pose. The final positions are denoted by black crosses.

towards this difference in performance is the existence of
default subtask policies. When learned without accounting
for the existing policies, the learned policies may not be
able to sufficiently bias against the default behavior. Further-
more, we also observe that the independent learning version
occasionally performs worse than the single link learning
variant. This is perhaps because the independently learned
subtask policies may conflict with each other. This does not
manifest as much in the single link case, since there is only
one learned subtask policy.

Lastly, we test the generalization performance of our
approach. For this evaluation, we roll out our motion policy
from 10 new initial configurations. A rollout is considered
successful if all the goals of the task are met without
any collisions. Fig. 4 (c) reports the success rates. Once
again, our end-to-end learning approach outperforms the
baselines. We also observe that, while the difference in
terms of quantitative errors between our approach and the
baselines is small on the inspection task, there are vast
differences in performances given by generalization success
rates. This is perhaps because, even when not trained end-
to-end, the robot’s kinematic constraints may enforce certain
level of coordination between subtasks, thus resulting in low

reproduction errors. However, for highly constrained tasks
like the ones we explore in this paper, even small errors can
result in task execution failures. A subset of rollouts from
our learned policies, starting from the same configurations
as demonstrations, are visualized in Figs. 6–8 (bottom).
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M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018.

[5] A. Li, C.-A. Cheng, B. Boots, and M. Egerstedt, “Stable, concurrent
controller composition for multi-objective robotic tasks,” in 2019 IEEE
58th Conference on Decision and Control (CDC), pp. 1144–1151,
IEEE, 2019.

[6] A. Li, M. Mukadam, M. Egerstedt, and B. Boots, “Multi-objective
policy generation for multi-robot systems using Riemannian motion
policies,” in International Symposium on Robotics Research, 2019.



Fig. 6: The inspection task required the robot to pick an
object from one side of the table and place it in a bowl on
the other side. In the middle, the robot was required to pass
a constrained pathway. Top: A series of snapshots showing a
robot executing learned behavior. Bottom: Plots of a subset of
motion reproductions from different initial poses, overlaid on
corresponding demonstrations. The yellow circles represent
the initial end-effector positions, each corresponding to one
of the rollouts.

Fig. 7: The placing-1 task required the robot pick an object
from a lower shelf and place it on at a goal location on
the top-most shelf at a certain orientation. Top: A series of
snapshots showing a robot executing learned behavior. Bot-
tom: Plots of a subset of motion reproductions from different
initial poses, overlaid on corresponding demonstrations. The
yellow circles represent the initial end-effector positions,
each corresponding to one of the rollouts.

[7] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Neural autonomous
navigation with riemannian motion policy,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 8860–8866,
IEEE, 2019.

[8] B. Wingo, C. Cheng, M. Murtaza, M. Zafar, and S. Hutchinson,
“Extending riemmanian motion policies to a class of underactuated
wheeled-inverted-pendulum robots,” in IEEE International Conference
on Robotics and Automation, 2020.

[9] M. A. Rana, A. Li, H. Ravichandar, M. Mukadam, S. Chernova,
D. Fox, B. Boots, and N. Ratliff, “Learning reactive motion policies
in multiple task spaces from human demonstrations,” in Conference
on Robot Learning, pp. 1457–1468, 2020.

[10] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff,
“Euclideanizing flows: Diffeomorphic reduction for learning stable
dynamical systems,” 2020.

[11] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, “A uni-
fying framework for robot control with redundant dofs,” Autonomous
Robots, vol. 24, no. 1, pp. 1–12, 2008.

[12] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.
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