
Sandesh Adhikary*, Siddarth Srinivasan*, Geoff Gordon, Byron Boots

A Intuition for the Models

Figure 4 provides a visual comparison of HMMs, OOMs,
and HQMMs, and we provide a more intuitive description
of these models below:

• HMMs: These are usually parameterized by a transi-
tion matrix A where Aij =p(xt+1 =i|xt =j) and an
emission matrix C , whereCij =p(ot =i|xt =j). Since
these entries are conditional probabilities, all entries
must be positive and the columns must sum to 1.

• OOMs: If we were to construct s new matri-
ces, by constructing a diagonal n ⇥ n matrix
from each row of C and multiply with A , we
would obtain the set {T y} where each entry
(Ty)ij =p(xt+1 =i,ot =y|xt =j). These are HMMs in
the OOM representation. OOMs however are more
general, as they do not require such an interpretation
of each entry; as long as the operators are normalized
and only produce non-negative numbers when used to
compute probabilities, they are valid. This flexibility
means they also cannot be given a constructive form.

• K-HQMMs: Like OOMs, these models have a
tensor structure. However, they have multiple (w)
operators per observable. We show the equivalence
with L-HQMMs, which are specific kinds of OOMs,
in the main paper.

Figure 4: Visualizing the Models : A visualization of
the matrices that parameterize the various models

B Uniqueness of L-HQMMs

While L-HQMMs (Definition 5) and and K-HQMMs (Defi-
nition 6) are equivalent representations of HQMMs, the for-
mer has the added benefit of providing a unique representa-
tion of the underlying CP map. Namely, a CP map can be
equivalently defined using Kraus operator sets, which may
not even have the same number of operators. This makes

it difficult to directly compare two K-HQMM models, per-
haps to check for equivalency. In contrast, the Liouville su-
peroperator of a CP-map is unique, and can be canonically
factorized as follows (Wood et al., 2015; Miszczak, 2011):

L =
!

w

K ⇤

w⌦K w =
r!

i =1

�i (K ⇤

i ⌦K i) (12)

where {K w} is a set of arbitrary Kraus operators,
{p�i K i } the set of canonical Kraus operators defining
the CP map, and r the ‘Kraus-rank’ of the CP map. It
is a well known result that these factors can be computed
directly from an SVD of the Choi matrix (the ‘reshuffled’
Liouville matrix); the i-th singular value and vector
pair correspond to �i and vec(K i) (Wood et al., 2015;
Miszczak, 2011). We illustrate this process in Figure 5.

The Kraus-rank of a CP map is equal to the rank of the
Choi matrix, and is equal to the minimum number of
Kraus operators required to express the operation. Since
the Liouville superoperator (or the Choi matrix) uniquely
defines a CP map, we can use this representations to
compare two L-HQMMs. This also provides a way to
compare two K-HQMMs by first converting them to their
corresponding L-HQMMs.

Figure 5: Three equivalent formulations of a CP
map : The unique canonical operator sum representation
of a CP map can be obtained by performing an SVD
of its Choi matrix, which is obtained by reshuffling its
Liouville superoperator.

C Retractions on the Stiefel Manifold

The Wen-Yin Update Scheme Given a gradient
G of the loss function L with respect to parameters ,
we wish to find the trajectory �(⌧) for some step size
⌧ that corresponds to stepping along the direction of
the gradient while staying on the Stiefel manifold. The
Wen-Yin approach achieves this through retractions that
smoothly map G or any point on a manifold’s tangent
bundle onto the manifold itself, while preserving the
descent direction at that point (Absil et al., 2007). We
can intuitively think of a retraction as wrapping the
direction of G onto the surface of the manifold. This
provides us with a feasible path �(⌧) for curvilinear

Expressiveness and Learning of Hidden Quantum Markov Models

descent with respect to an initial feasible solution 0:

�(⌧)=0�⌧U
"
I+

⌧

2
V †U

#�1
V †

0, (13)

where U =[G | 0], V =[0 |�G], and G is the gradient
at 0. To see that �(⌧) is, in fact, the direction of steepest
descent to feasibly optimize our loss, we can check if two
important criteria are met. First, when ⌧=0, we should
be at the initial point 0 with �(0) pointing the same
direction as G . This is easily verified since �(0) = 0

and �
0(0)=�G (Wen and Yin, 2013). Second, any point

along �(⌧) must be feasible. To confirm this, note that
Equation 13 can be equivalently written as the following
Crank-Nicolson-like update

�(⌧)=
"
I+ ⌧

2
A

#�1"
I� ⌧

2
A

#
0, (14)

where A =G
†

0�0G†. Thus, �(⌧) is actually the Cayley
transform of the skew-symmetric matrix A applid to 0.
Using this interpretation, it can be shown (Wen and Yin,
2013) that �(⌧)†�(⌧) =

†

0. Therefore, as long as the

initial point is feasible (†00=I), every point along �(⌧)
will be feasible. While Equation 14 is easier to interpret,
Equation 13 is computationally favorible as it requires
the inversion of a smaller 2n⇥2n matrix.

We combine the Wen-Yin update with a simple gradient
descent scheme (Algorithm 1) to learn feasible parameters
for HQMMs. In our experiments with N = |O|w, and
for a batch with m sequences of length l, we compute
the loss using Equation 10 in O(mlwn

3) time, perform
auto-differentiation, and obtain a retraction using
Equation 11 in O(|O|wn3) time.

Alternative Update Schemes Algorithms that
constrain parameters on the Stiefel manifold are generally
either projection-like (which re-orthogonalize the naive
gradient descent updates) or geodesic-like (which directly
generate updates on the manifold itself). Among geodesic-
like updates, those proposed by Wen and Yin (2013)
and Jiang and Dai (2013) are the current state-of-the-art
approaches. In the regime of tall-and-skinny matrices in
our problem, these two are theoretically equivalent and
have the same computational complexity O(7Nn

2), where
n is the latent dimension and N= |O|w. By comparison,
the canonical gradient projection algorithm has a slightly
lower computational complexity of O(3Nn

2). The exact
update schemes and complexity calculations for all three
methods can be found in Jiang and Dai (2013).

We compared these three update schemes by training
multiple HQMMs for both synthetic HQMM and HMM
datasets. As shown in the results in Figures 6a and 6b,
the three methods are very similar both in terms of speed
and the final solution quality for our benchmark datasets.
Since the Wen-Yin update was slightly faster, especially
for larger models on the synthetic HQMM data, we used
it over the alternatives.

Algorithm 1 Learning HQMMs using Constrained
Optimization on the Stiefel Manifold

Input: Training data Y 2NM ⇥! , where M is the # of
data points and ` is the # of observed variables in the
HQMM
Hyperparameters: ⌧ (learning rate), ↵: (learning rate
decay), B (number of batches), E (number of epochs)

Output: {K i }|O|w
i =1

1: Initialize: Complex orthonormal matrix on Stiefel
manifold 2 C|O|wn ⇥n and partition into Kraus

operators {K i }|O|w
i =1 , with K i 2Cn⇥n

2: for epoch = 1: E do
3: Partition training data Y into B batches {Y b}
4: for b = 1:B do
5: Compute gradient Gi " L

" K⇤
i
for batch Y b and

loss function L
6: Compute " L

"### =G
$
G1 ··· G |O|w

%T

7: Construct U [G |], V [| �G]

8: Update �⌧U
&
I+ $

2 V †U
' �1

V †

9: end for
10: Update learning rate ⌧=↵⌧

11: Re-partition into {K i }
12: end for
13: return {K i }

D Experiment

on Synthetic HQMM Data

As an additional experiment on a purely quantum
mechanical dataset, we compared the COSM and GS
methods on data generated using the synthetic HQMM
with 2 hidden states and 6 possible outputs in Srinivasan
et al. (2018b). The data generation process is inspired by
the well known Stern-Gerlach experiment (Gerlach and
Stern, 1922) in quantum mechanics, and at least 4 hidden
states are required to model it. Srinivasan et al. (2018b)
demonstrated that HQMMs learned from such synthetic
data showed in practice the same benefits that held in
theory. Our goal is to verify that the COSM method
performs at least as well as the GS method on a dataset
well-suited to the HQMM model class.

We used the same synthetic dataset used by Srinivasan
et al. (2018b), with 20 training and 10 validation se-
quences of length 3000. We further split up each sequence
into 300 sequences and use a burn-in of 100, instead of
training on 3000-length sequences with a burn-in of 1000.
This reduced training time without impacting accuracy
or the amount of training data processed. We trained
HQMMs using the COSM approach for 60 epochs, and
saved the model that yielded the highest DA score on the
validation set; we used this model to evaluate on the test
set of 10 sequences of length 3000 (with burn-in 1000).
The results for this model are shown in Figure 7. We

Sandesh Adhikary*, Siddarth Srinivasan*, Geoff Gordon, Byron Boots

see that the COSM method achieves slightly better DA
compared to the GS method. We confirm that as seen
in Srinivasan et al. (2018b), we need a 6�state HMM to
model this 2�state HQMM.

Figure 7: Test Set Performance on the Synthetic
HQMM Data : The dashed line represents the test set
performance of the true model that generated the data.
The GS and COSM methods were used to learn (2,6,1)-
HQMMs, while EM was used to learn HMM models with
varying number of hidden states (n). A 6�state HMM
model was needed to match a 2�state HQMM.

E Sensitivity to Initialization

The COSM algorithm begins with an initial guess of
the optimal parameters and a random intial density
matrix ⇢⇢⇢. By ‘burning-in’ a reasonable number of initial
entries in sequences, we minimize the effect of randomly
initializing ⇢⇢⇢. To investigate the sensitivity of COSM to
initializations of , we trained models on the synthetic
HQMM and HMM datasets over 3 random seeds. As
shown in the results in Figure 8a and 8b, COSM is
sensitive to random initializations for the smallest (2,6,1)
model, but the variance in DA scores quickly decrease
with an increase in model size, both as a function of n
and w. We observe even lower variance across different
initializations for the synthetic HMM data in Figure 8b.

F Hyperparameter Selection

To facilitate a clear comparison with GS, we used the
same batch size as in Srinivasan et al. (2018b), and tuned
the step-size ⌧ and decay rate ↵ for all HQMM models.
We started by manually tuning models, and identified
that all models tended to converge to good solutions with
the following hyperparameters: ⌧ = 0.75 and ↵ = 0.92
for the synthetic datasets, and ⌧ = 0.8 and ↵= 0.9 for
the splice dataset. We trained baseline models using
these parameters, and then randomly searched for better
configurations around these values.

For the synthetic datasets, we fixed the batch size at 20
and randomly sampled ⌧ between 0.55 and 0.95, and ↵

between 0.9 and 0.99. As we wanted to explore many
hyperparameter settings, we only trained on 3 random
batches in every epoch. For the splice dataset, we fixed

Table 1: Hyperparameter Selection The best
performing step sizes (⌧) and decay rates (↵) for various
COSM models. For models not listed here, the default
hyperparameters (⌧=0.75,↵=0.92) and (⌧=0.8,↵=0.9)
yielded the best results for the synthetic datasets and the
splice dataset respectively.

Dataset n s w ⌧ ↵

Synthetic HQMM 2 6 1 0.75 0.92

Synthetic HMM

2 6 1 0.95 0.99
4 6 6 0.95 0.96
5 6 1 0.55 0.96
5 6 2 0.95 0.98
5 6 6 0.95 0.99

Splice

2 4 1 0.70 0.90
2 4 2 0.85 0.92
2 4 6 0.85 0.92
4 4 1 0.90 0.92
4 4 4 0.90 0.90
6 4 4 0.70 0.90
8 4 1 0.90 0.90

the batch size at 200 and randomly sampled ⌧ between
0.7 and 0.9 and ↵ between 0.88 and 0.92. Since each
splice model required learning three separate HQMMs
across multiple folds, we tested fewer hyperparameter
settings across a smaller search space. We also trained
on a single random batch every epoch across 2 folds.

Given the large number of models that we needed to evalu-
ate, we used the Hyperband scheduling technique (Li et al.,
2017) to quickly sample through many hyperparameter
configurations. For each model, we began by running 3
epochs for each of the k randomly selected configurations,
and removed k/3 of them with the lowest validation DA
scores. In the next round, we ran the remaining configura-
tions for a larger number of iterations, and again removed
the bottom third of the configurations with the lowest
scores. We repeated this strategy until only one config-
uration remained, and saved the one with the highest val-
idation DA throughout the tuning protocol. We searched
across 27 and 9 random configurations for the synthetic
and the splice datasets respectively. As an example, for
the synthetic datasets we trained 27 models for 3 epochs,
followed by the 9 best models for 9 epochs, followed by
the 3 best models for 9 epochs, and the final best model
for 27 epochs. In Table 1, we report the hyperparameters
obtained through Hyperband that outperformed the de-
fault configuration. For models not listed in the table, the
default configuration resulted in the best performance.

All our experiments were performed on a desktop with 8
Intel Core i7-7700K 4.20 GHz CPUs, and 31.3 GB RAM.
All models are trained in MATLAB, but the gradient
computation happens in Python.

Expressiveness and Learning of Hidden Quantum Markov Models

G Estimating Speedup

Since the GS method can take days to converge to the
final solution for large models such as (6,6,6)-HQMM, it
was not feasible to compute a direct speed up comparing
its convergence time to COSM across most models. Thus,
we estimate the speed-up offered by COSM by fitting a
linear model to the DA trajectory of models learned by
the GS method. Specifically, for a given HQMM model,
we train both COSM and GS on the synthetic HMM data
until one of them converges within a tolerance of 10�5 in
DA scores. Since COSM always converges first, we take
the DA scores achieved by GS in its last 10 steps and fit a
linear model to it. We then extrapolate this linear model
to estimate the time it would take for GS to reach some
fraction of the solution DA reached by COSM. Note that
a linear fit is an optimistic assumption of GS convergence
time, meaning we are going to understate how much
faster COSM is compared to GS. Finally, we estimate the
speed up offered by COSM as the ratio of the (estimated)
convergence time for GS and the actual convergence time
for COSM. In Figure 9, we plot this estimated speed up
with varying number of parameters (both as functions
of n and w) for different solution fractions. For a solution
fraction of 1, we record speedups greater than 150⇥ for
the largest HQMMs trained. Furthermore, COSM offers
comparable increase in speed up as parameters grow
either by virtue of increasing n or w.

Sandesh Adhikary*, Siddarth Srinivasan*, Geoff Gordon, Byron Boots

(a) Results for the Synthetic HQMM Data (b) Results for the Synthetic HMM Data

Figure 6: Alternative Schemes to Constrain Updates on the Stiefel Manifold Validation set accuracies
obtained for HQMMs trained using different update schemes. All schemes provide similar speed and accuracy, but
the Wen-Yin update outperforms the others by a small margin.

Expressiveness and Learning of Hidden Quantum Markov Models

(a) Synthetic HQMM Data (b) Synthetic HMM Data

Figure 8: COSMÕs Sensitivity to Random Initializations of Validation set accuracies obtained across 10
epochs for HQMMs trained on 3 different random initializations. COSM is sensitive to initialization for the smallest
models, but is fairly robust for larger models.

Sandesh Adhikary*, Siddarth Srinivasan*, Geoff Gordon, Byron Boots

Figure 9: Estimated Speedup of COSM over GS : Estimated speedups of COSM over GS for various solution
fractions. As seen in the plots for solution fraction of 1, GS can take more than 150 times the convergence time for
COSM to reach the latter’s final solution quality.

