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Abstract— Modern trajectory optimization based approaches
to motion planning are fast, easy to implement, and effec-
tive on a wide range of robotics tasks. However, trajectory
optimization algorithms have parameters that are typically
set in advance (and rarely discussed in detail). Setting these
parameters properly can have a significant impact on the
practical performance of the algorithm, sometimes making the
difference between finding a feasible plan or failing at the task
entirely. We propose a method for leveraging past experience to
learn how to automatically adapt the parameters of Gaussian
Process Motion Planning (GPMP) algorithms. Specifically, we
propose a differentiable extension to the GPMP2 algorithm,
so that it can be trained end-to-end from data. We perform
several experiments that validate our algorithm and illustrate
the benefits of our proposed learning-based approach to motion
planning.

I. INTRODUCTION

Robot motion planning is a challenging problem, as it
requires searching for collision-free paths while satisfying
robot and task-related constraints for high-dimensional sys-
tems with limited on-board computation. Trajectory opti-
mization is a powerful approach to effectively solving the
planning problem and state-of-the-art algorithms can find
smooth, collision free trajectories in almost real-time for
complex systems such as robot manipulators [1]–[3]. Al-
though these approaches are easy to implement and generally
applicable to a wide range of tasks, they have certain parame-
ters which can strongly affect their performance in practice.
This leads to two major problems: (i) there is no formal
way of setting parameters for a given task and thus requires
manual tuning that can be time-consuming and arduous; and
(ii) the planner needs to be re-tuned if the distribution of
obstacles in the environment changes significantly, making
it brittle in practice, i.e. a planner that works well on one
type of environment might completely fail on another. The
above issues need to be addressed in order to create flexible
robotic systems that can work seamlessly across a variety
of environments and tasks. In order to do so, we ask the
following question: can we leverage past experience to learn
parameters of the planner in a way that directly improves
its expected performance over the distribution of problems it
encounters?

In this work, we focus on GPMP2 [4], a state-of-the-art
motion planning algorithm that formulates trajectory opti-
mization as inference on a factor graph and finds solutions
by solving a nonlinear least squares optimization problem,
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Fig. 1: The computational graph of dGPMP2 where φF are user
defined planning parameters that are fixed and φL are learned
planning parameters. See Section IV for details.

where the inverse covariances of the factors manifest as
weights in the objective function. While GPMP2 has been
shown to be a leading optimization-based approach to motion
planning [3], in Section III-B we illustrate its sensitivity to
its objective function parameters (specifically factor covari-
ances). To contend with this problem, we leverage the key
insight that GPMP2 can be rebuilt as a fully differentiable
computational graph and learn the parameters for its ob-
jective function from data in an end-to-end fashion. This
allows us to develop a learning strategy that can improve
GPMP2’s performance on a given distribution of problems.
Our differentiable version can be trained in a self-supervised
manner or from expert demonstrations to predict covariances
that are time and space varying, in contrast to fixed, hand-
tuned covariances, as used in the vanilla approach. Building
on top of a structured planner offers interpretability and
allows us to explicitly incorporate planning constraints such
as collision avoidance and velocity limits. This work is in-
tended as a preliminary investigation into learning structured
planners from high-dimensional inputs. We perform several
experiments in simulated 2D environments to demonstrate
the benefits of our approach which we call Differentiable
GPMP2 (dGPMP2), illustrated in Fig. 1.

II. RELATED WORK

Machine learning has been used to accelerate motion
planning by combining reinforcement learning (RL) with
sampling based planning [5], learning cost functions from
demonstration [6], learning efficient heuristics [7], and learn-
ing collision checking policies [8]. As machine learning
becomes more accessible, there has been a growing interest
in using deep learning for planning such as end-to-end
networks to perform value iteration [9] or learning a latent
space embedding and a dynamics model that is suitable for
planning by gradient descent within a goal directed pol-
icy [10]. Such approaches have demonstrated that learning



to plan is a promising research direction as it allows the
agent to explicitly reason about future actions. However,
learning-based approaches still fall short on several fronts.
Combining learning and planning in a way where domain
knowledge, constraints, and uncertainty are properly handled
is challenging, and learned representations are often difficult
to interpret.

Recent work in structured learning techniques offer av-
enues towards contending with these challenges. Several
methods have focused on incorporating optimization within
neural network architectures. For example, [11] implicitly
learns to perform nonlinear least squares optimization by
learning an RNN that predicts its update steps, [12] learns
to perform gradient descent, and [13] utilizes a ODE solver
within its network. Other methods like [14] learn a sequential
quadratic program as a layer in its network, which was later
extended to solve model predictive control [15]. [16] learns
structured dynamics models for reactive visuomotor control.
Taking inspiration from this body of work, in this paper
we present a differentiable inference-based motion planning
technique that through its structure allows us to combine
the strengths of both traditional model-based methods and
modern learning methods, while mitigating their respective
weaknesses.

Another related field of work is on automatic parameter
tuning of motion planning algorithms. Approaches such as
[17], [18] treat the planner as a black-box and use ma-
chine learning tools such as Bayesian optimization, bandits,
and random forests to optimize a single configuration of
parameters that improves planner performance. However,
such a single configuration does not adapt to changes in
the environment distribution which hinders generalization.
Additionally, the number of parameters optimized in these
approaches is far fewer than ours and they do not incorporate
high dimensional inputs such as images.

III. BACKGROUND

We begin by reviewing the GPMP2 [3] planner that we
will later reconstruct as a differentiable computational graph.
Then, we discuss limitations of GPMP2 with respect to its
sensitivity to objective function parameters, thus motivating
our learning algorithm.

A. Planning as inference on factor graphs

We take a probabilistic inference perspective on motion
planning as described in the GPMP2 framework [4]. The
planning problem is posed as computing the maximum a
posteriori (MAP) trajectory given a prior over trajectories
and a likelihood of events of interest that the trajectory
must satisfy. By selecting appropriate distributions, sparsity
can be induced in the MAP problem, which allows for
efficient inference. Following [4], we describe the essential
components of GPMP2 here.

The Prior: In GPMP2, a continuous-time Gaussian
process (GP) is used to define a prior distribution over
trajectories, θ(t) ∼ GP(µ(t),K(t, t′)), where µ(t) is the
mean function and K(t, t′) is the kernel. For the purposes

of our approach, we represent the trajectory using N support
states, θ = [θ1, . . . ,θN ]T at different points in time and
define the mean vector and covariance matrix as

µ = [µ1, . . . ,µN ]T, K = [K(ti, tj)]
∣∣∣
ij,1≤i,j≤N

(1)

and this GP defines a prior on the space of trajectories

P (θ) ∝ exp
{
− 1

2
‖θ − µ‖2K

}
, (2)

where ‖θ−µ‖2K
.
= (θ−µ)TK−1(θ−µ) is the Mahalanobis

distance. The GP prior distribution is generated by an LTV-
SDE [19]

θ̇ = A(t)θ(t) +B(t)u(t) +w(t), (3)

where A(t) and B(t) are system matrices, u(t) is a bias
term, and w(t) ∝ GP(0,Qcδ(t − t′)) is a white noise
process with Qc being the power spectral density matrix of
the system and δ being the Dirac delta function. The first
and second order moments of the solution to Eq. (3) gives
us the mean and covariance of the desired GP prior. The
resulting inverse kernel matrix of the GP has an exactly
sparse block-tridiagonal structure making it ideal for fast
inference. Here, we use the constant velocity prior model,
where the covariance for a single time step is specified by

Qti,ti+1
=

[
1
3∆t3iQc

1
2∆t2iQc

1
2∆t2iQc ∆tiQc

]
, (4)

where ∆ti = ti+1 − ti. The full GP covariance is obtained
by composing Qti,ti+1

at every time step along with the
start and goal covariances, Ks and Kv . Please refer to [4]
and [19] for details. One important thing to note here is that
the GP prior covariance is completely parameterized by the
power spectral density matrix Qc.

The Likelihood function: The likelihood function is
used to capture planning requirements in the form of events
e that the trajectory must satisfy. These include constraints
such as collision avoidance, joint or velocity limits, or other
task relevant objectives. We define the likelihood function as
a distribution in the exponential family given by

L(θ; e) ∝ exp
{
− 1

2
‖h(θ)‖2Σ

}
, (5)

where h(θ) is a vector-valued cost function and e are the
events of interest.

Inference: Given the prior and likelihood, the MAP
problem can be solved as

θ∗ = argmax
θ
{P (θ|e)} = argmin

θ

{
− log

(
P (θ)L(θ;e)

)}
θ∗ = argmin

θ

{1

2
‖θ − µ‖2K +

1

2
‖h(θ)‖2Σ

}
. (6)

In general, h(θ) can be non-linear and thus the above
equation is a Nonlinear Least Squares (NLLS) problem
which can be solved using iterative approaches like Gauss-
Newton or Levenberg-Marquardt (LM) algorithms. At any
iteration i, these algorithms proceed by first linearizing the
cost function around the current estimate of the trajectory,



θi, using a Taylor expansion h(θ) = h(θi) + Hδθ, where
H = ∂h

∂θ

∣∣∣
θ=θi

and then solving the following linear system

to find the update, δθ:(
K−1 + HTΣ−1H

)
δθ = −K−1(θi −µ)−HTΣ−1h(θi).

(7)
Gauss-Newton optimization in particular updates the current
estimate with the following rule

θi+1 = θi + δθ. (8)

GPMP2 exploits the sparsity of the linear system in Eq. (7)
to formulate MAP inference on a factor graph and solve
it efficiently. While GPMP2 is a state-of-the-art method
that outperforms several leading sampling and optimization
based approaches to motion planning [3], it still has some
practical limitations with respect to setting the parameters in
its objective in Eq. (6). Next, we will discuss these limitations
in-depth with a few examples.

B. Sensitivity to objective function parameters

The performance of GPMP2 is dependent on the values
of QC (the parameter that governs the covariance of the GP
prior) and Σ (the covariance of the likelihood) as per its
objective function from Eq. (6). For example, for collision
avoidance, the distribution of obstacles in the environment
affects what relative settings of QC and obstacle covariance
σobs (such that Σ = σ2

obs × I) will be effective in solving
the planning problem.

Different datasets require different relative settings of
parameters. Due to the nonlinear interactions between these
parameters it might not be possible to find a fixed setting that
will always work, and in practice it can be a tedious task to
find a setting that works for many different environments. For
example, in environments like the one in Fig. 2a-2b, where
the planner needs to find a trajectory that goes around the
cluster of obstacles, a small obstacle covariance is required
to make the planner navigate around the “tarpit.” But, at
the same time, if a large dynamics covariance is used, it
might try to squeeze in between obstacles where the cost
can have a local minima. So a smaller dynamics covariance
is needed as well. Another example is shown in Fig. 2c-
2d with dispersed obstacles near the start and goal. Here an
entirely different setting of covariances is effective. Since
obstacles are small and diffused, solutions can generally
be found close to the straight line initialization. A smaller
dynamics covariance helps with that. Also, the start and goal
can be very near obstacles which means that a small obstacle
covariance might lead to solutions that violate the start and
goal constraints. Having a smaller obstacle covariance can
also lead to trajectories that are very long and convoluted as
they try to stay far away from obstacles.

Small changes in parameters can lead to trajectories lying
in different homotopy classes. For example, Fig. 2e-2f illus-
trates how even minor changes in the obstacle covariance can
lead to significant changes in the resulting trajectories. This
makes tuning covariances harder, as the effects are further

(a) σobs = 0.1,
QC = 0.5× I

(b) σobs = 0.01,
QC = 0.5× I

(c) σobs = 0.1,
QC = 0.5× I

(d) σobs = 0.01,
QC = 0.5× I

(e) σobs = 0.03,
QC = I

(f) σobs = 0.01,
QC = I

Fig. 2: (a)-(b) tarpit dataset (robot radius = 0.4m, safety distance =
0.4m). For the sameQC , a smaller σobs is required to encourage the
planner to navigate around obstacles. (c)-(d) forest dataset (robot
radius = 0.2m, safety distance = 0.2m). For the same QC , a larger
σobs is required to focus on finding solutions near the straight line
trajectory. (e)-(f) multi_obs dataset (robot radius = 0.4m, safety
distance = 0.4m) A small change in obstacle covariance can lead to
significant changes in the trajectory. In all figures, the red dashed
trajectories are the initializations and the blue trajectories are the
optimized solutions.

aggravated over large datasets with diverse environments
leading to inconsistent results.

With sufficient domain expertise, the parameters can be
hand-tuned. However, this process can be very inefficient and
becomes increasingly hard for problems in higher dimensions
or when complex constraints are involved. An ideal setup
would be to have an algorithm that can predict appropriate
parameters automatically for each problem. Therefore, in this
work, we rebuild the GPMP2 algorithm as a fully differen-
tiable computational graph, such that these parameters can be
specified by deep neural networks which can be trained end-
to-end from data. When deployed, our differentiable GPMP2
approach (dGPMP2) can then automatically select its own
parameters given a particular motion planning problem.

IV. A STRUCTURED COMPUTATIONAL GRAPH FOR
MOTION PLANNING

In this section, we first explain how GPMP2 can be
interpreted as a differentiable computation graph. Then, we
explain how learning can be incorporated in the framework
and finally, we show how the entire system can be trained
end-to-end from data.

A. Differentiable GPMP2

Our architecture consists of two main components: a
planning module P that is differentiable but has no learnable
parameters and a trainable module W that can be imple-
mented using a differentiable function approximator such
as a neural network as shown in Fig. 1. As discussed in
Section III, GPMP2 performs trajectory optimization via
MAP inference on a factor graph by solving an iterative
nonlinear optimization, where at any iteration the factor



graph is linearized at the current estimate of the trajectory
to produce the linear system in Eq. (7) and an update step
is computed by solving that linear system. At a high level,
our planning module P implements this update step as a
computational graph. The trainable module W is then set
up to parameterize some desired planning parameters and
outputs these as φL at every iteration. These parameters
correspond to factor covariances used by P to construct the
linearized factor graph. Additionally, P takes as input a set
of fixed planning parameters φF to allow parameters that
can be user-specified and are not being learned, for example,
obstacle safety distance and covariances of constraint factors
like start, goal, and velocity. The key insight is that since all
operations are differentiable for solving Eq. 7, we can easily
differentiate through it using standard autograd tools [20]
and thus train W in an end-to-end fashion from data.

Similar to GPMP2, during the forward pass, dGPMP2
iteratively optimizes the trajectory where at the ith iteration,
the planning module P takes the current estimate of the
trajectory θi and planning parameters φL and φF as inputs
(where φL is the output of the trainable module W and φF
are user-defined and fixed) and produces the next estimate
θi+1 as shown in Fig. 1. The new estimate then becomes
the input for the next iteration. This process continues until
θi+1 passes a specified convergence check or a maximum
of T iterations and the optimization terminates (C). At the
end of the optimization, we roll out a complete differentiable
computation graph for the motion planner.

Notation: θi refers to the trajectory estimate at the ith

iteration of the optimization that goes from 1, . . . , T and θi
is the ith state along the trajectory that goes from 1, . . . , N .

The planning module: θi is fed into the planning
module along with a signed distance field of the environment
and additional planning parameters (φF and φL) such as
factor covariances, safety distance, robot kinematics, start-
goal constraints, and other task related constraints. These
inputs are used to construct the linear system in Eq. (7)
corresponding to the linearized factor graph of the planning
problem. Similar to standard GPMP2, constraints are im-
plemented as factors with fixed small covariances and the
likelihood function for obstacle avoidance is the hinge loss
function (see Section V) with covariance Σ. The trajectory
update δθi is then computed by solving this linear system,
using Cholesky decomposition of the normal equations [3],
[21], and the new trajectory θi+1 is computed using a Gauss-
Newton step. The above procedure is fully differentiable
and allows computing gradients in the backwards pass with
respect to θi, GP covariance K, and likelihood function
covariance Σ.

The trainable module: The trainable module W out-
puts planning parameters φL. These correspond to covari-
ances of factors in Eq. 7 that we wish to learn from data. In
practice, we can choose to learn the GP covariance K, the
likelihood covariance Σ, or both. Additionally, this approach
allows us to learn individual covariances for different states
along the trajectory [θ1, . . . ,θN ] and different iterations of
the optimization thus offering much more expressiveness

than a single hand-tuned covariance. We implement W
as a feed-forward convolutional neural network that takes
as input the bitmap image of the environment, the signed
distance field and the current trajectory θi, and outputs a
parameter vector φi

L at every iteration i. Note that, given our
architecture, W can be customized as per individual needs
based on problem requirements or parameters chosen to be
learned.

After a forward pass, we roll out a fully differentiable
computation graph that outputs a sequence of trajectories
{θ1, . . . ,θT }. Then we evaluate a loss function on this se-
quence and backpropagate that loss to update the parameters
of W such that it produces parameters φL that allow us
to optimize for better quality trajectories on the dataset as
measured by the loss. We explain our loss function and the
training procedure in detail below.

B. Learning factor graph covariances

Imitation loss: Consider the availability of expert
demonstrations for a planning problem. These may be
provided by an asymptotically optimal (but slow) motion
planner [22] or by human demonstration [23]. dGPMP2 can
be trained to produce similar trajectories by minimizing an
error metric between the demonstrations and learner’s output
with

Limitation = ||θe − θ||22 (9)

where θe is the expert’s demonstrated trajectory and the
metric is the L2 norm.

Task loss: Naively trying to match the expert can be
problematic for a motion planner. For example, when equally
good paths lie in different homotopy classes, the learner may
land in a different one than the expert. In this case, penalizing
for not matching the expert may be excessively conservative.
If using human demonstrations as an expert, a realizability
gap can arise when the planner has different constraints as
compared with the human. Thus, we use an external task
loss as a regularizer that encourages smoothness and obstacle
avoidance, while respecting start and goal constraints, as is
often used in motion planning [24]:

Lplan = Fsmooth + λ×Fobs, (10)

where Fsmooth corresponds to the GP prior error and Fobs

is the obstacle cost that are described in Eq. (6) and λ is
a user specified parameter. In practice, the performance is
not sensitive to the setting of λ. Then, the overall loss for a
single trajectory is, L = Limitation + Lplan. Note that our
framework allows for any choice of loss function depending
on the application.

Training: During training we roll out our learner for
a fixed number of iterations T and use Backpropagation
Through Time (BPTT) [25] on the sum of losses of the
intermediate trajectories in order to update the parameters
of the trainable module W. Then, the total loss minimized
for our learner over a batch of size K is

Ltotal =
1

K

1

T

K∑
k=1

T∑
i=1

Lk,i. (11)



V. EXPERIMENTAL EVALUATION

We test our approach on 2D navigation problems with
complex environment distributions and problems with user-
specified velocity constraints. Many real world motion plan-
ning problems such as warehouse automation (KIVA sys-
tems), extra-terrestrial rovers, in-home robots (Roomba),
navigation from satellite data, and last mile delivery, among
others, are inherently 2D. These problems are challenging
partly because of local minima generated by complex distri-
butions of obstacles and other constraints such as velocity
limits. The sensitivity of planners to parameter settings
further adds to the difficulty. This is captured by the datasets
we consider, where the forest distribution consists of small
obstacles scattered around the workspace and requires the
robot to squeeze through several narrow corridors and the
tarpit distribution contains a small number of larger obsta-
cles clumped together near the center of the workspace and
requires the robot to avoid the cluster of obstacles entirely.
It is challenging for a single planner with fixed parameters
to solve problems from both distributions.

A. Implementation details

All our experiments and training are performed on a
desktop with 8 Intel Core i7-7700K @ 4.20GHz CPUs,
32GB RAM and a 12GB NVIDIA Titan Xp. We consider
a 2D point robot in a cluttered environment and planning
is done in a state space θi = [x, y, ẋ, ẏ]T . The robot is
represented as a circle with radius r centered on its center
of mass and the environment is a binary occupancy grid.
A Euclidean signed distance field is computed from the
occupancy grid to evaluate distance to obstacles and check
collisions. We utilize the same collision likelihood factor as
GPMP2 [4], h(θi) = c(x(θi)), where x(θi) = [x, y]T is the
position coordinates of the center of mass and the hinge loss
cost function c is

c(x) =

{
−d(x) + ε d(x) ≤ ε
0 otherwise

(12)

where ε = r + εsafe with εsafe as a user defined safety
distance, and d is the signed distance. In our current exper-
iments, we consider σobs as the learned parameter φL and
QC , εsafe,Ks,Kg to be the fixed parameters φF . Although,
performance of the planner depends on both QC and Σ,
for our task they trade off against each other and thus
we can achieve a similar behavior by varying one relative
to the other. Since in our setup the environment changes,
learning the likelihood covariance Σ is more relevant. In
other problem domains learning QC instead might be more
relevant such as [23]. It is important to note the difference in
expressiveness of Σ between GPMP2 where Σ = σ2

obs × I,
and dGPMP2 where Σ = diag(σ2

obs1
, . . . , σ2

obsN
) with any

σobsi being a function of the current trajectory and the
environment.

Loss function: It can be expensive to gather a large
number of human demonstrations to train the planner. Hence,
we use a self-supervised approach. Sampling based asymp-
totically optimal planning methods such as RRT* [22] are

(a) Expert (b) GPMP2,
σobs = 0.15

(c) GPMP2,
σobs = 0.01

(d) dGPMP2

Fig. 3: Example comparison of (d) dGPMP2 against (b)-(c) GPMP2
(fixed hand tuned covariances) and (a) Expert on forest (top row)
and tarpit (bottom row) datasets. Hand tuned covariances that
work well on one distribution of obstacles fail on the other and
vice versa. By imitating the expert, dGPMP2 is able to perform
consistently across different environment distributions. Green circle
is start, cyan is goal, dashed red line is initialization, and Qc =
0.5×I , r = 0.4m for all. Trajectory is in collision if at any state the
signed distance between robot center of mass and nearest obstacle
is less than or equal to r.

effective in finding good homotopy classes to serve as an
initialization for local trajectory optimizers, but can be slow
to converge and produce non-smooth solution paths. We use
a combination of RRT* and GPMP2 as our expert. Expert
trajectories are generated by first running RRT* and are
then optimized with GPMP2 to yield smooth solutions. This
allows dGPMP2 to learn by utilizing the best combination of
local and global planning. We use the loss function defined
in Section IV-B with this expert.

Network architecture: For W we use a standard feed-
forward neural network model consisting of convolutional
and fully connected layers. The network consists of 5 con-
volutional layers with [16, 16, 16, 32, 32] filters respectively,
all 3x3 in size. This is followed by two fully connected layers
with [1000, 640] hidden units. We use ReLU activation with
batch normalization in all layers and a dropout probability
of 0.5 in the fully connected layers. The input to the neural
network is a 128x128 bitmap of the environment stacked
on top of the euclidean signed distance field of the same
dimensions. Backpropagation is performed for fixed number
of iterations, T = 10. At every iteration, the network outputs
a different likelihood covariance for each state along the
trajectory.

Comparing planners: The convergence for the opti-
mization is based on the following criterion: a tolerance
on the relative change in error across iterations tol(δerror),
magnitude of update tol(δθ), and max iterations Tmax. On
convergence the final trajectory is returned. We report the
following metrics on a test set of environments: (i) success,
percent of problems solved i.e. when a collision free trajec-
tory is found, (ii) average gp_mse, mean-squared GP error
measuring smoothness and (iii) collision_intensity, the
average portion of trajectory spent in collision when a
collision occurs.

We test our framework on two different planning tasks to
demonstrate (i) how learning covariances improves perfor-
mance and (ii) how the planner’s structure allows us to in-
corporate constraints. We compare against a baseline GPMP2



TABLE I: Comparison of dGPMP2 versus GPMP2 with fixed hand
tuned covariances. dGPMP2 learns the obstacle covariance σobs

using training set of 5000 environments. QC = 0.5 × I for all.
Total trajectory time is 10s with 100 states along the trajectory and
λ = 1.0 for training.

GPMP2 dGPMP2
σobs = 0.15 σobs = 0.01

forest only
success

71.02 52.18 66.67
tarpit only 55.56 74.08 68.00

mixed 62.67 64.00 67.33
gp_mse 0.002 0.0484 0.0015

num_iters 55.69 86.74 50.00
coll_intensity 0.0464 0.0414 0.0374

with hand-tuned parameters. However, we do not compare
against other sampling and optimization-based planners and
refer the reader to [3] for benchmarks of GPMP2 against
leading sampling and optimization-based planners.

B. Learning on complex distributions

In this experiment, we show that if the planner’s pa-
rameters are fixed, performance can be highly sensitive to
distribution of obstacles in the environment. However, if
a function can be learned to set the parameters based on
the current planning problem, this can help the planner
achieve uniformly good performance across different obsta-
cle distributions. We construct a hybrid dataset which is a
mixture of two distinct distributions of obstacles, forest

and tarpit, as shown in Fig. 3. We use a test set of 150
randomly sampled environments from this mixed dataset and
further subdivide it into two sets for each of the constituent
distributions (roughly equal in proportion). We then hand-
tuned parameters for GPMP2 to find the best covariances
for the individual distributions and compared them against
dGPMP2 on three different test sets: two for the individual
distributions and one for a mixed (roughly equal of the
two distributions). Since there is no formal mathematical
procedure for tuning parameters or even well-known heuris-
tics, we rely on a manual line-search. Although this can
likely be automated to find best static covariances for one
given environment distribution, it is not practical when the
environment distribution changes or when the parameters
need to be adapted based on the location of the robot in
the environment or the time-step on the trajectory.

The results in Table I show that for GPMP2 the best
parameters on one distribution perform poorly on the other
distribution in terms of success, although their performances
on the mixed dataset are similar. Conversely, dGPMP2 has
uniform and consistent performance across both distributions
even though it is only trained on the mixed dataset. This
demonstrates that dGPMP2 does not require manual tuning
for every distribution of planning environments, but can
automatically predict the covariances to use based on the
current trajectory and environment as can be seen in Fig. 3.
Additionally, dGPMP2 has the lowest gp_mse on the mixed
dataset meaning the trajectories produced are still smooth.
dGPMP2 also converges in fewer number of iterations than
the GPMP2 due to the covariance being more expressive and
varying over iterations.

TABLE II: Performance of dGPMP2 with velocity constraints on
different combinations of training and testing. Mild constraints are
vxmax = 1.5m/s, vymax = 1.5m/s, and maxtime = 15s,
tight constraints are vxmax = 1.0m/s, vymax = 1.0m/s, and
maxtime = 10s for the same start and goal. maxtime is
maximum time allowed for the trajectory.

Training condition Mild Mild Tight
Testing condition Mild Tight Tight

success 96 96 98.12
constraint_violation 0.0022 0.104 0.097

Limitations: Since BPTT is known to have issues with
exploding and vanishing gradients for long sequences, we
use a small number of iterations (T = 10) during training
which prevents the learner from sufficiently exploring during
training. The network architecture is a simple feed-forward
network and does not have any memory and hence the learner
does not learn to escape local minima very well. We believe
that these issues can be addressed in the future using learn-
ing techniques such as Truncated Backpropagation Through
Time (TBPTT) [26], policy gradient methods [27], [28], and
recurrent networks such as LSTMs [29].

C. Planning with velocity constraints

We show that our learning method can explicitly in-
corporate planning constraints by including velocity limit
factors into the optimization. We use a hinge loss similar
to obstacle cost to bound the robot velocity ẋ and ẏ and
set the covariance to a low value, Kv = 10−4, analo-
gous to joint limit factors in [3]. We evaluate the average
constraint_violation on a dataset with multiple ran-
domly placed obstacles and study the effect of incorporating
constraints during training. Table II shows a comparison
between dGPMP2 trained with mild constraints and tested
on problems with mild and tight constraints versus dGPMP2
trained using tight constraints and tested on problems with
tight constraints (details in the Table II caption). We see that,
by incorporating tight constraints during training, dGPMP2
can learn to handle tight constraints while avoiding obstacles.
This illustrates that dGPMP2 can successfully incorporate
constraints within its structure, and that the method can learn
to plan while respecting user-defined planning constraints.

VI. DISCUSSION

In this work, we developed dGPMP2, a novel differen-
tiable motion planning algorithm, by reformulating GPMP2
as a differentiable computational graph. Our method learned
to predict objective function parameters as part of the differ-
entiable planner and demonstrated competitive performance
against planning with fixed, hand-tuned parameters. Our
experimental results show that this strategy is an effec-
tive way to leverage experience to further improve upon
traditional state-of-the-art motion planning algorithms. We
currently limited our experiments to only point robots in 2D
environments to investigate the properties of the algorithm in
a controlled setting. However, since the formulation was built
on the GPMP2 planner, we believe that it can be extended to
handle more complicated motion planning problems includ-
ing articulated robots in 3D workspaces.
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