
Motion Planning as Probabilistic Inference using
Gaussian Processes and Factor Graphs

Jing Dong, Mustafa Mukadam, Frank Dellaert, and Byron Boots
Institute for Robotics & Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA

{jdong,mmukadam3}@gatech.edu, {frank,bboots}@cc.gatech.edu

Abstract—With the increased use of high degree-of-freedom
robots that must perform tasks in real-time, there is a need
for fast algorithms for motion planning. In this work, we view
motion planning from a probabilistic perspective. We consider
smooth continuous-time trajectories as samples from a Gaussian
process (GP) and formulate the planning problem as probabilistic
inference. We use factor graphs and numerical optimization to
perform inference quickly, and we show how GP interpolation
can further increase the speed of the algorithm. Our framework
also allows us to incrementally update the solution of the planning
problem to contend with changing conditions. We benchmark
our algorithm against several recent trajectory optimization
algorithms on planning problems in multiple environments. Our
evaluation reveals that our approach is several times faster
than previous algorithms while retaining robustness. Finally,
we demonstrate the incremental version of our algorithm on
replanning problems, and show that it often can find successful
solutions in a fraction of the time required to replan from scratch.

I. INTRODUCTION & RELATED WORK

Motion planning is a fundamental tool in robotics. The
goal is to find a trajectory through the robot’s configuration
space that is both feasible and optimal. In this work, feasible
trajectories bring the robot from a start to goal configuration
while remaining collision-free and obeying the robot’s physical
limitations. Optimality is related to trajectory smoothness, in
other words trajectories that minimize dynamical criteria like
velocity or acceleration are considered to be more optimal than
trajectories that do not [12, 26, 30]. Previous work has focused
on both sampling-based algorithms and trajectory optimization
approaches to motion planning.

Sampling-based algorithms such as Probabilistic Road
Maps [13] and Rapidly exploring Random Trees [16, 17]
can generate feasible trajectories in complex high-dimensional
configuration spaces. However, due to the nature of random
sampling, trajectories generated by sampling-based algorithms
often lack quality and may result in jerky and redundant
motions. The problem is further compounded when the con-
figuration space is sparsely populated with obstacles or the
problem has tight constraints on navigation.

Trajectory optimization attempts to find smooth, collision-
free trajectories that optimize a cost function. For example,
CHOMP and related methods [2, 8, 24, 30] optimize a cost
functional using covariant gradient descent, while STOMP
[12] optimizes non-differentiable constraints by stochastic
sampling of noisy trajectories. One of the drawbacks of
these approaches is that the trajectory is finely discretized in

practice so that the optimizers can reason about obstacles in
the environment and guarantee smoothness in the solution.
Unfortunately, this results in high computational cost. TrajOpt
[25, 26] attempts to overcome this problem and speed up
solution time by formulating trajectory optimization as sequen-
tial quadratic programming and performing continuous-time
collision checking. This allows TrajOpt to represent trajecto-
ries using fewer states in theory, but a densely parameterized
trajectory is still required for reasoning about obstacles in more
complex environments and when smoothness in the output
trajectory is required during execution.

Continuous-time trajectory representations can overcome
the computational cost incurred by using large number of
states. B-Splines [6] and kernel methods [19] have been used
to represent trajectories with fewer states. The Gaussian Pro-
cess Motion Planner (GPMP) [20] parameterizes trajectories
only with a few states and then uses Gaussian process (GP)
interpolation to query the trajectory at any time of interest.

In this work we view motion planning as trajectory opti-
mization from a probabilistic inference perspective [27, 28].
We represent continuous-time trajectories as samples from
a GP [20] and then formulate the planning problem via a
probabilistic graphical model. We perform inference on the
graph using numerical tools that solve a nonlinear least squares
optimization problem, and generate fast solutions by exploiting
the sparsity of the underlying linear system.

By viewing motion planning as inference, we are able to
borrow tools from other areas of robotics. The Simultaneous
Localization and Mapping (SLAM) community has been fo-
cusing on efficient optimization algorithms for many years,
and one of the more successful approaches is the Smoothing
and Mapping (SAM) family of algorithms [4]. By formulating
SLAM as inference in a factor graph [15], and exploiting the
sparsity of underlying large-scale linear systems, SAM can
perform efficient inference. We adopt these methods into our
motion planning algorithm, and realize a significant increase
in speed over previous methods.

Replanning problems, which entail making modifications
to the trajectory such as changing goal locations, are com-
mon tasks in real-world motion planning applications. Early
replanning work includes D* [14] and Anytime A* [18], but
these algorithms are formulated for discrete state-spaces with
limited dimensionality. Recently, ITOMP [21] was able to
accomplish fluent replanning with a scheduler to enforce hard
timing deadlines, but no optimal or even feasible solution is

guaranteed. Parallel computing with GPUs is suggested by
Park et al. [22] to significantly speed up replanning, but this
approach does little to reduce the actual computational cost.

We provide a method for replanning inspired by work in
the SLAM community. Incremental Smoothing and Mapping
(iSAM) [9, 11] performs inference on factor graphs incremen-
tally and in real-time. By using an incremental solver [11], we
avoid re-solving the entire planning problem from scratch and
only update the trajectory where required. This dramatically
reduces the overall computational costs of our approach en-
abling fast replanning.

II. CONTINUOUS-TIME TRAJECTORY OPTIMIZATION WITH
GAUSSIAN PROCESSES

Following the conventions of Toussaint et al. [27, 28],
we view the trajectory optimization problem as probabilistic
inference. In this framework, the goal is to find the maximum
a posteriori (MAP) trajectory given a prior distribution on the
space of trajectories encouraging smoothness and a likelihood
function that encourages the trajectory to be collision-free.

We represent the trajectory as a continuous-valued function
mapping time t to robot states θ(t). We find the MAP function
θ∗ by probabilistic inference. This involves several steps,
which we preview here before describing in detail below.

First, we place a Gaussian process prior encouraging
smoothness directly on the function space of trajectories
(Section II-A). Next, we specify a likelihood function that
encourages collision-free trajectories (Section II-B). The MAP
estimate is then calculated from the posterior distribution (Sec-
tion II-C). Finally, the trajectory can be queried at any time of
interest by computing the mean trajectory under the Laplace
approximation of the posterior distribution (Section II-D).

A. The Gaussian Process Prior

A vector-valued Gaussian process (GP) is a collection
of random variables, any finite number of which have a
joint Gaussian distribution. We define a prior distribution
over trajectories θ(t) ∼ GP(µ(t),K(t, t′)), where µ(t) is a
vector-valued mean function and K(t, t′) is a matrix-valued
covariance function. Using the GP framework we can say that
for any collection of times t = {t0, . . . , tN}, θ has a joint
Gaussian distribution:

θ
.
=
[
θ0 . . . θN

]> ∼ N (µ,K). (1)

The mean vector µ and covariance kernel K are defined as

µ
.
=
[
µ(t0) . . . µ(tN)

]>
, K .

= [K(ti, tj)]
∣∣∣
ij,0≤i,j≤N

. (2)

The smoothness and generalization properties of a GP are en-
coded by the kernel K. Similar to previous work on Gaussian
process motion planning [20], we employ a structured covari-
ance function generated by a linear time varying stochastic
differential equation (LTV-SDE) [1]:

θ̇(t) = A(t)θ(t) + u(t) + F(t)w(t), (3)

where u(t) is the known system control input, A(t) and F(t)
are time varying matrices of the system, and w(t) is the white
process noise which is represented by

w(t) ∼ GP(0,QCδ(t− t′)), (4)

where QC is the power-spectral density matrix and δ(t−t′) is
the Dirac delta function. The mean and covariance of the GP
are generated from the solution of the LTV-SDE in Eq. (3):

µ(t) = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)u(s)ds, (5)

K(t, t′) = Φ(t, t0)K0Φ(t′, t0)>

+

∫ min(t,t′)

t0

Φ(t, s)F(s)QCF(s)>Φ(t′, s)>ds, (6)

where µ0 is the initial mean value of the first state, K0 is the
covariance of the first state, and Φ(t, s) is the state transition
matrix [1].

The GP prior distribution is then defined in terms of its
mean µ and covariance K:

P (θ) ∝ exp

{
− 1

2
‖ θ − µ ‖2K

}
. (7)

The benefit of this prior is that the inverse kernel matrix K−1
is proved to be exactly sparse (block-tridiagonal), due to the
Markov property of the LTV-SDE [1]. As we will see in
Section III-A, this kernel allows for fast, structure-exploiting
inference.

B. The Likelihood Function

The likelihood function is given by the conditional dis-
tribution Lobs(θi|ci = 0) = P (ci = 0|θi), which specifies
the probability of being clear of collisions, given the current
configuration θi. We define the likelihood as a distribution in
the exponential family

Lobs(θi|ci = 0) ∝ exp

{
− 1

2
‖ h(θi) ‖2Σobsi

}
, (8)

where h(θi) is vector-valued obstacle cost function and Σ−1obsi
is a hyperparmeter of the distribution The specific likelihood
and obstacle cost function used in our implementation are
detailed in Section IV-B.

C. Computing the MAP Trajectory

Given a Gaussian process prior and the exponential family
likelihood function, the goal is to compute the MAP posterior
trajectory

θ∗ = argmax
θ

{
P (θ)

∏
i

P (ci|θi)
}
, (9)

= argmin
θ

{
− log

(
P (θ)

∏
i

P (ci|θi)
)}

, (10)

= argmin
θ

{
1

2
‖ θ − µ ‖2K +

1

2
‖ h(θ) ‖2Σobs

}
, (11)

where h(θ)
.
= [h(θ0) . . .h(θN)]> and Eq. (11) follows from

Eq. (7) and Eq. (8).

Eq. (11) illustrates the duality between probabilistic infer-
ence and optimization, two different perspectives on motion
planning problems. The terms in Eq. (11) can also be viewed
as information, or ‘cost’ to be reduced. The MAP estimation
problem can therefore be reduced to a (possibly nonlinear)
least squares problem, which has been well studied and for
which many numerical tools are available.

Iterative approaches, like Gauss-Newton or Levenberg-
Marquardt repeatedly resolve a linearized approximation of
Eq. (11) until convergence. Linearizing h(θi)

h(θi) ≈ hi(θi) + Hiδθi,Hi
.
=
∂hi
∂θi

∣∣∣
θi(ti)

, (12)

where Hi is the Jacobian matrix of h(θi), we convert the
nonlinear least square problem to a linear problem around
linearization point θ

δθ∗ = argmin
δθ

{
1

2
‖ θ+δθ−µ ‖2K +

1

2
‖ h(θ)+Hδθ ‖2Σobs

}
, (13)

where H
.
= diag(H0, . . . ,HN). The optimal perturbation δθ∗

is given by solving the following linear system

(K−1+H>Σ−1obsH)δθ∗ = K−1(µ−θ)−H>Σ−1obsh(θ). (14)

Once the linear system is solved, iteration θ ← θ + δθ∗ is
applied until convergence criteria are met.

D. Fast Gaussian Process Interpolation

Following [1, 20, 29], the posterior mean of the trajectory
at any time τ can be approximated by Laplace’s method and
expressed in terms of the current trajectory θ at time points
t [23]:

θ(τ) = K(τ, t)K−1θ. (15)

Although the interpolation in Eq. (15) naı̈vely requires O(N)
operations, θ(τ) can be computed in O(1) by leveraging the
structure of the sparse GP prior introduced in Section II-A [1].
Since the LTV-SDE is Markovian, θ(τ) at τ, ti < τ < ti+1, is
a linear combination of only the adjacent function values θi
and θi+1 and is efficiently computed by

θ(τ) = µ(τ) + Λ(τ)(θi − µi) + Ψ(τ)(θi+1 − µi+1) (16)

Λ(τ) = Φ(τ, ti)−QτΦ(τ, ti)
>Q−1i+1Φ(ti+1, ti) (17)

Ψ(τ) = QτΦ(τ, ti)
>Q−1i+1 (18)

where

Qi =

∫ ti

ti−1

Φ(ti, s)F(s)QcF(s)>Φ(ti, s)
>ds. (19)

In Section III-B, we will describe how GP interpolation can
be used during trajectory optimization to dramatically speed
up inference.

III. FAST INFERENCE AND INCREMENTAL UPDATES WITH
FACTOR GRAPHS

We now describe how factor graphs and efficient trajectory
interpolation can be used to perform fast inference, and
incremental updates to solve problems like rapid replanning.

Prior Factor:
f0 = exp{− 1

2e
T
0 K−1

0 e0},
e0 = µ0 − θ0

GP Prior Factor:
fi = exp{− 1

2e
T
i Q−1

i ei},
ei = ui − θi + Φ(ti, ti−1)θi−1

Obstacle Factor:
fi = exp{− 1

2e
T
i Σ−1

obsei},
ei = h(θi)

Fig. 1: A factor graph of an example trajectory optimization
problem showing optimized states (white circles) and three
kinds of factors (black dots), namely prior factors on start and
goal states, obstacle cost factors on each state, and GP prior
factors that connect consecutive states.

A. Factor Graphs: Faster Inference by Exploiting Sparsity

If the linear system in Eq. (14) is sparse, then δθ∗ can be
solved efficiently by exploiting the sparse Cholesky decompo-
sition followed by forward-backward passes [7]. Fortunately,
this is the case: H is block-diagonal, the block-diagonal prop-
erty of H>Σ−1obsH is trivial, and we have selected a Gaussian
process prior with a block tridiagonal K−1 (Section II-A).

By maintaining a sparse linear system in Eq. (14), MAP
trajectory optimization can be equivalently viewed as the
problem of inference on a factor graph [15]. A factor graph
G = {Θ,F , E} is a bipartite graph, which represents the
factorization of a function (see Eq. (20)). Θ

.
= {θ0, . . . ,θN}

is set of variables, F .
= {f0, . . . , fM} is a set of factors,

where fi are functions on variable subsets Θi, and E are edges
connected to the two type of nodes.

f(Θ) =
∏
i

fi(Θi). (20)

In this work the factors represent the prior and likelihood
functions. GP prior factors are defined

fgp(θi−1,θi)
.
= exp

{
− 1

2
‖ ui−θi+Φ(ti, ti−1)θi−1 ‖2Qi

}
, (21)

with ui =
∫ ti
ti−1

Φ(ti, s)u(s)ds (see [29] for details). The
obstacle factor is defined as fobs(θi) = Lobs(θi|ci = 0).

An example factor graph is illustrated in Fig. 1. Performing
inference on the factor graph is equivalent to solving the MAP
estimation problem in Eq. (9). This equivalence has been
exploited for years in the SLAM community [4], resulting
in a range of tools that can be used to efficiently perform
inference [9, 10, 11, 29]. This insight is critical in Section III-C
where we describe how to incrementally update the MAP
trajectory given new conditions.

B. Even Faster Inference through Trajectory Interpolation

In practice trajectory optimizers often represent trajectories
at a set of discrete time points [12, 21, 24, 25]. Usually a
densely-sampled set of time points is required to reason about
collisions, forcing optimizers to deal with a large number of
parameters at increased computational cost.

ti ti+1

Time

System States

Collision Check

Output Trajectory

Fig. 2: An example that shows the trajectory at different
resolutions. System states parameterize the trajectory, collision
checking is performed at a higher resolution during optimiza-
tion and the output trajectory can be up-sampled further for
execution.

One of the primary benefits of using Gaussian processes
in motion planning is that the trajectories are represented as
functions that can be queried at any time of interest through
Gaussian process interpolation (Section II-D) [20]. The key
insight is that a smooth trajectory can be represented by a very
small number of states, but rich obstacle information between
states can still be considered during optimization by dense
interpolation between the states. This is illustrated in Fig. 2
for a section of the trajectory between any two time points.

To reason about collisions between states during optimiza-
tion, a new version of an obstacle factor is implemented.
Unlike the obstacle factor in Fig. 1, which is unary and only
calculates collision cost at the connected state, the new obsta-
cle factor is binary and is connected to its two neighboring
states θi and θi+1. For any time τ , ti < τ < ti+1, the
state θ(τ) is interpolated by Eq. (16), and the obstacle cost
is calculated as h(θ(τ)). The cost at the interpolated state is
then incorporated into a binary factor

fobs(θi,θi+1)
.
= exp

{
− 1

2
‖ h

(
µ(τ) + Λ(τ)(θi − µi)

+ Ψ(τ)(θi+1 − µi+1)
)
‖2Σobs

}
. (22)

In summary, the interpolated obstacle factor incorporates the
obstacle information at the time τ in the factor graph and then
updates the discrete states θi and θi+1.

Once the optimization has converged, a trajectory for exe-
cution can be generated by densely interpolating the trajectory
as shown in Fig. 2.

C. Incremental Inference

In addition to motion planning, we consider the replanning
problem: given a solved motion planning problem and new
conditions, solve the new problem. Replanning problems are
commonly encountered in the real world, when, for example:
(i) the goal position for the end-effector has been moved or
(ii) the robot receives updated information about its current
configuration. Since the replanning is performed during the
robot’s operation, possibly in dynamic environments, real-time
replanning is critical to ensuring safety.

The naı̈ve way to solve the problem is to literally replan
by running trajectory optimization from scratch. However, if
the majority of the problem is left unchanged, re-solving the

Factor Graph Bayes Tree

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

Fig. 3: Examples of replanning with the Bayes Tree. Dashed
boxes in the middle and lower examples indicate the parts of
factor graphs and Bayes Trees which are affected and changed
while performing replanning.

entire problem duplicates work. We suggest an incremental
approach to update the current solution given new information.
To accomplish this task, we again turn to the SLAM commu-
nity which has provided very efficient tools for performing
incremental inference on factor graphs [9, 11, 29].

In particular, we use the Bayes Tree [10, 11] to perform
incremental inference on the factor graph [29]. The Bayes Tree
is a data structure similar to a clique tree but directed. The
upper part of Fig. 3 shows a factor graph of a simple motion
planning problem: given start and end states, and obstacle cost
factors, solve the MAP inference problem to find the optimal
trajectory. The Bayes Trees in Fig. 3 are generated by the
corresponding factor graphs and the elimination order from
first to last state. If any factor is added or removed in the graph,
only parts of the Bayes Tree are updated based on where the
factor is added or removed. For details see [10, 11].

Two replanning examples are shown in Fig. 3. The middle
example shows replanning when the goal state is changed.
When the Bayes Tree is updated with the new goal only the
root node of the tree is changed. The lower example shows
a replanning problem given an observation of the current
actuator configuration (e.g. from perception during execution)
added in the middle of the trajectory at θ2. When the Bayes
Tree is updated, only the part of the tree corresponding to the
remaining trajectory is changed.

In our implementation, we use the iSAM2 incremental
solver [11] augmented by GP factors for interpolation [29]
to solve replanning problems: first, we collect the additional
information. Second, we form factors that need to be added to

or replaced in the factor graph. Finally, we run Algorithm 1
to update the Bayes Tree inside iSAM2, to get a new optimal
solution.

Algorithm 1 Replanning using iSAM2

Input: new factors fnew, replaced factors freplace
Output: updated optimal trajectory θ∗

Initialization :
1: add factors fadd = ∅, remove factors fremove = ∅

iSAM2 update :
2: fadd = fnew
3: if (freplace 6= ∅) then
4: fadd = fadd + freplace
5: fremove = findOldFactors(freplace)
6: end if
7: iSAM2.updateBayesTree(fadd, fremove)
8: return iSAM2.getCurrentEstimation()

IV. IMPLEMENTATION DETAILS

Here we provide technical details about our practical im-
plementation for solving motion planning problems.

A. The Constant Velocity GP Prior

In our implementation, we use the ‘constant velocity’ GP
prior [1], which applies the white-noise-on-acceleration model

ξ̈ = w(t), (23)

where ξ ∈ RD is the system configuration in a D-dimensional
vector space (e.g. number of joints of a robot arm). For the
model in Eq. (3), ξ is not a valid Markovian state, but

θ(t) =

[
ξ(t)

ξ̇(t)

]
(24)

is Markovian in the LVT-SDE model in Eq. (3). We express
the constant velocity prior through the SDE in Eq. (3) with

A(t) =

[
0 1
0 0

]
,u(t) = 0,F(t) =

[
0
1

]
. (25)

In this case, given ∆ti = ti − ti−1, we have

Φ(t, s) =

[
1 (t− s)1
0 1

]
,Qi =

[
1
3
∆t3iQC

1
2
∆t2iQC

1
2
∆t2iQC ∆tiQC

]
. (26)

The ‘constant velocity’ GP prior is centered around a zero
acceleration trajectory, so applying such prior will minimize
actuator acceleration in configuration space, and gives the
physical meaning of smoothness in our approach.

B. The Likelihood

For the likelihood in Eq. (8) we first define the hinge loss1

c(z) =

{
−d(z) + ε if d(z) 6 ε

0 if d(z) > ε
(27)

1The hinge loss is not differentiable at d(z) = ε, so in our implementation
we set c′(z) = −0.5 when d(z) = ε.

X (m)
0 0.2 0.4 0.6 0.8 1

Y
 (

m
)

0

0.2

0.4

0.6

0.8

Fig. 4: The left subfigure shows the likelihood, Lobs in a 2D
space with two obstacles and ε = 0.1m. Obstacles are marked
by black lines and darker area has higher likelihood for no-
collision. The right subfigure shows the WAM arm represented
with spheres (pink) used for collision checking.

where d(z) is the signed distance from any point z in the
workspace to the closest obstacle surface, and ε is a ‘safety
distance’ indicating the boundary of the ‘danger area’ near
obstacle surfaces. The signed distance d(z) is calculated from
a signed distance field (SDF) precomputed before optimiza-
tion [30].

To perform fast collision checking for an arbitrary shape
of the robot’s physical body, we represent the robot with a
set of spheres as in Zucker et al. [30] (shown in Fig. 4). In
this way, we convert the problem of finding the minimum
signed distance from the robot surface to any obstacles, to the
problem of finding the signed distance of sphere centers, minus
the sphere radius to any obstacles. The obstacle cost function
for each configuration θi is then completed by computing
the signed distances for each sphere sj (j = 1, . . . ,M) and
collecting them into a single vector,

h(θi) = [c(x(θi, sj))]
∣∣∣
1≤j≤M

(28)

where x is the forward kinematics that maps any configuration
θi to the workspace. The remaining parameter Σobsi needed
to fully implement the likelihood in Eq. (8) is defined as,
Σobsi = σobsI.

The example in Fig. 4 visualizes the conditional probabili-
ties of being free from collision given the likelihood defined
by the obstacle cost function in Eq. (28). The darker region
shows a free configuration space where the likelihood of no-
collision is high. The small area beyond the boundary of the
obstacles is lighter implying ‘safety distance’ defined by ε.

C. Motion constraints

Motion constraints exist in real-world planning problems
and should be considered during trajectory optimization. Ex-
amples include the constrained start and goal states as well
as constraints on any other states along the trajectory. These
constraints are handled in the inference framework by treating
them as prior knowledge on the trajectory states with very
small uncertainties.

Additional equality constraints, such as end-effector rotation
constraints (e.g. holding a cup filled with water upright)

Fig. 5: Environments used for evaluation with robot start and
goal configurations showing the WAM dataset (left), and PR2
dataset in bookshelves (center) and industrial scenes (right).

written as f(θc) = 0, where θc is the set of states involved,
can be incorporated into a likelihood,

Lconstraint(θ) ∝ exp

{
− 1

2
‖ f(θc) ‖2Σc

}
, (29)

where, Σc = σcI, σc is an arbitrary variance for this constraint,
indicating how ‘tight’ the constraint is.

To prevent joint-limit violations, we detect the violations
at each iteration and clamp the maximum joint value at that
time-stamp by adding an equality constraint factor, and then
continuing the optimization. The effect of this approach is
similar to the process of preventing joint-limit violations in
CHOMP [30].

V. EVALUATION

A. Experimental Setup

We used the GTSAM [3] C++ library to implement our
algorithm and OpenRAVE [5] for simulations. Two versions
of our algorithm were implemented, a batch version (GPMP2)
and an incremental version (iGPMP2). GPMP2 uses the
Levenberg-Marquardt algorithm to solve the nonlinear least
squares optimization problem, with initial λ = 0.01, and
the optimization is stopped if a maximum of 100 iterations
is reached, or the relative decrease in error is smaller than
10−4. iGPMP2 uses the iSAM2 [11] incremental optimizer
with default settings.

We conducted our experiments on two datasets that have a
number of different start and goal configurations. The start and
goal are specified by the Gaussian prior factor (with a very
small covariance) as a soft constraint. Although the solution
is theoretically inexact at start and goal, the error is trivial in
our experiments and can be ignored. We: (1) used the 7-DOF
WAM arm dataset used in GPMP [20], (Fig. 5 (left)) consisting
of 24 unique planning problems; and (2) used the PR2’s 7-
DOF right arm dataset used in TrajOpt [25, 26] consisting of
a total of 90 unique planning problems in bookshelves (Fig.
5 (center)) and industrial (Fig. 5 (right)) scenes. Finally, we
also validated successful trajectories on a real 7-DOF WAM
arm, setup in an environment identical to the simulation.2

B. The Batch Planner

1) Setup: We benchmarked our algorithm, GPMP2 when
using interpolation (GPMP2 inter) during optimization

2A video of experiments is available at https://youtu.be/mVA8qhGf7So.

(a) σobs = 0.005 (b) σobs = 0.05

Fig. 6: Left subfigure shows successful trajectory with a good
selection of σobs; right subfigure shows failure when σobs is
too large.

against itself without using interpolation (GPMP2 no-inter)
and other trajectory optimization algorithms - TrajOpt [25, 26],
GPMP [20], CHOMP [24, 30] and STOMP [12] on both
datasets. All benchmarks were run on a single thread of a
3.4GHz Intel Core i7 CPU.

All algorithms were initialized by a constant-velocity
straight line trajectory in configuration space, except GPMP,
which is required to be initialized by an acceleration-smooth
straight line [20]. For the WAM dataset, all initialized trajecto-
ries for all algorithms were parameterized by 101 equidistant
states. Since GPMP2 inter and GPMP use interpolation we
initialized them with 11 equidistant states such that 9 points
are interpolated between any two states (101 states effectively).
Since trajectory tasks are shorter in the PR2 dataset, we used
51 states for all algorithms and 11 states with 4 interpolation
points (51 states effectively) for GPMP2 inter and GPMP.
GPMP, CHOMP and STOMP were allowed to optimize until
a maximum of 250 iterations, or if a collision free trajectory
is found (collision checking is started after optimizing for at
least 10 iterations).

To keep comparisons fair we also compared against TrajOpt
using only 11 states (TrajOpt-11) in both datasets since it
uses continuos-time collision checking and can usually find
a successful trajectory with fewer states. Although TrajOpt is
faster when using fewer states, post-processing on the resulting
trajectory is needed to make it executable and keep it smooth.
It is interesting to note that since the continuous time-collision
checking is performed only linearly, after the trajectory is post-
processed it cannot offer any collision free guarantees. Our
approach (and GPMP) avoid this problem when using fewer
states by up-sampling the trajectory with GP interpolation
and checking for collision at the interpolated points. This up-
sampled trajectory remains smooth and can be used directly
during execution.

2) Parameters: Parameters of our approaches include
‘safety distance’, ε and ‘obstacle cost weight’, σobs. Generally
ε is selected to be about double the minimum distance to any
obstacle allowed in the scene (in the benchmark we choose
ε = 0.2m for the WAM dataset and ε = 0.08m for the PR2
dataset). σobs acts like a weight term that balances smoothness
and collision-free requirements on the optimized trajectory and
is set based on the trajectory requirements of the application.
Larger σobs puts more weight on smoothness versus obstacle
avoidance and vice versa. Fig. 6 shows an example of an
optimized trajectory for PR2 with different settings of σobs. In

https://youtu.be/mVA8qhGf7So

Table I.A Results for 24 planning problems on the 7-DOF WAM arm.

GPMP2 inter GPMP2 no-inter TrajOpt-101 TrajOpt-11 GPMP CHOMP STOMP
Success Rate (%) 95.8 91.7 91.7 20.8 95.8 75.0 40.0

Average Time to Success (s) 0.068 0.120 0.323 0.027 0.590 1.337 6.038
Maximum Time to Success (s) 0.112 0.217 0.548 0.033 1.322 6.768 22.971

Table I.B Results for 90 planning problems on PR2’s 7-DOF right arm.

GPMP2 inter GPMP2 no-inter TrajOpt-51 TrajOpt-11 GPMP CHOMP STOMP
Success Rate (%) 94.4 88.9 93.3 88.9 47.8 80.0 52.4

Average Time to Success (s) 0.033 0.053 0.860 0.168 1.134 4.999 7.586
Maximum Time to Success (s) 0.083 0.120 4.827 0.455 9.516 44.623 95.679

our experiments we found that the range [0.001, 0.02] works
well for σobs and larger robot arms should use larger σobs (in
the benchmark we choose σobs = 0.02m for the WAM dataset
and σobs = 0.005 for the PR2 dataset).

3) Analysis: The benchmark results for the WAM dataset
are summarized in Table I.A3 and results for the PR2 dataset
are summarized in Table I.B4. Average time to success and
maximum time to success include only successful runs.

Evaluating motion planning algorithms is a difficult task.
The algorithms here use different techniques to formulate and
solve the motion planning problem, and exhibit performance
that depends on initial conditions as well as a range of
parameter settings that can change based on the nature of
the planning problem. Therefore, in our experiments we have
tuned each algorithm to the settings close to default ones that
worked best for each dataset. However, we still observe that
TrajOpt-11 performs poorly on the WAM dataset (possibly
due to using too few states on the trajectory) while GPMP
performs poorly on the PR2 dataset (possibly due to the
different initialization of the trajectory, and also the start
and end configurations in the dataset being very close to the
obstacles).

From the results in Table I.A and I.B we see that our algo-
rithms perform consistently well compared to other algorithms
on these datasets. Using interpolation during optimization
(GPMP2 inter) achieves 30 − 50% speedup of average and
maximum runtimes when compared to not using interpolation
(GPMP2 no-inter). On the WAM dataset TrajOpt-11 has the
lowest runtime but is able to solve only 20% of the problems,
while GPMP2 inter and GPMP2 no-inter have the second and
third lowest runtimes. On the PR2 dataset, GPMP2 inter has
the lowest runtimes and GPMP2 no-inter comes in second. In
all our experiments the relative decrease in error condition is
always satisfied before the maximum iteration cap is reached,
possibly due to the quadratic convergence rates of our algo-
rithms. Therefore, all the failure cases were due to infeasible
local minimas. Solutions like random restarts may resolve this
issue, but are not currently implemented.

3Parameters for benchmark on the WAM dataset: For our algorithms, Qc =
1. For GPMP, Qc = 100. For GPMP and CHOMP, λ = 0.005, ε = 0.2,
η = 1. For STOMP, k = 5. For TrajOpt, coeffs = 20, dist pen = 0.05.

4Parameters for benchmark on the PR2 dataset: For GPMP and CHOMP,
ε = 0.05. All remaining parameters are the same from the WAM dataset.

C. The Incremental Planner
We evaluate our incremental motion planner (iGPMP2) by

benchmarking it against our batch planner (GPMP2) on replan-
ning problems from each scene of the WAM and PR2 datasets.
This replanning problem entails planning a trajectory from a
start configuration to an originally assigned goal configuration.
Then, at the middle time-step the trajectory is assigned a new
goal configuration. This requires two changes to the factor
graph: a new goal factor at the end of the trajectory to ensure
that the trajectory reaches the location in configuration where
the goal is changed, and a fixed state factor at the middle time
step to enforce constraint of current state. GPMP2 reinitializes
the trajectory as a constant-velocity straight line from the
middle state to the new goal however, iGPMP2 can use the
solution to the old goal and the updated Bayes Tree as the
initialization to incrementally update the trajectory thus finding
the solution much faster. This claim is corroborated by our
experiments.

32 replanning problems are prepared for the WAM dataset
and 28 replanning problems are prepared for the PR2 dataset
(18 in bookshelves and 10 in industrial). GP interpolation is
used and all parameters are the same as the batch benchmarks.
The benchmark results are shown in Table II.A and Table II.B.
We see from the results that iGPMP2 provides a significant
speed-up, suffering only a small loss in the success rate,
compared to GPMP2 that re-plans the trajectory from scratch.

Two possible reasons why iGPMP2’s success rate suffers as
compared to the GPMP2’s are: (1) iGPMP2 uses the original
trajectory as initialization, which may be a poor choice if the
goal has moved significantly; and (2) GPMP2 uses Levenberg-
Marquardt for optimization, that provides appropriate step
damping helping to improve the results, but iGPMP2 does
not use similar step damping in its implementation.

Examples of successfully replanned trajectories generated
using iGPMP2 are shown in Fig. 7. Since configuration and
velocity constraints are added at the robot states, the replanner
makes a smooth transition between original trajectories and
replanned trajectories, which is critical if the trajectory is being
executed on a real robot.

VI. DISCUSSION

A. Comparisons with Related Work
Although our work is inspired by the probabilistic view of

motion planning from [28], instead of using message passing,

Table II.A Results for 32 replanning problems on WAM.

iGPMP2 GPMP2
Success Rate (%) 90.6 100.0

Average Time to Success (ms) 2.38 30.21
Maximum Time to Success (ms) 3.92 46.60

Table II.B Results for 28 replanning problems on PR2.

iGPMP2 GPMP2
Success Rate (%) 75.0 96.4

Average Time to Success (ms) 4.27 26.70
Maximum Time to Success (ms) 6.67 58.84

Fig. 7: Example iGPMP2 results on the WAM and PR2
industrial. Red lines show originally planned end-effector
trajectories, and green lines show replanned end-effector tra-
jectories. Best viewed in color.

we convert the inference problem to a nonlinear least squares
problem. This allows us to use solvers that exploit the sparse
structure of our problem, leading to much faster algorithms.

Both GPMP [20] and our algorithms use sparse GP’s to
represent the continuous-time trajectory, use GP interpolation
to reduce the system states to be optimized, and use signed
distance fields for collision checking. However, our approach
differs from GPMP in that we fully embrace the probabilistic
view of motion planning, and we formulate the problem
as nonlinear least squares. Our algorithm uses optimization
methods with quadratic convergence rates, allowing much
faster solutions compared to GPMP (and the implementations
of CHOMP and STOMP) which use a gradient decent-based
technique with only linear convergence rate.

TrajOpt [25, 26] formulates the motion planning problem as
constrained optimization, which allows the use of hard con-
straints on obstacles but also makes the optimization problem
much more difficult and slower to solve. Benchmark results in
Section V-B show that our approach is faster than TrajOpt even
when it uses a small number of states to represent the trajec-
tory. TrajOpt performs continuous-time collision checking and
can, therefore, solve problems only with a few states in theory.
However, the trajectory does not have a continuous-time
representation and therefore must perform collision checking
by approximating the convex-hull of obstacles and a straight
line between states. This may not work in practice since a
trajectory with few states would need to be post-processed
to make it executable. Furthermore, depending on the post-
processing method, collision-free guarantees may not exist for
the final trajectory. Representing trajectories in continuous-
time with GPs and using GP interpolation to up-sample them,
allows our algorithms to circumvent this problem.

Finally, our framework allows us to solve replanning prob-
lems very quickly, something that none of the above trajectory
optimization approaches can provide. Solving these types of
problems fast is very useful in real-time real-world applica-
tions. We are able to achieve this by formulating the motion
planning problem as probabilistic inference on a factor graph
and is one of the major contributions of this paper.

B. Limitations & Future Work

A drawback of iterative methods for solving nonlinear
least square problems is that they offer no global optimality
guarantees. However, given that our objective is to satisfy
smoothness and to be collision-free, a globally optimal solution
is not strictly necessary. Many of the prior approaches to
motion planning face similar issues of getting stuck in local
minima. Several solutions [30] have been discussed in prior
work including random restarts. Since our approach is fast
for a single run, random restarts are a promising solution to
overcome the local minima problem.

The main drawback of our proposed approach is that it is
limited in its ability to handle motion constraints like nonlin-
ear inequality constraints. Sequential quadratic programming
(SQP) can be used to solve problems with such constraints, and
has been used before in motion planning [25, 26]. We believe
that SQP can be integrated into our trajectory optimizer,
although this remains future work.

VII. CONCLUSIONS

We formulate motion planning as probabilistic inference
using Gaussian processes to reason about continuous-time
trajectories. Exploiting the sparse structure of our formulation,
we perform fast inference on factor graphs as nonlinear least
squares optimization. Using GP interpolation we can query the
trajectory at any time of interest such that the initial trajectory
can be parameterized by only a few states and then up-sampled
during optimization to check for and propagate collision cost
information to the states being optimized.

We benchmark our algorithm against several state-of-the-
art trajectory optimization algorithms on 7-DOF arm planning
problems on two datasets in three distinct environments and
show that our approach is consistently faster, often several
times faster, than its nearest competitors.

Finally, using the Bayes Tree data structure and iSAM2
optimizer we are able to incrementally solve replanning prob-
lems in a few milliseconds, which is something unique to our
motion planning algorithm and highly useful for planning in
real-time real-world applications.

ACKNOWLEDGMENTS

This work is partially supported by National Institute of
Food and Agriculture, U.S. Department of Agriculture, un-
der award number 2014-67021-22556, and NSF CRII award
number 1464219.

REFERENCES

[1] Tim Barfoot, Chi Hay Tong, and Simo Sarkka. Batch
continuous-time trajectory estimation as exactly sparse Gaussian
process regression. Proceedings of Robotics: Science and
Systems, Berkeley, USA, 2014.

[2] Arunkumar Byravan, Byron Boots, Siddhartha S Srinivasa, and
Dieter Fox. Space-time functional gradient optimization for
motion planning. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 6499–6506. IEEE,
2014.

[3] Frank Dellaert. Factor graphs and GTSAM: a hands-on in-
troduction. Technical report, Georgia Tech Technical Report,
GT-RIM-CP&R-2012-002, 2012.

[4] Frank Dellaert and Michael Kaess. Square root SAM: Simul-
taneous localization and mapping via square root information
smoothing. The International Journal of Robotics Research, 25
(12):1181–1203, 2006.

[5] Rosen Diankov. Automated Construction of Robotic Manip-
ulation Programs. PhD thesis, Carnegie Mellon University,
Robotics Institute, August 2010.

[6] M. Elbanhawi, M. Simic, and R. Jazar. Randomized bidirec-
tional B-Spline parameterization motion planning. Intelligent
Transportation Systems, IEEE Transactions on, PP(99):1–1,
2015.

[7] Gene H Golub and Charles F Van Loan. Matrix computations,
volume 3. JHU Press, 2012.

[8] Keliang He, Elizabeth Martin, and Matt Zucker. Multigrid
CHOMP with local smoothing. In Proc. of 13th IEEE-RAS
Int. Conference on Humanoid Robots (Humanoids), 2013.

[9] Michael Kaess, Ananth Ranganathan, and Frank Dellaert.
iSAM: Incremental smoothing and mapping. Robotics, IEEE
Transactions on, 24(6):1365–1378, 2008.

[10] Michael Kaess, Viorela Ila, Richard Roberts, and Frank Dellaert.
The Bayes tree: An algorithmic foundation for probabilistic
robot mapping. In Algorithmic Foundations of Robotics IX,
pages 157–173. Springer, 2011.

[11] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela
Ila, John J Leonard, and Frank Dellaert. iSAM2: Incremental
smoothing and mapping using the Bayes tree. The International
Journal of Robotics Research, page 0278364911430419, 2011.

[12] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Pe-
ter Pastor, and Stefan Schaal. STOMP: Stochastic trajectory
optimization for motion planning. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 4569–
4574. IEEE, 2011.

[13] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automation,
IEEE Transactions on, 12(4):566–580, 1996.

[14] Sven Koenig, Craig Tovey, and Yuri Smirnov. Performance
bounds for planning in unknown terrain. Artificial Intelligence,
147(1):253–279, 2003.

[15] Frank R Kschischang, Brendan J Frey, and Hans-Andrea
Loeliger. Factor graphs and the sum-product algorithm. In-
formation Theory, IEEE Transactions on, 47(2):498–519, 2001.

[16] James J Kuffner and Steven M LaValle. RRT-connect: An effi-

cient approach to single-query path planning. In Robotics and
Automation, 2000. Proceedings. ICRA’00. IEEE International
Conference on, volume 2, pages 995–1001. IEEE, 2000.

[17] Steven M LaValle and James J Kuffner. Randomized kin-
odynamic planning. The International Journal of Robotics
Research, 20(5):378–400, 2001.

[18] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, An-
thony Stentz, and Sebastian Thrun. Anytime dynamic A*: An
anytime, replanning algorithm. In ICAPS, pages 262–271, 2005.

[19] Zita Marinho, Anca Dragan, Arun Byravan, Byron Boots, Sid-

dhartha Srinivasa, and Geoffrey J. Gordon. Functional gradient
motion planning in reproducing kernel Hilbert space. CoRR,
abs/1601.03648, 2016. URL http://arxiv.org/abs/1601.03648.

[20] Mustafa Mukadam, Xinyan Yan, and Byron Boots. Gaussian
process motion planning. In Proceedings of the 2016 IEEE
Conference on Robotics and Automation (ICRA-2016), 2016.

[21] Chonhyon Park, Jia Pan, and Dinesh Manocha. ITOMP:
Incremental trajectory optimization for real-time replanning in
dynamic environments. In ICAPS, 2012.

[22] Chonhyon Park, Jia Pan, and Dinesh Manocha. Real-time
optimization-based planning in dynamic environments using
GPUs. In Robotics and Automation (ICRA), 2013 IEEE In-
ternational Conference on, pages 4090–4097. IEEE, 2013.

[23] Carl Edward Rasmussen. Gaussian processes for machine
learning. Citeseer, 2006.

[24] Nathan Ratliff, Matthew Zucker, J Andrew Bagnell, and Sid-
dhartha Srinivasa. CHOMP: Gradient optimization techniques
for efficient motion planning. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 489–
494. IEEE, 2009.

[25] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, and Pieter Abbeel. Finding locally optimal, collision-
free trajectories with sequential convex optimization. In
Robotics: Science and Systems, volume 9, pages 1–10. Citeseer,
2013.

[26] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim
Awwal, Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg,
and Pieter Abbeel. Motion planning with sequential convex
optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251–1270, 2014.

[27] Marc Toussaint. Robot trajectory optimization using approxi-
mate inference. In Proceedings of the 26th annual international
conference on machine learning, pages 1049–1056. ACM, 2009.

[28] Marc Toussaint and Christian Goerick. A Bayesian view on
motor control and planning. In From Motor Learning to
Interaction Learning in Robots, pages 227–252. Springer, 2010.

[29] Xinyan Yan, Vadim Indelman, and Byron Boots. Incremental
sparse GP regression for continuous-time trajectory estimation
& mapping. In Proceedings of the International Symposium on
Robotics Research (ISRR-2015), 2015.

[30] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko,
Matthew Klingensmith, Christopher M Dellin, J Andrew Bag-
nell, and Siddhartha S Srinivasa. CHOMP: Covariant Hamil-
tonian optimization for motion planning. The International
Journal of Robotics Research, 32(9-10):1164–1193, 2013.

http://arxiv.org/abs/1601.03648

	Introduction & Related Work
	Continuous-time Trajectory Optimization with Gaussian Processes
	The Gaussian Process Prior
	The Likelihood Function
	Computing the MAP Trajectory
	Fast Gaussian Process Interpolation

	Fast Inference and Incremental updates with Factor Graphs
	Factor Graphs: Faster Inference by Exploiting Sparsity
	Even Faster Inference through Trajectory Interpolation
	Incremental Inference

	Implementation Details
	The Constant Velocity GP Prior
	The Likelihood
	Motion constraints

	Evaluation
	Experimental Setup
	The Batch Planner
	Setup
	Parameters
	Analysis

	The Incremental Planner

	Discussion
	Comparisons with Related Work
	Limitations & Future Work

	Conclusions

