
APPENDIX A
SHIFT OPERATOR

We discuss some details in defining the shift operator. Let θt−1 be the approximate solution to the previous problem and
θ̃t denote the initial condition of θ in solving (3), and consider sampling ût ∼ πθ̃t and ût−1 ∼ πθt−1

. We set

θ̃t = Φ(θt−1)

by defining a shift operator Φ that outputs a new parameter in Θ. This Φ can be chosen to satisfy desired properties, one
example being that when conditioned on ût−1 and xt, the marginal distributions of ût, . . . , ût+H−2 are the same for both ût
of πθ̃t and ût−1 of πθt−1

. A simple example of this property is shown in Fig. 8. Note that ût also involves a new control
ût+H−1 that is not in ût−1, so the choice of Φ is not unique but algorithm dependent; for example, we can set ût+H−1 of
πθ̃t to follow the same distribution as ût+H−2 (cf. Section III-B). Because the subproblems in (3) of two consecutive time
steps share all control variables except for the first and the last ones, the “shifted” parameter Φ(θt−1) to the current problem
should be almost as good as the optimized parameter θt−1 is to the previous problem. In other words, setting θ̃t = Φ(θt−1)
provides a warm start to (3) and amortizes the computational complexity of solving for θt.
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Fig. 8: A simple example of the shift operator Φ. Here, the control distribution πθ consists of a sequence of H = 5 independent
Gaussian distributions. The shift operator moves the parameters of the Gaussians one time step forward and replaces the
parameters at h = 4 with some default parameters.

APPENDIX B
VARIATIONS OF DMD-MPC

The control distributions in DMD-MPC can be fairly general (in addition to the categorical and Gaussian distributions that
we discussed) and control constraints on the problem (e.g., control limits) can be directly incorporated through proper choices
of control distributions, such as the beta distribution, or through mapping the unconstrained control through some squashing
function (e.g., tanh or clamp). Though our framework cannot directly handle state constraints as in constrained optimization
approaches, a constraint can be relaxed to an indicator function which activates if the constraint is violated. The indicator
function can then be added to the cost function in (4) with some weight that encodes how strictly the constraint should be
enforced.

Moreover, different integration techniques, such as Gaussian quadrature [5], can be adopted to replace the likelihood-
ratio derivative in (9) for computing the required gradient direction. We also note that the independence assumption on the
control distribution in (18) is not necessary in our framework; time-correlated control distributions and feedback policies are
straightforward to consider in DMD-MPC.



APPENDIX C
PROOFS

Proof of Proposition 1: We prove the first statement; the second one follows directly from the duality relationship. The
statement follows from the derivations below; we can write

ηt+1 = arg min
η∈H
〈γtgt, η〉+DA(η‖ηt)

= arg min
η∈H
〈γtgt, η〉+A(η)− 〈∇A(ηt), η〉

= arg min
η∈H
〈γtgt − µt, η〉+A(η)

= arg max
η∈H
〈µt − γtgt, η〉 −A(η)

= ∇A∗(µt − γtgt)

where the last equality is due to the assumption that µt−γtgt ∈M. Then applying ∇A on both sides and using the relationship
that ∇A = (∇A∗)−1, we have µt+1 = ∇A(ηt+1) = µt − γtgt.

APPENDIX D
DERIVATION OF LQR AND LEQR LOSSES

The dynamics in Equation (1) are given by

xt+1 = Axt +But + wt

for some matrices A ∈ Rn×n and B ∈ Rn×m and wt ∼ N (0,W ), where W ∈ Sn++. For a control sequence ût, noise sequence
ŵt, and initial state xt, the resulting state sequence x̂t is found through convolution:
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ût
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or, in matrix form:

x̂t = Fxt +Gût +Lŵt,

where F , G, and L are defined naturally from the convolution equation above. Note that ŵt ∼ N (0,W ), where
W = diag(W,W, . . . ,W,W ). Thus, we also have that

x̂t ∼ N (Fxt +Gût,LWLT).

We define the instantaneous and terminal costs as

c(x, u) =
1

2
xTQx+

1

2
uTRu

cend(x) =
1

2
xTQendx,

where Q,Qend ∈ Sn+ and R ∈ Sm++. Thus, the statistic C(x̂t, ût) is

C(x̂t, ût) =
1

2
x̂TtQx̂t +

1

2
ûTtRût,

where Q = diag(Q,Q, . . . , Q,Qend) and R = diag(R,R, . . . , R,R).
Our control distribution is a Dirac delta distribution located at the given parameter: πθ(ût) = δ(ût − θ).



A. LQR

The loss is defined as `t(θ) = Eπθ,x̂t
[
1
2 x̂

T
tQx̂t + 1

2 û
T
tRût

]
. Expanding this out gives:
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We see this is a quadratic problem in θ by defining

Rt = GTQG+R

rt = GTQFxt.

B. LEQR

The loss is defined as

`t(θ) = − logEπθ,x̂t
[
exp

(
− 1

λ

(
1

2
x̂TtQx̂t +

1

2
ûTtRût

))]

for some parameter λ > 0. For compactness, we define Q′ = 1
λQ and R′ = 1

λR so that the exponent contains
− 1

2 x̂
T
tQ
′x̂− 1

2 û
T
tR
′ût. In expanding the loss, we use the following fact:

Fact 2. For x ∼ N (µ,Σ), where Σ ∈ Sn++, and constants A ∈ Sn+ and b ∈ Rn:
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Proof: We expand the expectation and complete the square:
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where µ̃ = (A+ Σ−1)−1(Σ−1µ− b), Σ̃ = (A+ Σ−1)−1, and c = − 1
2

(
µTΣ−1µ− (Σ−1µ− b)T(A+ Σ−1)−1(Σ−1µ− b)

)
.



We now expand the loss:

`t(θ) = − logEπθ,x̂t
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′ût

)]
= − logEx̂t

[
exp

(
−1

2
x̂TtQ

′x̂t −
1

2
θTR′θ

)]
= − log

{
1√

|Q′LWLT + I|
exp

(
− 1

2

[
(Fxt +Gθ)T(LWLT)−1(Fxt +Gθ)

− (Fxt +Gθ)T(LWLTQ′LWLT +LWLT)−1(Fxt +Gθ)

+ θTR′θ
])}

=
1

2

[
(Fxt +Gθ)T[(LWLT)−1 + (LWLTQ′LWLT +LWLT)−1](Fxt +Gθ) + θTR′θ

]
+

1

2
log |Q′LWLT + I|.

We see this is a quadratic problem in θ by defining
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APPENDIX E
EXPERIMENTAL SETUP

A. Cartpole

The state is xt = (pt, ϕt, vt, ϕ̇t), where pt is the cart position, ϕt is the pole’s angle, vt and ϕ̇t are the corresponding
velocities, and the control ut is the force applied to the cart. We define the instantaneous cost and terminal cost of the MPC
problem as

c(xt, ut) = 10p2t + 500(ϕt − π)2 + v2t + 15ϕ̇2
t + 1000 · 1{|ϕt − π| ≥ ∆}

cend(xt) = c(xt, 0)

where ∆ is some threshold. For our experiments, we set ∆ = 12◦ = 0.21 radians.
In our experiments, the pole is massless except for some weight at the end of the pole. The mass of the cart and pole weight

are 0.711 kg and 0.209 kg, respectively. The true length of the pole is 0.326 m, whereas the length used in the model is
0.346 m. Each time step is modeled using an Euler discretization of 0.02 seconds. Each episode of the problem lasts 500 time
steps (i.e, 10 seconds) and has episode cost equal to the sum of encountered instantaneous costs. Both the true system and the
model apply Gaussian additive noise to the commanded control with zero mean and a standard deviation of 5 newtons. For
the continuous system, the commanded control is clamped to ±25 newtons. For the discrete system, the controller can either
command 10 newtons to the left, 10 newtons to the right, or 0 newtons.

Both the discrete and continuous controller use a planning horizon of 50 time steps (i.e., 1 second). For the continuous
controller, we keep the standard deviation of the Gaussian distribution fixed at 2 newtons for each time step in the planning
horizon. When applying a control ut on the real cartpole, we choose the mode of πθt rather than sample from the distribution.

All reported results were gathered using ten episodes per parameter setting.

B. AutoRally

The state of the vehicle is xt = (px,t, py,t, ϕt, rt, vx,t, vy,t, ϕ̇t), where (px,t, py,t) is the position of the car in the global
frame, ϕt and rt are the yaw and roll angles, vx,t and vy,t are the longitudinal and lateral velocities in the car frame, and ϕ̇t
is the yaw rate. The control ut we apply is the throttle and steering angle. For some weights w1, . . . , w4, the cost function is

c(xt, ut) = w1|st − stgt|k + w2M(px,t, py,t) + w3Sc(xt)

cend(xt) = w4C(xt).

Here, st and stgt are the current and target speed of the car, respectively. Note the speed is calculated as st =
√
v2x,t + v2y,t.

M(px,t, py,t) is the positional cost of the car (low cost in center of track, high cost at edge of track), Sc(xt) is an indicator



variable which activates if the slip angle16 exceeds a certain threshold, and C(xt) is an indicator function which activates if
the car leaves the track at all in the trajectory. Note that the terminal cost depends on the trajectory instead of the terminal
state. Each time step represents 0.02 seconds and the length of the planning trajectory is 100 time steps (i.e., 2 seconds). The
values for the cost function parameters are given in Table II.

The control space for each of the throttle and steering angle is normalized to the range [−1, 1]. For our experiments, we
clamp the throttle to [−1, 0.65]. In simulated experiments, the standard deviations of the throttle and steering angle distributions
were 0.3 and 0.275, respectively. In the real world experiments, they were both set to 0.3. When applying a control ut on the
car, we chose the mean of πθt rather than sampling from the distribution.

Fig. 9: Simulated AutoRally task.

In simulation, the environment (Fig. 9) is an elliptical track approximately 3 meters wide and 30 meters across at its furthest
point. The real-world dirt track is about 5 meters wide and and has a track length of 170 meters. All reported results for
simulated experiments were gathered using 30 consecutive laps in the counter-clockwise direction for each parameter setting,
whereas for real-world experiments results were gathered using ten laps for each parameter setting.

TABLE II: Cost function settings for AutoRally experiments.

stgt (m/s) k w1 w2 w3 w4 Slip angle threshold (rad)
Gazebo simulator 11 1 30 250 10 10000 0.275

Real world 9 2 4.25 200 100 10000 0.9

APPENDIX F
EXTRA EXPERIMENTAL RESULTS

A. Simulated Experiments

Adding onto the results from Section V-B2, we qualitatively evaluate two particular extremes:
few vs. many samples (64 vs. 3840) and small vs. large step size (0.5 vs. 1) by looking at the path and speed of the
car during the episode (Fig. 10). At small step sizes (Figs. 10a and 10c), the path and speed profiles are rather similar, while
with few samples and a large step size (Fig. 10b), the car drives much more slowly and erratically, sometimes even stopping.
In the ideal scenario with many samples and a large step size, the car can achieve consistently high speed while driving
smoothly (Fig. 10d).

We also experimented with instead optimizing the expected cost (10) and found performance was dramatically worse (Fig. 11),
even when using 3840 samples per gradient. At best, the car would drive in the center of the track at speeds below
4 m/s (Fig. 11c), and at worst, the car would either slowly drive along the track walls (Fig. 11a) or the controller would
eventually produce NaN controls that would prematurely end the experiment (Fig. 11d). This poor performance is likely due to
most samples in the estimate of (11) having very high cost (e.g., due to leaving the track) and contributing significantly to the
gradient estimate. On the other hand, when estimating (17), as in the experiments in Section V-B2, these high cost trajectories
are assigned very low weights so that only low cost trajectories contribute to the gradient estimate.

16The slip angle is defined as − arctan
vy,t
|vx,t|

, which gives the angle between the direction the car is pointing and the direction in which it is actually
traveling.



(a) 64 samples, γt = 0.5 (b) 64 samples, γt = 1

(c) 3840 samples, γt = 0.5 (d) 3840 samples, γt = 1

Fig. 10: Car speeds when optimizing the exponential utility (16). The speeds and trajectories are very similar at step size 0.5,
irrespective of the number of samples. At step size 1, though, 64 samples result in capricious maneuvers and low speeds,
whereas 3840 samples result in smooth driving at high speeds.

(a) γt = 0.025 (b) γt = 0.05

(c) γt = 0.075 (d) γt = 0.1

Fig. 11: Car speeds when optimizing the expected cost (10). All tested step sizes result in low speeds. At too low or too high
or a step size, the car will drive along the wall or crash into it.



B. Figures for Real-World Experiments

(a) γt = 1 (b) γt = 0.8 (c) γt = 0.6

Fig. 12: Car speeds with 1920 samples per gradient estimate.

(a) γt = 1 (b) γt = 0.8 (c) γt = 0.6

Fig. 13: Car speeds with 64 samples per gradient estimate.


