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Abstract

Online Imitation Learning (IL) is an algorithmic
framework that leverages interactions with expert
policies for efficient policy optimization. Here
policies are optimized by performing online learn-
ing on a sequence of loss functions that encourage
the learner to mimic expert actions. If the online
learning algorithm has no regret, then the agent
can provably learn an expert-like policy. Online
IL has demonstrated empirical successes in many
applications and interestingly, its policy improve-
ment speed observed in practice is usually much
faster than existing theory suggests. In this work,
we provide an explanation of this phenomenon.
Let ⇠ denote the policy class bias and assume the
online IL loss functions are convex, smooth, and
non-negative. We prove that, after N rounds of
online IL with stochastic feedback, the policy im-
proves in Õ(1/N +

p
⇠/N) in both expectation

and high probability. In other words, we show that
adopting a sufficiently expressive policy class in
online IL has two benefits: both the policy im-
provement speed increases and the performance
bias decreases.

1 INTRODUCTION

Imitation Learning (IL) is a framework for improving the
sample efficiency of policy optimization in sequential deci-
sion making. Unlike reinforcement learning (RL) algorithms
that optimize policies purely by trial-and-error, IL leverages
expert policies during training to provide extra feedback to
aid policy search (e.g., in the form of supervisory loss func-
tions). These expert policies can represent human demon-
strators or resource-intensive engineered solutions which
achieve non-trivial performance in the problem domain. By
following the guidance of an expert policy, the learner can

avoid blindly exploring the problem space and focus on
promising directions that lead to expert-like behaviors, so
the learning becomes sample efficient.

Online IL, pioneered by Ross et al. [2011], is a well-known
algorithm that exploits such expert policies. Given the ability
to interact with an expert policy, online IL reduces policy op-
timization to no-regret online learning [Hazan et al., 2016],
for which effective algorithms have been developed. The
main idea of online IL is to design an online learning prob-
lem1 in which 1) the decision set is identified with the policy
class in the original policy optimization problem; and 2)
the online loss functions are set to encourage the learner
to take expert-like actions under its own state distribution,
which resemble a sequence of supervised learning problems.
When these two conditions are met, the reduction follows:
the regret rate and the minimum cumulative loss witnessed
in the online learning problem determine the learning speed
and the performance bias in the original policy optimization
problem, respectively.

Since the work by Ross et al. [2011] was published, signifi-
cant progress has been made in further developing theory,
algorithms, and practical applications of this approach. For
certain problems, online IL can learn the optimal policy
exponentially faster than any RL algorithm when the ex-
pert policy is optimal [Sun et al., 2017]. Several IL algo-
rithms developed recently are based on online IL, such as
f -divergence minimization [Ke et al., 2019, Ghasemipour
et al., 2020] and Integral Probability Metrics minimiza-
tion [Swamy et al., 2021]. Furthermore, online IL has been
validated in a diverse range of real-world applications, in-
cluding agile off-road driving [Pan et al., 2018], quadrupedal
locomotion [Lee et al., 2020], vision-and-language naviga-
tion [Anderson et al., 2018], and intelligent edge comput-
ing [Ning et al., 2020]. Beyond typical IL scenarios in
which the goal is to imitate expert actions, the main prin-

1The online decision in the iterative process of online learning
should not be confused with the decisions made at each time step
in sequential decision making.

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).



ciple of online IL has also been applied to design algo-
rithms for system identification [Venkatraman et al., 2014],
model-based RL [Ross and Bagnell, 2012], structured pre-
diction [Ross and Bagnell, 2014, Chang et al., 2015, Sun
et al., 2017], and combinatorial search [Song et al., 2018].
Here we collectively call these algorithms online IL, since
they adopt the same reduction idea and mainly differ in the
way the expert policy is defined.

Despite the success of online IL, there is a mismatch be-
tween provable theoretical guarantees and the learning phe-
nomenon observed in practice. Because of the design con-
straint imposed on the online losses mentioned above, the
online losses used in the online IL reduction are not fully
adversarial, but generated by samples of a sequence of prob-
ability distributions that vary slowly as the learner updates
its policy [Cheng and Boots., 2018]. This structure makes
the performance guarantee given by the classic adversary-
style analysis of the regret rate taken by Ross et al. [2011]
overly conservative, and motivates a deeper study on theo-
retical underpinnings of online IL [Cheng and Boots., 2018,
Cheng et al., 2019b,a, Lee et al., 2019].

In this work, we are interested in explaining the fast policy
improvement of online IL that is observed in practice but not
captured by existing theory. When the online loss functions
are convex and Lipschitz, typical analyses of regret and
martingales [Ross et al., 2011, Cesa-Bianchi et al., 2004]
suggest an on-average convergence rate in O(1/

p
N) after

N rounds. However, empirically, online IL algorithms learn
much faster; e.g., the online IL algorithm DAgger [Ross
et al., 2011] learned to mimic a model predictive control
policy for autonomous off-road driving in only three rounds
in [Pan et al., 2018]. Although the convergence rate im-
proves to Õ(1/N) when the online losses are strongly con-
vex [Cheng and Boots., 2018], this condition can be difficult
to satisfy especially when the policy class is large, such as
a linear function class built on high-dimensional features.
The empirical effectiveness and sample efficiency of online
IL demand alternative explanations.

In this work, we bring a new perspective on the efficacy of
online IL: even when learning from convex (but not strongly
convex) sampled online losses, the learner in online IL can
actually achieve a Õ(1/N)-like rate, because the consis-
tency that the expert to imitate is fixed across different
rounds provides a stability effect to learning. Formally,
we prove a new bias-dependent convergence rate for online
IL that is adaptive to the performance of the best policy in
the policy class on the sequence of sampled losses. Inter-
estingly, this new rate shows that an online IL algorithm
can learn faster as this performance bias becomes smaller.
In other words, adopting a sufficiently expressive policy
class in online IL has two benefits: as the policy class be-
comes reasonably but not overly rich, both the learning
speed increases and the performance bias decreases.

Concretely, suppose that the losses in online IL are convex,
smooth, and non-negative, which, e.g., includes learning
linear policies with quadratic losses as commonly used in
continuous control problems. Let ⇠ denote the policy class
bias, which measures the performance of the best policy in
the policy class on the sequence of imitation losses. We give
a convergence rate in Õ(1/N +

p
⇠/N) both in expecta-

tion and in high probability for online IL algorithms using
stochastic feedback. This new result shows a transition from
the faster rate of Õ(1/N) to the usual rate of Õ(1/

p
N) as

the policy class bias ⇠ increases.

This type of bias-dependent or optimistic convergence rate
has been studied in typical machine learning settings, e.g.,
statistical learning [Srebro et al., 2010, Theorem 1], stochas-
tic convex optimization [Zhang et al., 2017, Liu et al.,
2018], and online learning [Srebro et al., 2010, Theorem
2], [Orabona, 2019, Theorem 4.21]. In fact, our new rate
in expectation for online IL can be treated, from a technical
viewpoint, as a direct consequence of the bias-dependent
bound in the online learning literature. However, deriving
such a new rate also in high probability requires extra techni-
calities, because the losses in online IL mix non-stationarity
and stochasticity together; indeed, previous analyses tackle
only one of these two properties and a straightforward com-
bination does not lead to the fast rate desired here (cf. Sec-
tion 3.3). To prove the desired fast high-probability bound,
we propose a new regret decomposition technique for analyz-
ing online IL and leverage a recent martingale concentration
result based on path-wise statistics [Rakhlin and Sridharan,
2015, Theorem 3].

We conclude by corroborating the new theoretical findings
with experimental results of online IL. The detailed proofs
for this paper can be found in the Appendix.

2 BACKGROUND: ONLINE IL

2.1 POLICY OPTIMIZATION

The objective of policy optimization is to find a high-
performance policy in a policy class ⇧ for sequential deci-
sion making problems. Typically, it models the world as a
Markov decision process (MDP), defined by an initial state
distribution, transition dynamics, and an instantaneous state-
action cost function [Puterman, 2014]. This MDP is often
assumed to be unknown to the learning agent; therefore the
learning algorithm for policy optimization needs to perform
systematic exploration in order to discover good policies
in ⇧. Concretely, let us consider a policy class ⇧ that has
a one-to-one mapping to a parameter space ⇥, and let ⇡✓

denote the policy associated with the parameter ✓ 2 ⇥. That
is, ⇧ = {⇡✓ : ✓ 2 ⇥}. The goal of policy optimization is to
find a policy ⇡✓ 2 ⇧ that minimizes the expected cost,

J(⇡✓) := Es⇠d⇡✓
Ea⇠⇡✓ [c(s, a)], (1)



where s and a are the state and the action, respectively,
c is the instantaneous cost function and d⇡✓ denotes the
average state distribution over the problem horizon induced
by executing policy ⇡✓ starting from a state sampled from
the initial state distribution. The problem formulation in (1)
applies to various settings of problem horizon and discount
rate, where the main difference is how the average state
distribution is defined; e.g., for a discounted problem, d⇡✓ is
defined by a geometric mean, whereas d⇡✓ is the stationary
state distribution for average infinite-horizon problems.

2.2 ONLINE IL ALGORITHMS

Online imitation learning (IL) is a policy optimization tech-
nique that leverages interactive experts to efficiently find
good policies. It devises a sequence of online loss functions
ln such that no regret and small policy class bias imply
good policy performance in the original sequential decision
problem. Concretely, let ⇡e be an interactive expert pol-
icy. Instead of minimizing (1) directly, online IL minimizes
a surrogate objective that upper bounds the performance
difference between the policy ⇡✓ and the expert ⇡e:

J(⇡✓) � J(⇡e)  O
⇣
Es⇠d⇡✓

Ea⇠⇡✓ [D⇡e(s, a)]| {z }
surrogate objective

⌘
, (2)

where the function D⇡e(s, a) represents how similar an
action a is to the action taken by expert policy ⇡e at state s,
measured by statistical distances (e.g., Wasserstein distance
and KL divergence) or their upper bounds [Ross et al., 2011,
Ross and Bagnell, 2014, Sun et al., 2017].

Although the surrogate objective in (2) resembles (1) (i.e.,
by replacing D⇡e(s, a) with c(s, a)), the surrogate objective
has an additional critical property that its range is normal-
ized [Cheng and Boots., 2018]: regardless of the definition
of the cost function c of the original sequential decision
problem, if the policy class ⇧ has enough capacity to con-
tain the expert policy ⇡e, there is a policy ⇡✓ 2 ⇧ such that,
for all states,

Ea⇠⇡✓ [D⇡e(s, a)] = 0. (3)

Under the realizability assumption (3), online IL can min-
imize the surrogate function in (2) by solving an online
learning problem: Let parametric space ⇥ be the decision
set (i.e., the policy class) in online learning; it defines the
online loss function in round n as

ln(✓) = Es⇠d⇡✓n
Ea⇠⇡✓ [D⇡e(s, a)], (4)

where ✓n 2 ⇥ is the online decision made by the online
algorithm in round n.

The main benefit of this indirect iterative approach is that,
compared with the surrogate function (2), the average state
distribution d⇡✓n

in the online loss function (4) is not con-
sidered as a function of the policy parameter ✓, making

Algorithm 1: Online Imitation Learning (IL)
Input: Initial policy ⇡✓1 and online algorithm A

Output: The best policy in the sequence of policies
{⇡✓n}

N
n=1

1 Initialize A with the initial policy ⇡✓1

2 for n from 1 to N do
3 Design the online loss function ln based on ⇡✓n

4 Execute ⇡✓n in the MDP to gather samples
5 Use the samples to build an estimate l̂n of ln such

that for all ✓, E[l̂n(✓)] = ln(✓)
6 Pass the functional feedback l̂n to A and use the

return of A to update policy to ⇡✓n+1

the online loss function (4) the objective function of a su-
pervised learning problem whose sampled gradient is less
noisy than that of the surrogate problem in (2). Because of
the realizability assumption (3), the influence of the policy
parameter on the change of the average state distribution
can be ignored here, and the average regret with respect to
the online loss functions in (4) alone [Ross et al., 2011] can
upper bound the surrogate function in (2).

When the expert policy ⇡e is only nearly realizable by the
policy class ⇧ (that is, (3) can only be satisfied up to a
certain error), optimizing the policy with this online learning
reduction would suffer from an extra performance bias due
to using a limited policy class, as we will later discuss in
Section 2.3.

Summary Online IL can be viewed as a meta algorithm
shown in Algorithm 1, where we take into account that
in practice the MDP is unknown and therefore the online
loss function ln needs to be further approximated by finite
samples as l̂n, such that 8✓ 2 ⇥, E[l̂n(✓)] = ln(✓). Given
an expert policy, it selects a surrogate function to satisfy
conditions similar to (2) and (3) (or their approximations).
Then a no-regret online learning algorithm A is used to
optimize the policy with respect to the sampled online loss
functions l̂n, generating a sequence of policies {⇡✓n}

N
n=1.

By this reduction, performance guarantees can be obtained
for the best policy in this sequence.

Online IL in General Before proceeding we note that by
following the online IL design protocol above, Algorithm 1
can be instantiated beyond the typical IL setup. By properly
choosing the definition of expert policies, the online IL re-
duction can be used to efficiently solve model-based RL and
system identification where the samples of the MDP transi-
tion dynamics are treated as experts demonstrations [Ross
and Bagnell, 2012, Venkatraman et al., 2014], and struc-
tured prediction where expert state-action value functions
measure how good an action is in the surrogate function in
(2) [Ross and Bagnell, 2014, Sun et al., 2017]. Similar reduc-
tion ideas are also used in recent RL algorithms [Agarwal



et al., 2019, Abbasi-Yadkori et al., 2019].

2.3 GUARANTEES OF ONLINE IL

Now that we have reviewed the algorithmic aspects of online
IL, we give a brief tutorial of the theoretical foundation of
online IL and the known convergence results, which show
exactly how regret and policy class bias are related to the
performance in the original policy optimization problem.

To this end, let us formally define 1) the regret and 2) the
policy class bias. For a sequence of online loss functions
{fn}

N
n=1 and decisions {✓n}

N
n=1 in an online learning prob-

lem, we define the regret as

Regret(fn) =
P

fn(✓n) � min✓2⇥
P

fn(✓). (5)

Note that, for brevity, the range in
PN

n=1 is omitted in (5)
and we will continue to do so below as long as the range is
clear from the context. In addition to the regret, we define
two problem-dependent biases of the decision set ⇥ (the
equivalence of the policy class ⇧).

Definition 1 (Problem-dependent biases). For the sam-
pled loss functions {l̂n}

N
n=1 experienced by running Al-

gorithm 1, we define ✏̂ = 1
N min✓2⇥

P
l̂n(✓) and ✏ =

1
N min✓2⇥

P
ln(✓), where for all n and ✓, ln(✓) =

E[l̂n(✓)].

A typical online IL analysis uses the regret and the pol-
icy class biases ✏ and ✏̂ to decompose the cumulative lossP

ln(✓n) to provide policy performance guarantees. Specif-
ically, define ✓? 2 argmin✓2⇥

P
ln(✓). By (5) and Defini-

tion 1, we can write

P
ln(✓n) = Regret(l̂n) +

⇣P
ln(✓n) � l̂n(✓n)

⌘
+N ✏̂

(6)

 Regret(l̂n) +
⇣P

ln(✓n) � l̂n(✓n)
⌘
+

⇣X
l̂n(✓

?) � ln(✓
?)

⌘
+N✏ (7)

where, in both (6) and (7), the first term is the online learning
regret, the middle term(s) are the generalization error(s), and
the last term is the policy class bias.

Because the surrogate loss ln(✓n) in online IL provides
an upper bound on the policy performance in the original
sequential decision problem (see (2) and (4)), picking the
best policy in a policy sequence {⇡✓n}

N
n=1 with a small

cumulative loss
P

ln(✓n) guarantees good performance.

In a nutshell, existing convergence results of online IL are
applications of (6) and (7) with different upper bounds on
the regret and the generalization errors [Ross et al., 2011,
Ross and Bagnell, 2012, 2014, Sun et al., 2017]. For ex-
ample, when the sampled loss functions l̂n are bounded,

the generalization error(s) (i.e., the middle term(s) in (6)
and (7)) can be bounded by Õ(

p
N) with high probabil-

ity by Azuma’s inequality (see [Cesa-Bianchi et al., 2004]
or [Hazan et al., 2016, Chapter 9]). Together with an O(

p
N)

bound on the regret (which is standard for online convex
losses) [Hazan et al., 2016, McMahan, 2017], it implies
that the average performance 1

N

P
ln(✓n) and the best per-

formance minn ln(✓n) converge to ✏̂ or ✏ at the speed of
Õ(1/

p
N).

However, the rate above often does not explain the fast
improvement of online IL observed in practice [Laskey
et al., 2016, Sun et al., 2017, Pan et al., 2018, Cheng et al.,
2018], as we will also show experimentally in Section 5.
While faster rates in Õ(1/N) was shown for strongly convex
loss functions [Ross et al., 2011, Cheng and Boots., 2018],
the strong convexity assumption usually does not hold; for
example, the common setting of learning with a policy class
⇧ and squared losses can easily break the strong convexity
assumption, when the state samples are not diverse enough
or when the feature dimension is high. Thus, alternative
explanations are needed.

3 NEW BIAS-DEPENDENT RATES

In this section, we present new policy convergence rates that
are adaptive to the performance biases in Definition 1. The
full proofs of these theorems is provided in the Appendix.

3.1 SETUP AND ASSUMPTIONS

We suppose the parameter space of the policy class ⇥ is a
closed convex subset of a Hilbert space H that is equipped
with norm k · k. Since k · k is not necessarily the norm
induced by the inner product, we denote its dual norm by
k · k⇤, which is defined as kxk⇤ = maxkyk=1hx, yi.

We define admissible algorithms to broaden the scope of
online IL algorithms that our analysis covers.

Definition 2 (Admissible online algorithm). We say an on-
line algorithm A is admissible for a parameter space ⇥
if there exists RA 2 [0,1) such that given any ⌘ > 0
and any sequence of differentiable convex functions fn,
A can achieve Regret(fn)  Regret(hrfn(✓n), ·i) 
1
⌘R

2
A
+ ⌘

2

P
krfn(✓n)k2⇤, where ✓n is the decision made

by A in round n.

We assume that Algorithm 1 is realized by an admis-
sible online learning algorithm A. This assumption is
satisfied by common online algorithms, such as mir-
ror descent [Nemirovski et al., 2009] and Follow-The-
Regularized-Leader [McMahan, 2017], where ⌘ in Defi-
nition 2 corresponds to a constant stepsize that is chosen
before seeing the online losses, and RA measures that size
of the decision set ⇥.



Finally, we formally define convex, smooth, and non-
negative (CSN) functions; we will assume the online loss ln
in online IL and its sampled version l̂n belong to this class.

Definition 3 (Convex, smooth, and non-negative (CSN)
function). A function f : H ! R is CSN if f on H is
convex, �-smooth2, and non-negative.

Several popular loss functions used in online IL (e.g.,
squared `2-loss and KL-divergence) are indeed CSN (Defi-
nition 3) (see Section 4 for examples). If the losses are not
smooth, several smoothing techniques in the optimization
literature are available to smooth the losses locally, e.g.,
Nesterov’s smoothing [Nesterov, 2005], Moreau-Yosida
regularization [Lemaréchal and Sagastizábal, 1997], and
randomized smoothing [Duchi et al., 2012].

3.2 RATE IN EXPECTATION

Our first contribution is a non-asymptotic bias-dependent
convergence rate in expectation by analyzing the online
regret and the generalization error in the decomposition in
(6) individually. First, under the assumption that sampled
losses are CSN (Definition 3) and the online algorithm is
admissible (Definition 2), the online regret can be bounded
by extending the bias-dependent regret bound stated for
mirror descent [Srebro et al., 2010, Theorem 2]. Second,
because the generalization error is a martingale difference
sequence, it vanishes in expectation.

Theorem 1. In Algorithm 1, suppose l̂n is CSN and A is
admissible. Let ✏̂ = 1

N min✓2⇥
P

l̂n(✓) be the bias, and let
Ê be an upper bound on ✏̂. Choose the stepsize ⌘ in A to be

1

2
⇣
�+

p
�2+ 1

2�NÊR�2
A

⌘ . Then it holds that

E
⇥
1
N

P
ln(✓n) � ✏̂

⇤


8�R2
A

N +

q
8�R2

AÊ
N (8)

The rate in (8) suggests that an online IL algorithm can learn
faster as the policy class bias becomes smaller; this is re-
flected in the transition from the usual rate O(1/

p
N) to the

faster rate O(1/N) when the bias goes to zero. Notably, the
rate in (8) does not depend on the dimensionality of H but
only on RA, which one can roughly think of as the largest
norm in ⇥. Therefore, we can increase the dimension of the
policy class to reduce the bias (e.g., by using reproducing
kernels [Hofmann et al., 2008]) as long as the diameter of
⇥ measured by norm k · k (e.g., `2-norm) stays controlled.

Although the proof of Theorem 1 is a straightforward ex-
tension of the existing bias-dependent regret bounds from
online learning literature, Theorem 1 brings a new perspec-
tive of online IL, which better explains its fast improvement

2A function f is �-smooth if its gradient satisfy krf(x) �
rf(y)k⇤  �kx� yk for x, y 2 H.

and suggests directions for designing new algorithms that
learn faster. As shown in Theorem 1, the policy learning
speed in online IL can be closely connected to the policy
class biases in Definition 1 which have been used in the
online IL literature as a measure of expressivity.

Importantly, unlike in adversarial online learning, the biases
✏̂ and ✏ in online IL is not arbitrarily large, but of constant
sizes in most applications. For example, consider a popular
application of online IL–learning-to-search by imitating a
deterministic algorithmic expert ⇡e [Bhardwaj et al., 2017].
Here the goal is to learn a computationally efficient pol-
icy in place of the expert policy that relies on intensive
computation or information unavailable at test time (e.g.,
the expert can be a brute-force search algorithm). In each
round of learning, a problem instance is drawn from a dis-
tribution of problems, and the learner would query for the
expert’s advice for the state it visits in the sampled problem.
If we consider a deterministic learner policy ⇡✓n parame-
terized by ✓n 2 ⇥, the sampled online loss can be set as
l̂n(✓n) = (⇡✓n(sn) � ⇡e(sn))2, where sn is the sampled
state visited by the learner in round n. In these problems, the
stochasticity comes from sampling problem instances and
the learner’s states. But when the expert policy is contained
in the class of approximators, there is some ✓⇤ 2 ⇥ such
that l̂n(✓⇤) = 0 simultaneously for all n and all samples, i.e.,
✏ = ✏̂ = 0. Generally, one can show that ✏ and ✏̂ are at most
the losses incurred by the expert policy plus some distance
between the expert and the approximator class. Therefore,
our results show that online IL in most useful cases roughly
has a O(1/N) rate.

Online IL with Adaptive Stepsizes In Theorem 1, the
bias-dependent rate (8) holds when the stepsize of the ad-
missible online learning algorithm A is appropriately tuned.
While this seems to be a limitation of Theorem 1, one can
show that the rate (8) still holds if the stepsizes are prop-
erly adapted online (e.g., using an AdaGrad rule [Duchi
et al., 2011] ⌘n = RA

2
pPn

i=1 krfn(✓n)k2
⇤

) without knowing

the constants �, N, Ê. This is because an online algorithm
with adaptive stepsizes can obtain almost the same regret
guarantee as an algorithm that would know the optimal con-
stant stepsize in advance. Furthermore, the high-probability
bias-dependent rate in Theorem 2 that will be presented
in Section 3.3 can also be extended to adaptive stepsizes.
Please find details in Appendix D.

3.3 RATE IN HIGH PROBABILITY

Next we show that a similar non-asymptotic3 bias-dependent
convergence rate to the rate (8) also holds in high probability.

3For compactness, we use the big-O notation to hide the con-
stants in the rate; the exact constants can be found in Appendix C.



Theorem 2. Under the same assumptions and setup of The-
orem 1, further assume that there is G 2 [0,1) such that,
for any ✓ 2 ⇥, krl̂n(✓)k⇤  G. For any � < 1/e, with
probability at least 1 � �, the following holds

1
N

P
ln(✓n) � ✏ = O

✓
C�R2

N +
q

C�R2(Ê+✏)
N

◆
(9)

where R⇥ = max✓2⇥ k✓k, R = max(1, R⇥, RA), C =
log(1/�) log(GRN).

We remark that the uniform bound G on the norm of the
gradients only appears in logarithmic terms. Therefore, this
rate stays reasonable when the loss functions have gradients
whose norm grows with the size of ⇥, such as the popular
squared loss.

To prove Theorem 2, one may attempt to build on top of the
proof of Theorem 1 by applying basic martingale concen-
tration properties on the martingale difference sequences
(MDSs) in (6), or devise a similar scheme for (7). But tak-
ing this direct approach will bring back the usual rate of
O(1/

p
N). To the best of our knowledge, sharp concen-

tration inequalities for the counterparts of MDS in other
learning settings cannot be adapted here in a straightforward
way. Srebro et al. [2010, Theorem 1] prove a fast rate for
empirical risk minimizer (ERM) in statistical learning. How-
ever, their proof is based on local Rademacher complexities,
which do not have obvious extension to non-stationary on-
line losses. Zhang et al. [2017] extend the results of Srebro
et al. [2010] to stochastic convex optimization, but the ex-
tension relies on an i.i.d. concentration lemma.4 Kakade and
Tewari [2009] show fast converging excess risk of online
convex programming algorithms when the loss function is
Lipschitz and strongly convex; relaxing the strong convexity
assumptions is the goal of this work.

Convexity Assumption Both Theorem 1 and Theorem 2
require that the sampled online losses l̂n are convex. 1) On
one hand, this convexity assumption appears to be restrictive,
because our results cannot explain learning with generic neu-
ral networks. Nonetheless, expressive linear policy classes
that meet the convexity assumption still include many use-
ful cases (such as RKHS [Hofmann et al., 2008] and rich
feature sets). Furthermore, convexity has been a central as-
sumption in almost all online learning paradigms; we did
not attempt to address this limitation in this work. 2) On the
other hand, the convexity assumption relaxes the strong con-
vexity assumption needed in the online IL literature [Ross
et al., 2011, Cheng and Boots., 2018]. This relaxation is

4The i.i.d. concentration lemma further depends on a martin-
gale concentration bound [Pinelis, 1994, Theorem 3.4], which
relies on an almost-surely upper bound of the second-order statis-
tics. In comparison, the martingale concentration we utilize in
this work relies on second-order statistics that are defined on the
sample path [Rakhlin and Sridharan, 2015, Theorem 3].

important when the number of samples is smaller than the
number of policy parameters or when the samples are not
diverse enough. In those cases, even if the expected losses
ln are strongly convex, the sampled losses l̂n may not be
strongly convex because the Hessian matrix is singular.

Related Work in Learning Similar bias-dependent or op-
timistic rates have been studied extensively in several more
typical learning settings such as contextual bandits [Allen-
Zhu et al., 2018], statistical learning [Panchenko et al., 2002,
Srebro et al., 2010, Zhang et al., 2017, Liu et al., 2018], on-
line learning with adversarial loss sequences [Srebro et al.,
2010, Orabona et al., 2012], and online-to-batch conver-
sion [Littlestone, 1990, Cesa-Bianchi et al., 2004]. Table 1
summarizes these different learning setups. In contrast to
bandit settings that focus on discrete actions or simplex ge-
ometry, online IL usually leads to online convex losses, a
general compact convex decision set, and stochastic func-
tional or gradient feedback. Compared to statistical and
online learning, online IL concerns loss functions that are
both stochastic and online; we can view statistical and on-
line learning as special cases of online IL. The interactions
between noises and non-stationarity make the analysis of
online IL especially interesting.

Specialization to Stochastic Convex Optimization Be-
cause of the generality of the online IL, an online IL algo-
rithm (Algorithm 1) running on a stationary loss function
can serve as a one-pass learning algorithm for stochastic
optimization; that is, we have ln = l for some l for all n;
By specializing Theorem 1 and Theorem 2 to the stochastic
optimization setting, we can recover the existing bounds in
the stochastic optimization literature, i.e., Corollary 3 and
Theorem 1 in [Srebro et al., 2010], respectively. These spe-
cial cases can be derived in a straightforward manner due to
the relationship between ✏̂ and ✏ when the loss function is
fixed (i.e., ln = l): 1) E[✏] = E[✏̂], and 2) in high probabil-
ity, ✏̂ � ✏  O(

p
1/N). However, we note that for general

online IL problems, the sizes of ✏̂ and ✏ are not comparable
and E[✏] 6= E[✏̂].

3.4 PROOF SKETCH FOR THEOREM 2

We take a different decomposition of the cumulative loss to
avoid the usual O(1/

p
N) rate originating from applying

martingale analyses on the MDSs in (6) and (7). Here we
construct two new MDSs in terms of the gradients: recall
✏ = min✓2⇥

P
ln(✓) and let ✓? = argmin✓2⇥

P
ln(✓).



Table 1: Comparison of different learning settings. Info.: Information about the loss function available to the learning
algorithm in each round. ERM: Empirical risk minimization. Partial FB: Partial feedback.

Setting Info. Stochastic Non-stationary Partial FB Estimator Excess loss to minimize

Online IL (this work) l̂n Yes Yes No Online
P

ln(✓n) � min
P

ln(✓)
Stochastic bandits l̂(✓n) Yes No Yes Online

P
l(✓n) � N min l(✓)

Online learning ln No Yes No Online
P

ln(✓n) � min
P

ln(✓)
Statistical learning l̂ Yes No No ERM l(✓ERM) � min l(✓)
Online-to-batch l̂ Yes No No Online

P
l(✓n) � N min l(✓)

Then by convexity of ln, we can derive
X

ln(✓n) � N✏



X
hrln(✓n) � rl̂n(✓n), ✓ni| {z }

MDS

� (10)

X
hrln(✓n) � rl̂n(✓n)| {z }

MDS

, ✓?i + Regret(hrl̂n(✓n), ·i)

Our proof is based on analyzing these three terms. For the
MDSs in (10), we notice that, for smooth and non-negative
functions, the squared norm of the gradients can be bounded
by its function value.

Lemma 1 (Lemma 3.1 [Srebro et al., 2010]). Suppose a
function f : H ! R is �-smooth and non-negative, then for
any x 2 H, krf(x)k2

⇤
 4�f(x).

Lemma 1 enables us to properly control the second-order
statistics of the MDSs in (10). By a recent vector-valued
martingale concentration inequality that depends only on
second-order statistics [Rakhlin and Sridharan, 2015, Theo-
rem 3], we obtain a self-bounding property for (10) to get
fast concentration rate.

Besides analyzing the MDSs, we need to bound the regret
to the linear functions defined by the gradients (the last term
in (10)). Since this last term is linear, not CSN, the bias-
dependent online regret in the proof of Theorem 1 does not
apply. Nonetheless, because these linear functions are based
on the gradients of CSN functions, we discover that their
regret rate actually obeys the exact same rate as the regret to
the CSN loss functions. This is notable because the regret
to these linear functions upper bounds the regret to the CSN
loss functions.

Combining the bounds on the MDSs and the regret, we
obtain the rate in (9).

4 CASE STUDIES

We use two concrete instantiations of the online IL algorithm
(Algorithm 1) to show how the new theoretical results in
Section 3 improve the existing understanding of the policy
improvement speed in these algorithms.

4.1 IMITATION LEARNING

The work by Ross et al. [2011] on online IL has demon-
strated successes in solving many real-world sequential de-
cision making problems [Laskey et al., 2016, 2017, Pan
et al., 2018]. When the action space is discrete, a popular de-
sign choice is to set D⇡e(s, a) in (4) as the hinge loss [Ross
et al., 2011]. For continuous domains, `1-loss becomes a
natural alternative for defining D⇡e(s, a), which, e.g., is
adopted by Pan et al. [2018] for autonomous driving. When
the policy is linear in the parameters, one can verify that
these loss functions are convex and non-negative, though
not strongly convex. Therefore, existing theorems suggest
only an O(1/

p
N) rate, which does not reflect the fast ex-

perimental rates [Ross et al., 2011, Pan et al., 2018].

Although our new theorems are not directly applicable to
these non-smooth loss functions, they can be applied to a
smoothed version of these non-negative convex loss func-
tions. For instance, applying the Huber approximation (an
instantiation of Nesterov’s smoothing) [Nesterov, 2005] to
“smooth the tip” of these `1-like losses yields a globally
smooth function with respect to the `2-norm. As the smooth-
ing mainly changes where the loss is close to zero, our new
theorems suggest that, when the policy class is expressive
enough, learning with these `1-like losses would converge
in a Õ(1/N) rate before the policy gets very close to the
expert policy during policy optimization.

4.2 INTERACTIVE SYSTEM ID FOR
MODEL-BASED RL

Interactive system identification (ID) is a technique that in-
terleaves data collection and dynamics model learning for
robust model-based RL. Ross and Bagnell [2012] show that
interactive system ID can be analyzed under the online IL
framework, where the regret guarantee implies learning a dy-
namics model that mitigates the train-test distribution shift
problem [Abbeel and Ng, 2005, Ross and Bagnell, 2012].
Let T and T✓ denote the true and the learned transition
dynamics, respectively. A common online loss for interac-
tive system ID is ln(✓) = E(s,a)⇠ 1

2dT✓n
+ 1

2 ⌫
[Ds,a(T✓||T )],

where Ds,a(T✓||T ) is some distance between T and T✓ un-



der state s and action a, ⌫ is the state-action distribution of
an exploration policy, and dT✓n

is the state-action distribu-
tion induced by running an optimal policy with respect to
the model T✓n . When the model class is expressive enough
to contain the T , then ln(✓) = 0 holds for some ✓ 2 ⇥ (cf.
(3)).

Suppose that the states and actions are continuous. A com-
mon choice for Ds,a(T✓||T ) in learning deterministic dy-
namics is the squared error Ds,a(T✓||T ) = kT✓(s, a) �

s0k22 [Ross and Bagnell, 2012], where the s0 is the next state
in the true transition of T . If T✓ is linear in ✓ or belongs to
a reproducing kernel Hilbert space, the sampled loss func-
tion l̂n is CSN. Alternatively, when learning a probabilistic
model, Ds,a can be selected as the KL-divergence [Ross and
Bagnell, 2012]; it is known that if T✓ belongs to the expo-
nential family of distributions, the KL divergence, and hence
l̂n, are smooth and convex [Wainwright and Jordan, 2008].
If the sample size is large enough, l̂n becomes non-negative
in high probability.

As these online losses are CSN, our theoretical results apply
and suggest a convergence rate in Õ(1/N). On the contrary,
the finite sample analysis conducted in [Ross and Bagnell,
2012] uses the standard online-to-batch techniques [Cesa-
Bianchi et al., 2004] and can only give a rate of O(1/

p
N).

Our new results provide a better explanation to justify
the fast policy improvement speed observed empirically,
e.g., [Ross and Bagnell, 2012, Figure 2].

5 EXPERIMENTAL RESULTS

Although the main focus of this paper is the new theoretical
insights, we conduct experiments to provide evidence that
the fast policy improvement phenomenon indeed exists, as
our theory predicts. We verify the change of the policy
improvement rate due to policy class capacity by running
an imitation learning experiment in a simulated CartPole
balancing task. Details can be found in Appendix E.

MDP Setup The goal of the CartPole task is to keep the
pole upright by controlling the acceleration of the cart. The
start state is a configuration with a small uniformly sampled
offset from being static and vertical, and the dynamics is
deterministic. In each time step, if the pole is maintained
within a threshold from being upright, the learner receives an
instantaneous reward of one; otherwise, the learner receives
zero rewards and the episode terminates. This MDP has a
4-dimensional continuous state space and a 1-dimensional
continuous action space.

Expert and Learner Policies We use a neural network
expert policy (with one hidden layer of 64 units and tanh
activation) which is trained using policy gradient with
GAE [Schulman et al., 2015] and ADAM [Kingma and
Ba, 2014]. We let the learner policy be another neural net-

work that shares the same architecture with the expert policy.
When learning only the output layer, we copy the weights
of the hidden layer from the expert policy and randomly
initialize the weights of the output layer; we can view the
learner as a linear policy using the representation of the
expert policy. When learning the full network, we randomly
initialize all the weights and biases.

Online IL Setup We emulate online IL with unbiased
and biased policy classes. To define policy classes with
different degrees of bias, we impose `2-norm constraints of
different sizes on the weights of the learner’s output layer.
To define the unbiased policy class, we lift this `2-norm
constraint. We select ln(✓) = Es⇠d⇡✓n

[Hµ(⇡✓(s)�⇡e(s))]
as the online loss in IL (see Section 2.2), where Hµ is the
Huber function defined as Hµ(x) =

1
2x

2 for |x|  µ and
µ|x| �

1
2µ

2 for |x| > µ. In the experiments, µ is set to 0.05;
as a result, Hµ is linear when its function value is larger
than 0.00125. In the setting of training only the output layer,
because the learner’s policy is linear, this online loss is CSN
(Definition 3) in the unknown weights of the learner. We
use AdaGrad [McMahan and Streeter, 2010, Duchi et al.,
2011] to optimize the learner policy with constant stepsize
0.01 and 500 (ln 500 ⇡ 6.2) iterations.

Simulation Results We compare the results in the unbi-
ased and the biased settings, in terms of how the average
loss 1

N

PN
n=1 ln(✓n) changes as the number of rounds N in

online learning increases. We impose `2-norm constraints
of sizes {0.1, 0.12, 0.15} on the weights of the output layer
to simulate biased policy classes. For comparison, when
training the output layer, the `2-norm of the final policy
trained without the constraint is about 0.18; when training
the full network, it is about 0.23. The experimental results
are depicted in Fig. 1. To better visualize the rate of improve-
ment, we plot both the x- and y-axis in log scale, so that the
slope of the curves directly represents the rate: if the slope
is �1, the rate is O(1/N) and if the slope is �

1
2 the rate is

O(1/
p
N). In Fig. 1a, only the output layer of the learner

policy is trained. In this setting, all the assumptions made
in our theorems are satisfied. It can be seen that when using
a larger norm constraint (i.e., smaller bias), the learner pol-
icy improvement becomes faster, moving towards O(1/N).
The curve with the constraint of 0.10 in Fig. 1a gets a rate
slightly faster O(1/

p
N), likely because the Huber loss is

strongly convex near zero. Interestingly, Fig. 1b shows that
this phenomenon happens also in training the full network,
which does not meet the assumption required in the theory.

6 CONCLUSION

In this paper, we provide an explanation of the fast learn-
ing speed of online IL by proving new expected and high-
probability convergence rates that depend on the policy class
capacity. However, our current results do not explain all the
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Figure 1: The convergence rate of online IL with different
policy class biases, where the bias is defined as the `2-norm
constraint on the weights of the output layer. The curves
are plotted using the median over 4 random seeds, and the
shaded region represents 10% and 90% percentile.

fast improvements of online IL observed in practice. The
analyses here are based on the assumption of using convex
and smooth loss functions. This assumption would be vio-
lated, for example, with a deep neural network policy based
on with ReLU activation; yet Pan et al. [2018] show fast
empirical convergence rates of these networks in online IL.
Nonetheless, we envision that the insights from this paper
can provide a promising direction to better understanding
the behaviors of online IL, and to suggest ways for design-
ing new online IL algorithms that proactively leverage these
self-bounding regret properties to achieve faster learning.
For example, extending the analysis to nonconvex online IL
loss functions by studying the convergence to the 2nd-order
stationary points is an interesting direction for lifting the
convexity assumption.
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