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Abstract— An understanding of the nature of objects could
help robots to solve both high-level abstract tasks and improve
performance at lower-level concrete tasks. Although deep learn-
ing has facilitated progress in image understanding, a robot’s
performance in problems like object recognition often depends
on the angle from which the object is observed. Traditionally,
robot sorting tasks rely on a fixed top-down view of an object.
By changing its viewing angle, a robot can select a more
semantically informative view leading to better performance
for object recognition. In this paper, we introduce the problem
of semantic view selection, which seeks to find good camera
poses to gain semantic knowledge about an observed object. We
propose a conceptual formulation of the problem, together with
a solvable relaxation based on clustering. We then present a new
image dataset consisting of around 10k images representing
various views of 144 objects under different poses. Finally we
use this dataset to propose a first solution to the problem by
training a neural network to predict a “semantic score” from
a top view image and camera pose. The views predicted to
have higher scores are then shown to provide better clustering
results than fixed top-down views.

I. INTRODUCTION
Recent advances in machine learning have increased robot

autonomy, allowing them to better understand their own
state and the environment, and to perform more complex
tasks. In particular, improving the semantic understanding of
objects is an important research topic, which can aid in tasks
such as manipulation. For example, semantic information can
directly help in solving tasks such as supervised [1], [2] and
unsupervised [3] sorting. It can also indirectly impact other
important tasks, such as robotic grasping [4], [5]. The way
people grasp objects depends on not only the form and shape
of the object, but also on their semantic understanding of the
object [6]. Knowledge of manipulated objects is especially
important for human robot collaboration [7], where robot
behavior should be safe and adapt to human requirements [8].
For example, a robot should not hand a human a knife by
the blade.

Given recent advances in deep learning for both supervised
[9], [10] and unsupervised [11], [12] image classification,
vision-based methods are a natural choice for acquiring
knowledge about manipulated objects. In contrast to most
computer vision problems, robotic vision can leverage the
robot’s actuators to change the view under which an object
is observed. This can have a huge impact on understanding
what the object is. For example, in Figure 1, only the middle
image enables the robot to understand that it is looking
at a comb. The robot’s ability to act has not been fully
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Bad view: θ = 135◦; ϕ = 45◦

Good view: θ = 45◦; ϕ = 45◦

Top view: θ = 90◦; ϕ = 90◦

Fig. 1: Illustration of the Semantic View Selection Problem. The
angular parameterization is defined in Section III.

exploited in previous research. For example, prior work on
robotic sorting of objects relies on a fixed, perpendicular
top pose for the robot camera [3], [2]. While there has
been some previous work for best view selection [13], this
has focused on producing representative views of 3d mesh
models. Although this is a promising approach, it is not
applicable for many robotics tasks, especially when complete
3d models are not available for all of the manipulated objects.

In this paper, we aim to find a method to optimize the
poses of a robot with a hand-mounted camera, to maximize
the semantic content of image and understand the nature of
the objects being observed (Figure 1). In Section II, we first
propose a generic conceptual formulation of this problem,
which we call the Semantic View Selection Problem (SVSP).
We then relax the problem by reducing it to the optimization
of a clustering-based objective. To solve this problem, we
introduce a new image dataset containing 144 objects, from
29 categories, under different poses and observed under var-
ious views. Both the data collection process and the dataset
content are described in Section III. A first approach using
the clustering SVSP formulation on the new dataset is then
detailed in Section IV. It consists in training a multi-input
deep convolutional neural network to map a top view and
proposed camera pose to a semantic score. Our experimental



results, in Section V, demonstrate that the proposed network
can predict camera poses which outperform fixed poses on
unsupervised sorting tasks.

II. THE SEMANTIC VIEW SELECTION PROBLEM

In this section, we formally introduce the problem of
selecting optimal views for semantic understanding and
introduce notation used throughout the rest of the paper.

A. Generic formulation: the semantic function

Given an object o in pose po, a view vpo;pcam
is defined by

the pair (po, pcam), and represented by the image produced
by the camera, where pcam is the pose of the camera. Thus,
given po, there exists a direct mapping between the space of
all possible views and the space of reachable camera poses.
For each view, we define the conceptual semantic function
S(.), representing the semantic information contained in a
view. S(vpo;pcam) is high if vpo;pcam is highly informative
about the object being observed (second row of Figure 1)
and low if it’s not (third row of Figure 1). More concretely,
semantic meaningfulness can be viewed as the information
contained in the output of a high level feature extractor (e.g.
last layer of a pretrained deep CNN). It can be used to infer
the general category of the object represented in the image.
Given o in pose po, the Semantic View Selection Problem
(SVSP) aims to find p∗cam such that the view vpo;p∗cam

maximizes S.

B. First relaxation: clusterability functions

The semantic function defines the general form of the
SVSP, but, in practice, it cannot be evaluated. Therefore, we
introduce a new family of clusterability functions fSc;m, c 2
C, m 2 Mg, where C represents the space of all possible
image clustering pipelines and M the space of all clustering
evaluation metrics. In other words, an element of C is a
function mapping any set of images to a corresponding set
of labels. Likewise, an elements of M are functions that take
two sets as inputs (predicted labels and ground truth labels)
and output a real valued score, usually in [0, 1]. As explained
later, we assume that if c and m are a good image clustering
routine and a good clustering metric respectively, then Sc;m

and S are highly positively correlated.
Let O∞ be the conceptual infinite set of all possible

objects, P o∞ be the space of all possible poses of object
o, and V po

∞ be the space of all possible views of object o
in pose po. An image clustering problem with N images is
defined by cp = fvpo[i]

j 8i 2 f1, ...Ng, o[i] 2 O∞, po[i] 2
P
o[i]
∞ , vpo[i]

2 V
po[i]
∞ g. In other words, any set of images

containing an underlying label can be viewed as a clustering
problem, although these labels are not necessarily known.
There are various ways to define the category of an object.
In this paper, we use the most generic and simple possible
label (e.g. spoon, mug, toothbrush, ...), without adding any
specific description (e.g. silver spoon, blue mug, ..). Let
Pcp;c be the cluster assignments (predictions) for cp, under
clustering routine c and let Lcp be the ground truth labels
associated with cp. Then, for m 2 M , we define mcp;c =

m(Pcp;c,Lcp). Finally, we define CPv∞ the infinite set of all
possible clustering problems containing view v (i.e. the set
of all sets of images containing v). Then, Sc;m is defined by

Sc;m(v) = E
cp∈CPv

∞

[mcp;c], (1)

which is the average score under metric m of all possible
clustering problems containing v. Sc;m(vpo;pcam

) is high if
the view is good for clustering o and low if not, where good
means having a high score under m.

We assume that c and m are a good image clustering
routine and a good clustering metric respectively, i.e. they
have been shown to work well in practice. Then, the as-
sumption of high positive correlation between Sc;m and S
is based on the intuition that a semantically meaningful
image should be properly clustered with similar objects by
a good clustering pipeline. Indeed, the clustering pipeline
used in our experiments consists of extracting features from
a pretrained deep CNN and clustering the new set of features
using a standard algorithm. This choice for c is in line
with the definition of semantic meaningfulness proposed in
Section II-A, as the final representation of a view, passed
to the clustering algorithm, is a vector a features extracted
from a pretrained CNN. Another motivation for choosing a
clustering-based estimate for the semantic function is that
supervised classification or object detection methods might
not be adapted. Indeed, to compute the Monte-Carlo estimate
of such function (see Section II-C), the selected algorithm
needs to be run many times on relatively small datasets.
Doing this in a supervised way has high chances to result in
overfitting, in which case all views would have high semantic
scores.

C. Second relaxation: clusterability on a finite dataset

As it is not feasible to consider all possible objects, poses,
and views, we further relax the above definitions to consider
a finite dataset. Let ON be a finite set of objects containing
N elements. As in Section II-B, we define P oNo

a set of
No poses of object o, and V po

Npo
a set of Npo

views of
object o in pose po. In other words, the set D = fvpo

j o 2
ON , po 2 P oNo

, vpo
2 V po

Npo
g is an image dataset containingP

o∈ON

P
po∈P o

No

(Npo
) images. If the dataset is large and

diverse enough, an estimate of Sc;m(v) can be computed by

Sc;mD (v) = E
cp∈CPv

D

[mcp;c], (2)

where CPvD is defined like CPv∞ with cps sampled from D.
For large datasets, it might be computationally intractable

to compute Sc;mD (v) as the number of possible combinations
of images grows exponentially with the number of views.
Thus, we propose to compute the Monte-Carlo estimate

Ŝc;mD (v) = E
cp∈CPv

D;MC

[mcp;c], (3)

where CPvD;MC is a subset of NMC elements of CPvD, and
NMC is a large natural integer (NMC � 2 � 105 in our
experiments).



D. Partially-observable Semantic View Selection

Given an object o in pose po, the relaxed SVSP aims
to find a camera pose pcam such that Ŝc;mD (vpo;pcam) is
high. In a generic robotic pipeline, the exact pose of an
object is unknown and needs to be estimated from partial
observations. Let ωpo

be the observation from which we want
to compute p̂o, the estimate of po. For example, ωpo can be
a top-view image, taken from an initial predefined camera
pose. Our approximation of the clusterability function score
is then dependent on ωpo

as a surrogate for the exact pose.
More concretely, we want to optimize the parameters α of
a function f� : fωpo

, pcamg ! s 2 Dm, where Dm is the
output domain of the metric m, such that s is an estimate of
Ŝc;mD (vpo;pcam). A typical practical choice for f� would be
a convolutional neural network (CNN), where α represents
its trainable parameters.

III. DATASET CONSTRUCTION

To tackle the proposed relaxed SVSP, we have built an
image dataset1 representing various everyday objects under
different poses, and observed under multiple views with
a camera mounted on the end-effector of a UR10 robot
manipulator (see Figure 1). The dataset statistics can be
found in Table I.
TABLE I: Statistics of our multi-objects/multi-pose/multi-view
image dataset.

# Classes # Object/class # Poses/object # Images/pose
(total) (total) (total)

29 4-6 (144) 3 (432) 17-22 (9112)

A. Estimating object location and size

The dataset was collected using an Asus Xtion RGBD
sensor, hand-mounted on a UR10 robot manipulator. For a
given object o in a given pose, we gather images correspond-
ing to several views, with o centered in the image. The first
step is to estimate the location of the Geometrical Center of
the object (GCo). To do so, we place the robot in an initial
pose such that the camera can see the entire workspace in
which objects can be placed. We store a background image of
this pose, corresponding to what the camera sees when there
is no object. Then, using RGB background subtraction, the
xy-contour of the object is obtained (the z axis is vertical).
From this contour, we estimate the x and y components of
GCo, the width and the length of o. Finally, we compare the
minimum values of the point cloud inside and outside the
xy-contour to estimate both the z component of GCo and
the height.

B. Parameterization of camera poses

To parameterize camera poses, we define a
reference frame at GCo. We then compute d =p
length2 + width2 + height2, the diagonal of the

object’s bounding box, and define the radius R such that
d takes 70% of the smallest dimension of the image if the

1The dataset can be downloaded at https://github.com/
jorisguerin/SemanticViewSelection_dataset.

Fig. 2: Definition of the parameters used to sample camera poses
(R, � and ’).

optical center of the camera (OCcam) is at a distance R of
GCo and zcam is pointing towards GCo. The camera poses
are sampled on the half-sphere of radius R, centered at
GCo, such that zo is positive. For each position of OCcam
on the sphere, the camera is positioned such that zcam is
pointing towards GCo, xcam is in the xyo plane and ycam
is pointing “upwards”.

C. View sampling and data collection

On the sphere, the location of OCcam is localized by two
angles, θ and ϕ, which are defined as in Figure 2. Hence,
a camera pose is simply represented by a (θ, ϕ) pair. In
our implementation, θ is sampled every 45◦ between 0◦ and
315◦, ϕ is sampled every 15◦ between 45◦ and 75◦. The
views for θ = 270◦ correspond to configurations where the
camera is oriented towards the robot base. They were not
collected in the dataset to avoid seeing the robot on the
images. The other missing values come from unreachability
of the camera poses with the robot manipulator, which occurs
when the RRT connect [14] planner fails to generate a valid
plan. Furthermore, while it could be interesting to sample
angles lower than ϕ = 45◦, these configurations are often
unreachable because the robot would collide the table. A
subset of the views gathered for one object in a particular
pose can be seen in Figure 3.

IV. PROPOSED APPROACH

A. Clustering pipeline and metric

Given a view v, the clusterability function Ŝc;mD (v) used to
represent the semantic function, are defined by both a good
clustering pipeline c and a clustering evaluation metric m.

In this work, we use the image clustering pipeline pro-
posed in [3], which consists of getting a new representation
of each image from the last layer of a deep CNN feature
extractor fe, pretrained on ImageNet, and then clustering
the new set of features using a standard clustering algorithm
c′. Although some variants of this algorithm are tested in
Section V, the standard pipeline in this paper uses Xception
[9] to extract features and agglomerative clustering to cluster
the deep features set. We use the implementation and weights
of Xception proposed by the Keras library.

https://github.com/jorisguerin/SemanticViewSelection_dataset
https://github.com/jorisguerin/SemanticViewSelection_dataset
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