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Abstract. In many applications, multi-robot systems are required to
achieve multiple objectives. For these multi-objective tasks, it is often-
times hard to design a single control policy that fulfills all the objectives
simultaneously. In this paper, we focus on multi-objective tasks that can
be decomposed into a set of simple subtasks. Controllers for these sub-
tasks are individually-designed and then combined into a control policy
for the entire team. One significant feature of our work is that the subtask
controllers are designed along with their underlying manifolds. When a
controller is combined with other controllers, their associated manifolds
are also taken into account. This formulation yields a policy generation
framework for multi-robot systems that can combine controllers for a va-
riety of objectives while implicitly handling the interaction among robots
and subtasks. To describe controllers on manifolds, we adopt Riemannian
Motion Policies (RMPs), and propose a collection of RMPs for common
multi-robot subtasks. Centralized and decentralized algorithms are de-
signed to combine these RMPs into a final control policy. Theoretical
analysis shows that the system under the control policy is stable. More-
over, we prove that many existing multi-robot controllers can be closely
approximated by the framework. The proposed algorithms are validated
through both simulated tasks and robotic implementations.
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1 Introduction

Multi-robot control policies are often designed through performing gradient de-
scent on a potential function that encodes a single team-level objective, e.g.
forming a certain shape, covering an area of interest, or meeting at a common
location [1–3]. However, many problems involve a diverse set of objectives that
the robotic team needs to fulfill simultaneously. For example, collision avoid-
ance and connectivity maintenance are often required in addition to any pri-
mary tasks [4]. One possible solution is to encode the multi-objective problem
as a single motion planning problem with various constraints [5–8]. However, as
more objectives and robots are considered, it can be difficult to directly search
for a solution that can achieve all of the objectives simultaneously.

An alternative strategy is to design a controller for each individual objective
and then combine these controllers into a single control policy. Different schemes
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for combining controllers have been investigated in the multi-robot systems lit-
erature. For example, one standard treatment for inter-robot collision avoidance
is to let the collision avoidance controller take over the operation if there is a
risk of collision [9]. A fundamental challenge for such construction is that un-
expected interaction between individual controllers can yield the overall system
unstable [10, 11]. Null-space-based behavioral control [12, 13] forces low priority
controllers to not interfere with high priority controllers. However, when there
are a large number of objectives, the system may not have the sufficient degrees
of freedom to consider all the objectives simultaneously. Another example is the
potential field method, which formulates the overall controller as a weighted sum
of controllers for each objective [9, 14]. While the system is guaranteed to be sta-
ble when the weights are constant, careful tuning of these constant weights are
required to produce desirable behaviors.

Methods based on Control Lyapunov Functions (CLFs) and Control Barrier
Functions (CBFs) [4, 10, 11] seek to optimize primary task-level objectives while
formulating secondary objectives, such as collision avoidance and connectivity
maintenance, as CLF or CBF constraints and solve via quadratic programming
(QP). While this provides a computational framework for general multi-objective
multi-robot tasks, solving the QP often requires centralized computation and can
be computationally demanding if the number of robots or constraints is large.
Although the decentralized safety barrier certificate [11] is a notable exception, it
only considers inter-robot collision avoidance and it has not been demonstrated
how the same decentralized construction can be applicable to other objectives.

In this paper, we return to the idea of combining controllers and rethink how
an objective and its corresponding controller are defined: instead of defining ob-
jectives directly on the configuration space, we define them on non-Euclidean
manifolds, which can be lower-dimensional than the configuration space. When
combining individually-designed controllers, we consider the outputs of the con-
trollers and their underlying manifolds. In particular, we adopt Riemannian Mo-
tion Policies (RMPs) [15], a class of manifold-oriented control policies that has
been successfully applied to robot manipulators, and RMPflow [16], the compu-
tational framework for combining RMPs. This framework, where each controller
is associated with a matrix-value and state-dependent weight, can be consid-
ered as an extension to the potential field method. This extension leads to new
geometric insight on designing controllers and more freedom to combine them.
While the RMPflow algorithm is centralized, we provide a decentralized version
and establish the stability analysis for the decentralized framework.

There are several major advantages to defining objectives and controllers
on manifolds for multi-robot systems. First, this formulation provides a general
formula for the construction of controllers: the key step is to design the manifold
for each substask, as controllers/desired behaviors can be viewed as a natural
outcome of their associated manifolds. For example, obstacle avoidance behavior
is closely related to the geodesic flow in a manifold where the obstacles manifest
as holes in the space. Second, since we design controllers in the manifolds most
relevant to their objectives, these manifolds are usually of lower dimension than
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the configuration space. When properly combined with other controllers, this can
provide additional degrees of freedom that help controllers avoid unnecessary
conflicts. This is particularly important for multi-robot systems where a large
number of controllers interact with one another in a complicated way. Third,
it is shown in [16] that Riemannian metrics on manifolds naturally provide a
notion of importance that enables the stable combination of controllers. Finally,
RMPflow is coordinate-free [16], which allows the proposed framework to be
directly generalized to heterogeneous multi-robot teams.

We present four contributions in this paper. First, we present a centralized
solution to combine controllers for solving multi-robot tasks based on RMPflow.
Second, we design a collection of RMPs for simple and common multi-robot
subtasks that can be combined to achieve more complicated tasks. Third, we
draw a connection between some of the proposed RMPs and a large group of
existing multi-robot distributed controllers. Finally, we introduce a decentralized
extension to RMPflow, with its application to multi-robot systems, and establish
the stability analysis for this decentralized framework.

2 Riemannian Motion Policies (RMPs)

We briefly review Riemannian Motion Policies (RMPs) [15], a mathematical
representation of policies on manifolds, and RMPflow [16], a recursive algorithm
to combine RMPs. In this section, we start with RMPs and RMPflow for single
robots, for which these concepts are initially defined [15, 16]. We will later on
consider them in the context of multi-robot systems in subsequent sections.

Consider a robot (or a group of robots in later sections) with its configuration
space C being a smooth d-dimensional manifold. For the sake of simplicity, we
assume that C admits a global1 generalized coordinate q : C → Rd. As is the
case in [16], we assume that the system can be feedback linearized in such a way
that it is controlled directly through the generalized acceleration, q̈ = u(q, q̇).
We call u a policy or a controller, and (q, q̇) the state.

RMPflow [16] assumes that the task is composed of a set of subtasks, for ex-
ample, avoiding collision with an obstacle, reaching a goal, tracking a trajectory,
etc. In this case, the task space, denoted T , becomes a collection of multiple
subtask spaces, each corresponding to a subtask. We assume that the task space
T is related to the configuration space C through a smooth task map ψ : C → T .
The goal of RMPflow [16] is to generate policy u in the configuration space C so
that the trajectory exhibits desired behaviors on the task space T .

2.1 Riemannian Motion Policies

Riemannian Motion Policies (RMPs) [15] represent policies on manifolds. Con-
sider an m-dimensional manifold M with generalized coordinate x ∈ Rm. An
RMP onM can be represented by two forms, its canonical form and its natural
form. The canonical form of an RMP is a pair (a,M)M, where a : (x, ẋ) 7→
1 In the case when C does not admit a global coordinate, a similar construction can

be done locally on a subset of the configuration space C.



4 Li, Mukadam, Egerstedt, Boots

a(x, ẋ) ∈ Rm is the desired acceleration, i.e. control input, and M : (x, ẋ) 7→
M(x, ẋ) ∈ Rm×m+ is the inertial matrix which defines the importance of the RMP
when combined with other RMPs. Given its canonical form, the natural form of
an RMP is the pair [f ,M]M, where f = M a is the desired force. The natural
forms of RMPs are introduced mainly for computational convenience.

RMPs on a manifold M can be naturally (but not necessarily) generated
from a class of systems called Geometric Dynamical Systems (GDSs) [16]. GDSs
are a generalization of the widely studied classical Simple Mechanical Systems
(SMSs) [17]. In GDSs, the kinetic energy metric, G, is a function of both the
configuration and velocity, i.e. G(x, ẋ) ∈ Rm×m+ . This allows kinetic energy to
be dependent on the direction of motion, which can be useful in applications
such as obstacle avoidance [15, 16]. The dynamics of GDSs are in the form of

(G(x, ẋ) + ΞG(x, ẋ)) ẍ + ξG(x, ẋ) = −∇xΦ(x)−B(x, ẋ) ẋ, (1)

where we call B : Rm × Rm → Rm×m+ the damping matrix and Φ : Rm → R the
potential function. The curvature terms ΞG and ξG are induced by metric G,

ΞG(x, ẋ) :=
1

2

m∑
i=1

ẋi ∂ẋ gi(x, ẋ),

ξG(x, ẋ) :=
x

G(x, ẋ) ẋ− 1

2
∇x (ẋ>G(x, ẋ) ẋ),

(2)

with
x

G(x, ẋ) := [∂x gi(x, ẋ) ẋ]mi=1, gi denoting the ith column of G, xi denoting
the ith component of x, and [·] denoting matrix composition through horizontal
concatenation of vectors. Given a GDS (1), there is an RMP (a,M)M naturally
associated with it given by a = ẍ and M(x, ẋ) = (G(x, ẋ) + ΞG(x, ẋ)). There-
fore, the velocity dependent metric G provides velocity dependent importance
weight M when combined with other RMPs.

2.2 RMPflow

RMPflow [16] is an algorithm to generate control policies on the configuration
space given the RMPs for all subtasks, for example, collision avoidance with a
particular obstacle, reaching a goal, etc. Given the state information of the robot
in the configuration space and a set of individually-designed controllers (RMPs)
for the subtasks, RMPflow produces the control input on the configuration space
through combining these controllers.

RMPflow introduces: i) a data structure, the RMP-tree, to describe the struc-
ture of the task map ψ, and ii) a set of operators, the RMP-algebra, to propagate
information across the RMP-tree. An RMP-tree is a directed tree. Each node
u in the RMP-tree is associated with a state (x, ẋ) defined over a manifold M
together with an RMP (fu,Mu)

M. Each edge e in the RMP-tree is augmented
with a smooth map from the parent node to the child node, denoted as ψe.
An example RMP-tree is shown in Fig. 1. The root node of the RMP-tree r is
associated with the state of the robot (q, q̇) and its control policy on the con-
figuration space (fr,Mr)

C . Each leaf node lk corresponds to a subtask with its
control policy given by an RMP (flk ,Mlk)Tk , where Tk is a subtask space.
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Fig. 1: An example of an RMP-tree. See text for details.

The RMP-algebra consists of three operators: pushforward, pullback and
resolve. To illustrate how they operate, consider a node u with N child nodes,
denoted as {vj}Nj=1. Let {ej}Nj=1 be the edges from u to the child nodes (Fig. 1).
Suppose that u is associated with the manifold M, while each child node vj is
associated with the manifold Nj . The RMP-algebra works as follows:

1. The pushforward operator forward propagates the state from the parent
node u to its child nodes {vj}Nj=1. Given the state (x, ẋ) associated with u,
the pushforward operator at vj computes its associated state as (yj , ẏj) =
(ψej (x),Jej (x) ẋ), where Jej = ∂xψej is the Jacobian matrix of the map ψej .

2. The pullback operator combines the RMPs from the child nodes {vj}Nj=1

to obtain the RMP associated with the parent node u. Given the RMPs
from the child nodes, {[fvj ,Mvj ]Nj}Nj=1, the RMP associated with node u,

[fu,Mu]
M, is computed by the pullback operator as,

fu =

N∑
j=1

J>ej (fvj −Mvj J̇ej ẋ), Mu =

N∑
j=1

J>ejMvjJej .

3. The resolve operator maps a natural-formed RMP to its canonical form.
Given the natural-formed RMP [fu,Mu]

M, the operator produces (au,Mu)
M

with au = M† fu, where † denotes Moore-Penrose inverse.

With the RMP-tree specified, RMPflow can perform control policy genera-
tion through the following process. First, RMPflow performs a forward pass: it
recursively calls pushforward from the root node to the leaf nodes to update
the state information associated with each node in the RMP-tree. Second, every
leaf node lk evaluates its corresponding natural-formed RMP {[flk ,Mlk ]Tk},
possibly given by a GDS. Next, RMPflow performs a backward pass: it recur-
sively calls pullback from the leaf nodes to the root node to back propagate the
RMPs in the natural form. After that, RMPflow calls resolve at the root node
to transform the RMP [fr,Mr]

C into its canonical form (ar,Mr)
C . Finally, the

robot executes the control policy by setting q̈ = u = ar.

2.3 Stability Properties of RMPflow

To establish the stability results of RMPflow, we assume that every leaf node is
associated with a GDS. Before stating the stability theorem, we need to define
the metric, damping matrix, and potential function for a node in the RMP-tree.



6 Li, Mukadam, Egerstedt, Boots

Definition 1. If a node is a leaf, its metric, damping matrix and potential func-
tion are defined as in its associated GDS (1). Otherwise, let {vj}Nj=1 and {ej}Nj=1

denote the set of all child nodes of u and associated edges, respectively. Suppose
that Gvj , Bvj and Φvj are the metric, damping matrix, and potential function
for the child node vj. Then, the metric Gu, damping matrix Bu and potential
function Φu for the node u are defined as,

Gu =

N∑
j=1

J>ejGvjJej , Bu =

N∑
j=1

J>ejBvjJej , Φu =

N∑
j=1

Φvj ◦ ψej , (3)

where ◦ denotes function composition.

The stability results of RMPflow are stated in the following theorem.

Theorem 1 (Cheng et al. [16]). Let Gr, Br, and Φr be the metric, damping
matrix, and potential function of the root node defined in (3). If Gr,Br � 0, and
Mr = (Gr + ΞGr

) is nonsingular, the system converges to a forward invariant
set C∞ := {(q, q̇) : ∇qΦr = 0, q̇ = 0}.

3 Centralized Control Policy Generation

We begin by formulating a control policy generation algorithm for multi-robot
systems directly based on RMPflow. This algorithm is centralized because it
requires a centralized processor to collect the states of all robots and solve for
the control input for all robots jointly given all the subtasks. In Section 4, we
introduce a decentralized algorithm and analyze its stability properties.

Consider a potentially heterogeneous2 team of N robots indexed by I =
{1, . . . , N}. Let Ci be the configuration space of robot i with qi being a gener-
alized coordinate on Ci. The configuration space is then the product manifold
C = C1 × · · · × CN . As in Section 2, we assume that each robot is feedback
linearized and we model the control policy for each robot as a second-order dif-
ferential equation q̈i = ui(qi, q̇i). An obvious example is a team of mobile robots
with double integrator dynamics on R2. Note, however, that the approaches pro-
posed in this paper is not restricted to mobile robots in Euclidean spaces.

Let K = {1, . . . ,K} denote the index set of all subtasks. For each subtask
k ∈ K, a controller is individually designed to generate RMPs on the subtask
manifold Tk. Here we assume that the subtasks are pre-allocated in the sense
that each subtask lk is defined for a specified subset of robots Ik. Examples of
subtasks include collision avoidance between a pair of robots (a binary subtask),
trajectory following for a robot (a unitary subtask), etc.

The above formulation gives us an alternative view of multi-robot systems
with emphasis on their multi-task nature. Rather than encoding the team-level
task as a global potential function (as is commonly done in the multi-robot liter-
ature), we decompose the task as local subtasks defined for subsets of robots, and
design policies for individual subtasks. The main advantage is that as the task

2 Please see Appendix D for a discussion about heterogeneous teams.
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becomes more complex, it becomes increasingly difficult to design a single poten-
tial function that renders the desired global behavior. However, it is often natu-
ral to decompose global tasks into local subtasks, even for complex tasks, since
multi-robot tasks can often come from local specifications [3, 4]. Therefore, this
formulation provides a straightforward generalization to multi-objective tasks.
Moreover, this subtask formulation allows us to borrow existing controllers de-
signed for single-robot tasks, such as collision avoidance, goal reaching, etc.

Recall from Section 2 that RMPflow operates on an RMP-tree, a tree struc-
ture describing the task space. The main objective of this section is thus to
construct an RMP-tree for general multi-robot problems. Note that given a set
of subtasks, the construction of the RMP-tree is not unique. One way to con-
struct an RMP-tree is to use non-leaf nodes to represent subset of the team:

– The root node corresponds to the joint configuration space C = C1×· · ·×CN
and its corresponding control policy.

– Any leaf node lk is augmented with a user-specified policy represented as
an RMP on the subtask manifold Tk.

– Every non-leaf node is associated with a product space of the configuration
spaces for a subset of the team.

– The parent of any leaf RMP lk is associated with the joint configuration
space

∏
i∈Ik Ci, where Ik are the robots that subtask lk is defined on.

– Consider two non-leaf nodes u and v such that v is a decedent of u in the
RMP-tree. Let Iu and Iv be the subset of robots corresponds to node u and
v, respectively. Then Iv ⊆ Iu.

Fig. 2 shows an example RMP-tree for a team of three robots. The robots
are tasked with forming a certain shape and reaching a goal while avoiding inter-
robot collisions. The root of the RMP-tree is associated with the configuration
space for the team, which is the product of the configuration spaces for all three
robots. On the second level, the nodes represent subsets of robots which, in this
case, are pairs of robots. Several leaf nodes, such as the ones corresponding to
collision avoidance and distance preservation, are children of these nodes as they
are defined on pairs of robots. One level deeper is the node corresponding to the
configuration space for robot 1. The goal attractor leaf node is a child of it since
the goal reaching subtask is assigned only to robot 1.

Fig. 2: An example of an RMP-tree for a group of three robots performing a
formation preservation task. See text for details.
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Note that branching in the RMP-tree does not necessarily define a partition
over robots. Let vi and vj be children of the same node u and let Ivi and Ivj
be the subset of robots for node vi and vj , respectively. Then it is not necessary
that Ivi ∩ Ivj = ∅. For example, in Fig. 2, the three nodes on the second level are
defined for subsets {1, 2}, {2, 3}, and {3, 1}, respectively. The intersection of any
two of them is not empty. In fact, if a branching is indeed a partition, then the
problem can be split into independent sub-problems. For multi-robot systems,
this means that the team consists of independent sub-teams with completely
independent tasks. This rarely occurs in practice.

According to Theorem 1, if all the leaf node controllers are designed through
GDSs, it is guaranteed that the controller generated by RMPflow drives the sys-
tem to a forward invariant set C∞ := {(q, q̇) : ∇qΦr = 0, q̇ = 0} if Gr,Br � 0
and Mr is non-singular. In other words, this guarantees that the resulting system
is stable, which is important: unstable behaviors such as high-frequency oscilla-
tion are avoided and, more importantly, stability provides formal guarantees on
the performance of certain types of subtasks such as collision avoidance, which
is discussed in Section 3.1.

To elucidate the process of designing RMPs and to connect to relevant multi-
robot tasks, we provide examples of RMPs for multi-robot systems that can
produce complex behaviors when combined. In the following examples, we use
xi to denote the coordinate of robot i in R2. An additional map can be composed
with the given task maps if robots possess different kinematic structures.

3.1 Pairwise Collision Avoidance

To ensure safety operation of the robotic team, inter-robot collisions should be
avoided. We formulate collision avoidance as ensuring a minimum safety distance
dS for every pair of robots. To generate collision-free motions, for any two robots
i, j ∈ I, we construct a collision avoidance leaf node for the pair. The subtask
space is the 1-d distance space, i.e. z = ψ(xi,xj) = ‖xi − xj‖/dS − 1. Here, we
use z (italic) to denote that it is a scalar on the 1-d space.

To ensure a safety distance between the pair, we use a construction simi-
lar to the collision avoidance RMP for static obstacles in [16]. The metric for
the pairwise collision avoidance RMP is defined as G(z, ż) = w(z)u(ż), where
w(z) = 1

z4 , u(ż) = ε+ min(0, ż) ż with a small positive scalar ε > 0. The metric
retains a large value when the robots are close to each other (z is small), and
when the robots are moving fast towards each other (ż < 0 and |ż| is large).
Conversely, the metric decreases rapidly as z increases. Recall that the metric
is closely related to the inertial matrix, which determines the importance of the
RMP when combined with other policies. This means that the collision avoid-
ance RMP dominates when robots are close to each other or moving fast towards
each other, while it has almost no effect when the robots are far from each other.

We next design the GDS that generates the collision avoidance RMP. The
potential function is defined as Φ(z) = 1

2αw(z)2 and the damping matrix is
defined as B(z, ż) = ηG(z, ż), where α, η are positive scalars. As the robots
approach the safety distance, the potential function Φ(z) approaches infinity.
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Due to the stability guarantee of RMPflow, this barrier-type potential will always
ensure that the distance between robots is greater than dS . This means that the
resulting control policy from RMPflow is always collision-free.

3.2 Pairwise Distance Preservation

Another common task for multi-robot systems is to form a specified shape or
formation. This can be accomplished by maintaining the inter-robot distances
between certain pairs of robots. Therefore, formation control can be induced by
a set of leaf nodes that maintain distances. Such an RMP can be defined on the
1-d distance space, z = ψ(xi,xj) = ‖xi − xj‖ − dij , where dij is the desired
distance between robot i and robot j. For the GDS, we use a constant metric
G ≡ c ∈ R++. The potential function is defined as Φ(z) = 1

2 α z
2 and the

damping is B(x, ẋ) ≡ η, with α, η > 0. We will refer to this RMP as Distance
Preservation RMPa in later sections.

Note that the above RMP is not equivalent to the potential-based formation
controller in, e.g. [2, 3]. However, there does exist an RMP that has very similar
behavior. It is defined on the product space, z = (xi,xj). The metric for the
RMP is also constant, G ≡ c I, where c ∈ R++ and I denotes the identity
matrix. The potential function is defined as Φ(z) = 1

2 Eij(‖xi − xj‖), where
Eij : R → R is differentiable and achieves its minimum at dij . Common choices
include Eij(s) = (s − dij)2 and Eij(s) = (s2 − d2ij)2 [2]. The damping matrix
is defined as B ≡ η I, with η > 0. This RMP will be referred to as Distance
Preservation RMPb in later sections.

When there are only distance preserving RMPs in the RMP-tree, the result-
ing individual-level dynamics are given by

ẍi = − α

cDi

∑
j:(i,j)∈E

∇xiEij(‖xi − xj‖)−
η

c
ẋi, (4)

where E represents the set of edges in the formation graph, and Di = |{j :
(i, j) ∈ E}| is the degree of robot i. This is closely related to the gradient
descent update rule over the potential function E(x) = 1

2

∑
(i,j)∈E Eij(‖xi−xj‖)

with an additional damping term, and normalized by the degree of the robot.
We will later prove in Section 3.3 that the degree-normalized potential-based
controller and the original potential-based controller have similar behaviors in
the sense that the resulting systems converge to the same invariant set.

The main difference between the two distance preserving RMPs is the space
on which they are defined. The first RMP is defined on a 1-d distance space
while the second RMP is defined on a higher dimensional space. Therefore, the
first RMP is more permissive in the sense that it only specifies desired behaviors
in a one dimensional submanifold of the configuration space. This is illustrated
through a simulated formation preservation task in Section 5.

3.3 Potential-based Controllers from RMPs

Designing controllers based on the gradient descent rule of a potential function
is very common in the multi-robot systems literature, e.g. [2, 3, 18]. Usually, the
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overall potential function E is the sum of a set of symmetric, pairwise potential
functions Eij(‖xi − xj‖) between robot i and robot j that are adjacent in an
underlying graph structure. When the robots follow double-integrator dynamics,
a damping term is typically introduced to guarantee convergence to an invariant
set. Let x be the ensemble-level state of the team. The controller is given by,
ẍ = u = −∇E − η ẋ, where η is a positive scalar. We define a degree-normalized
potential-based controller as, u = −Γ (∇E + η ẋ), where Γ is a diagonal matrix
with Γii = 1/Di and Di is the degree of robot i in the graph.

Theorem 2. Both the degree-normalized controller and the original potential-
based controller converge to the invariant set {(x, ẋ) : ∇E = 0, ẋ = 0}.
Proof. For the original controller, consider the Lyapunov function candidate
V (x, ẋ) = 1

2‖ẋ‖
2 + E(x). Then V̇ = ẋ>(ẍ + ∇E) = −η ‖ẋ‖2. By LaSalle’s in-

variance principle [19], the system converges to the set {(x, ẋ) : ∇E = 0, ẋ = 0}.
For the degree-normalized controller, consider the Lyapunov function candidate
V (x, ẋ) = 1

2 ẋ>Γ−1ẋ+E(x). Then V̇ = ẋ>(Γ−1ẍ+∇E) = −η ‖ẋ‖2. The system
also converges to the same set by LaSalle’s invariance principle [19]. �

Therefore, similar to potential-based formation control, one can directly im-
plement the degree-normalized version of these potential-based controllers by
RMPs defined on the product space, z = (xi,xj). The potential function for the
RMP is defined as Φ(z) = Eij(‖xi − xj‖). Constant metric and damping can be
used, e.g. G ≡ c I, and B ≡ η I, where c and η are positive scalars. Moreover,
similar to formation control, one can also define RMPs on the distance space
z = ψ(xi,xj) = ‖xi − xj‖ with potential function Φ = Eij . Since RMPs are
defined on a lower-dimensional manifold, this approach may provide additional
degrees of freedom when these RMPs are combined with other policies.

4 Decentralized Control Policy Generation

Although the centralized RMPflow algorithm can be used to generate control
policies for multi-robot systems, it can be demanding in both communication and
computation. Therefore, we develop a decentralized approximation of RMPflow
that only relies on local communication and computation.

Before discussing the algorithm, a few definitions and assumptions are needed.
Given the set of all subtasks K, we say two robots i and j are neighbors if and
only if there exists a subtask such that both robots are involved in. We then say
that the algorithm is decentralized if only the state information of the robot’s
direct neighbors is required to solve for its control input. Note that here we
implicitly assume that the robots are equipped with the sensing modality or
communication modality to access the state of the neighbors. We also assume
that the map and the Jacobian matrix for a subtask are known to the robot if
the robot is involved in the subtask. For example, for the formation control task,
the robot should know how to calculate distance between two robots given their
states, and also know the partial derivatives of the distance function.

The major difference between the decentralized algorithm and the centralized
RMPflow algorithm is that, in the decentralized algorithm, there is no longer
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a centralized root node that can generate control policies for all robots. In-
stead, each robot should have its own RMP-tree that generates policies based
on the information available locally. Therefore, the decentralized algorithm actu-
ally operates on a forest with N RMP-trees, called the RMP-forest. An example
RMP-forest is shown in Fig. 3. There are three robots performing the same for-
mation preservation task as in Fig. 2. Hence, there are three RMP-trees in the
RMP-forest. For each RMP-tree, there are leaf nodes for every subtask relevant
to the robot associated with the RMP-tree. As a result, there are multiple copies
of certain subtasks in the RMP-forest, for example, the collision avoidance node
for robot 1 and 2 appears twice: once in the RMP-tree of robot 1, and once in
the RMP-tree of robot 2. However, these copies do not share information.

Fig. 3: A decentralized RMP-forest. The three robots are tasked with the same
formation preservation task as in Fig. 2. For the decentralized algorithm, each
robot has an individual RMP-tree to solve for its control input. All the leaf RMP
nodes that are relevant to the robot are in its RMP-tree. For example, for robot
1, collision avoidance and distance preservation RMPs for both the pair {1, 2}
and {3, 1} are introduced. There is a goal attractor for robot 1 since it is the
leader. Note that there are several copies of the same subtasks in the forest,
however, these copies do not share information with each other.

We call the decentralized approximation partial RMPflow. In partial RMPflow,
every subtask is viewed as a time-varying unitary task. Therefore, following the
RMP-tree construction in the previous section, it is natural to consider one-level
RMP-trees, where the leaf nodes are direct children of the root nodes.

Notationwise, let Ki be the set of subtasks that robot i participates in. Since
there are multiple copies of the same subtasks in the RMP-forest, we use lik
to denote the node corresponds to the copy of subtask k in the tree of robot i
while let eik denote the edge from the root of tree i to the leaf node lik. We let
ψek denote the smooth map from the joint configuration space

∏
j∈Ik Cj to the

subtask space Tk (which is the same across trees in the RMP-forest) and let Jiek
be the Jacobian matrix of ψek with respect to qi only, i.e. Jiek = ∂qi

ψek .
To compute the control input for robot i, an algorithm similar to RMPflow

is applied in RMP-tree i:

– pushforward: Let {zik}k∈Ki
be the coordinates of the leaf nodes of RMP-tree

i. Given the state of the root (qi, q̇i), its state is computed as, zik = ψek(qIk),
żik = Jiek q̇i, where qIk = {qj : j ∈ Ik}. It is worth noting that żik 6= d

dtz
i
k,

since the other robots are considered static when computing żik.
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– Evaluate: Let Mlk , Blk , and Φlk be the user-designed metric, damping
matrix, and potential function for subtask lk. For notational simplicity, we
denote Gi

lk
= Glk(zilk , ż

i
lk

), Bi
lk

= Blk(zilk , ż
i
lk

), and Φilk = Φlk(zilk). At
leaf node lik, the RMP is given by the following system (similar to GDS),

f ilk = −∇zi
k
Φilk −Bi

lk
żik −

1

2

zik

Gi
lk

(zik, ż
i
k) żik, Mi

lk
= Mlk(yilk , ẏ

i
lk

) (5)

Note that, to provide stability, the RMP is no longer generated by a GDS. In
particular, the curvature term compensates for the motion of other robots.

– pullback: Given the RMPs from the leaf nodes of tree i, {[f ilk ,M
i
lk

]Tk}k∈Ki
,

the pullback operator calculates the RMP for the root node of tree i,

f ir =
∑
k∈Ki

(Jiek)>(f ilk −Mi
lk

J̇iek q̇i), Mi
r =

∑
k∈Ki

(Jiek)>Mi
lk

Jiek . (6)

– resolve: The control input is given by ui = air = (Mi
r)
† f ir.

Note that when all the metrics are constant diagonal matrices and all the Ja-
cobian matrices are identity matrices, the decentralized partial RMPflow frame-
work has exactly the same behavior as RMPflow. This, in particular, holds for the
degree-normalized potential-based controllers discussed in Section 3.3. There-
fore, the decentralized partial RMPflow framework can also reconstruct a large
number of multi-robot controllers up to degree normalization.

Partial RMPflow has a stability result similar to RMPflow, which is stated
in the following theorem.

Theorem 3. Let Gi
r =

∑
k∈Ki

(Jiek)>Gi
lk

Jiek , Bi
r =

∑
k∈Ki

(Jiek)>Bi
lk

Jiek , and

Φir =
∑
k∈Ki

Φilk ◦ ψek be the metric, damping matrix, and potential of the tree

i’s root node. If Gi
r,B

i
r � 0 and Mi

r is nonsingular for all i ∈ I, the system
converges to a forward invariant set C∞ := {(q, q̇) : ∇qiΦ

i
r = 0, q̇i = 0,∀i ∈ I}.

Proof. See Appendix A. �

5 Experimental Results

We evaluate the multi-robot RMP framework through both simulation and
robotic implementation. The detailed choice parameters in the experiments and
additional simulation results can be found in Appendix B and Appendix C.

5.1 Simulation Results

Formation preservation tasks [20], where robots must maintain a certain for-
mation while the leader is driven by some external force, are considered harder
than formation control tasks since one needs to carefully balance the external
force and the formation controller. However, since translations and rotations
can still preserve shape, the team should have the capability of maintaining the
formation regardless of the motion of the leader.

We consider a formation preservation task in simulation where a team of
five robots are tasked with forming a regular pentagon while the leader has
the additional task of reaching a goal. The two distance preservation RMPs
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introduced in Section 3.2 are compared. Distance preservation RMPs are defined
for all edges in the formation graph. To move the formation, an additional goal
attractor RMP is defined for the leader robot, where the construction of the goal
attractor RMP can be found in Appendix B.1 (referred to as Goal Attractor
RMPa) or [16]. We use a damper RMP defined by a GDS on the configuration
space of every single robot with only damping so that the robots can reach
a full stop at the goal. Fig. 4a shows the resulting behavior for the distance
preserving RMPa. The robots manage to preserve shape while the leader robot is
reaching the goal since the subtasks are defined on lower-dimensional manifolds.
By contrast, the behavior for distance preservation RMPb (which is equivalent
to the degree-normalized potential-based controller) is shown in Fig. 4b. This
distance preservation RMP fails to maintain the formation when the leader robot
is attracted to the goal.

(a) Dist. Prsv. RMPa (b) Dist. Prsv. RMPb

t rajectories

t = 0.0

t = 5.0

t = 9.9

t = 14.9

t = 19.8

t = 24.8

goal

Fig. 4: (a) The behavior of distance preservation RMPa when combined with a
goal attractor RMP. The blue pentagons from light to dark denote the shape
from t = 0.0s to t = 24.8s. The orange curves show the trajectories of the robots.
The robots manage to reach the goal while maintaining the shape. (b) The same
task with distance preservation RMPb. The robots fail to maintain the shape.

5.2 Robotic Implementations

We present several experiments (video: https://youtu.be/VZHr5SN9wXk) con-
ducted on the Robotarium [21], a remotely accessible swarm robotics platform.
Since the centralized RMPflow framework and the decentralized partial RMPflow
frameworks have their own features, we design a separate experiment for each
framework to show their full capability.

Centralized RMPflow Framework The main advantage of the centralized
RMPflow framework is that the subtask spaces are jointly considered and hence
the behavior of each controller is combined consistently. To fully exploit this
feature, we consider formation preservation with two sub-teams of robots. The
two sub-teams are tasked with maintaining their formation while moving back
and forth between two goal points A and B. The five robots in the first sub-team
are assigned a regular pentagon formation and the four robots in the second sub-
team must form a square. At the beginning of the task, goal A is assigned to the
first sub-team and goal B to the second sub-team. The robots negotiate their
path so that their trajectories are collision free.
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A combination of distance preservation RMPs, collision avoidance RMPs,
goal attractor RMPs, and damper RMPs are used to achieve this behavior.
The construction of the RMP-tree is similar to Fig. 2. A distance preservation
RMPa is assigned to every pair of robots that corresponds to an edge in the
formation graph, while collision avoidance RMPs are defined for every pair of
robots. For each sub-team, we define a goal attractor RMP for the leader, where
the construction of the goal attractor RMP is explained in Appendix B.1. We also
use a damper RMP defined by a GDS on the configuration space of every single
robot so that the robots can reach a full stop at the goal. Fig. 5 shows several
snapshots from the experiment. We see that the robots are able to maintain their
corresponding formations while avoiding collision. The two sub-teams of robots
rotates around each other to avoid potential collision, which shows that the full
degrees of freedom of the task is exploited.

(a) t = 0 s (b) t = 10 s (c) t = 44 s

(d) t = 64 s (e) t = 71 s (f) t = 77 s

Fig. 5: The snapshots from the formation preservation experiment with the cen-
tralized RMPflow framework. Goal positions and the formation graphs are pro-
jected onto the arena by an overhead projector. The colors of the graphics are
augmented in the figures for the purpose of visualization. The two sub-teams of
robots are tasked with maintaining the formation while moving back and force
between two goal points in arena. The red and blue lines in the figure denote
the formation graphs. The red and blue stars are the current goal positions for
sub-team 1 and sub-team 2, respectively.

Decentralized Partial RMPflow Framework For the decentralized partial
RMPflow framework, we consider a team of eight robots. The robots are divided
into two sub-teams. The task of the first sub-team is to achieve cyclic pursuit
behavior for a circle of radius 1 m centered at the origin. The other sub-team is
designed to go through the circle surveilled by the other sub-team. To achieve the
cyclic pursuit behavior, each robot in the first sub-team follows a point moving
along the circle through a goal attractor RMP (defined in Appendix B.1). The
RMP-forest for the second sub-team follows a similar structure as Fig. 3. For each
single robot, there are collision avoidance RMPs for all other robots. Snapshots
from the experiment are shown in Fig. 6. The robots from the second sub-team
manage to pass through the circle under the decentralized framework.
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(a) t = 0 s (b) t = 22 s (c) t = 45 s

(d) t = 95 s (e) t = 129 s (f) t = 143 s

Fig. 6: The snapshots from the experiment for the decentralized multi-robot
RMP framework. The circle surveilled by the first sub-team and the forma-
tion graph for the second sub-team are projected onto the environment. Robots
were divided into two sub-teams. The first sub-team of five robots performed a
cyclic pursuit behavior for a circle of radius 1 centered at the origin. The other
sub-team passes through the circle surveilled by the other sub-team.

6 Conclusions

In this paper, we consider multi-objective tasks for multi-robot systems. We
argue that it is advantageous to define controllers for single subtasks on their
corresponding manifolds. We propose centralized and decentralized algorithms
to generate control policies for multi-robot systems by combining control policies
defined for individual subtasks. The multi-robot system is proved to be stable
under the generated control policies. We show that many existing potential-based
multi-robot controllers can also be approximated by the proposed algorithms.
Several subtask policies are proposed for multi-robot systems. The proposed
algorithms are tested through simulation and deployment on real robots.
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Appendices

A Proof of Theorem 3

Theorem 3. Let Gi
r =

∑
k∈Ki

(Jiek)>Gi
lk

Jiek , Bi
r =

∑
k∈Ki

(Jiek)>Bi
lk

Jiek , and

Φir =
∑
k∈Ki

Φilk ◦ ψek be the metric, damping matrix, and potential of the tree

i’s root node. If Gi
r,B

i
r � 0 and Mi

r is nonsingular for all i ∈ I, the system
converges to a forward invariant set C∞ := {(q, q̇) : ∇qiΦ

i
r = 0, q̇i = 0,∀i ∈ I}.

Proof. Let Φ be the total potential function for all subtasks, i.e., Φ =
∑
k∈K Φlk ◦

ψek . Consider the Lyapunov function candidate V =
(∑N

i=1Ki

)
+ Φ, where

Ki = 1
2 q̇>i Gi

rq̇i. Then, following a derivation similar to [16], we have,

d

dt
Ki =

d

dt

(1

2
q̇>i
( ∑
k∈Ki

(Jiek)>Gi
lk

Jiek
)
q̇i

)
=

d

dt

(1

2

∑
k∈Ki

(żilk)>Gi
lk

żilk

)
=
∑
k∈Ki

(żilk)>
(

Gi
lk

z̈ilk +
1

2

(
d

dt
Gi

lk

)
żilk

)

=
∑
k∈Ki

(żilk)>
(
Mi

lk
z̈ilk +

1

2

zik

Gi
lk

żilk

)

=
∑
k∈Ki

(żilk)>
(
Mi

lk
Jiek q̈i + Mi

lk
J̇iek q̇i +

1

2

zik

Gi
lk

żilk

)

= q̇>i
∑
k∈Ki

(Jiek)>Mi
lk

Jiek q̈i +
∑
k∈Ki

(żilk)>
(
Mi

lk
J̇iek q̇i +

1

2

zik

Gi
lk

żilk

)
.

(7)

By definition of the pullback operator, we have Mi
r =

∑
k∈Ki

(Jiek)>Mi
lk

Jiek ,

d

dt
Ki = q̇>i Mi

rq̈i +
∑
k∈Ki

(żilk)>
(
Mi

lk
J̇iek q̇i +

1

2

zik

Gi
lk

żilk

)

= q̇>i f ir +
∑
k∈Ki

(żilk)>
(
Mi

lk
J̇iek q̇i +

1

2

zik

Gi
lk

żilk

)
.

(8)

Also by definition of pullback, f ir =
∑
k∈Ki

(Jiek)>(f ilk −Mi
lk

J̇iek q̇i), hence,

d

dt
Ki =

∑
k∈Ki

(żilk)>
(
f ilk −Mi

lk
J̇iek q̇i + Mi

lk
J̇iek q̇i +

1

2

zik

Gi
lk

zilk

)

=
∑
k∈Ki

(żilk)>
(
f ilk +

1

2

zik

Gi
lk

zilk

)

=
∑
k∈Ki

(żilk)>
(
−∇zi

k
Φilk −Bi

lk
żik −

1

2

zik

Gi
lk

żik +
1

2

zik

Gi
lk

zilk

)
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=
∑
k∈Ki

(żilk)>
(
−∇zi

k
Φilk −Bi

lk
żik

)
(9)

= −
( ∑
k∈Ki

(żilk)>∇zi
k
Φilk

)
− q̇>i

( ∑
k∈Ki

(Jiek)>Bi
lk

Jiek

)
q̇i

= −
( ∑
k∈Ki

(żilk)>∇zi
k
Φilk

)
− q̇>i Bi

rq̇i

= −
( ∑
k∈Ki

(żilk)>∇zk
Φlk

)
− q̇>i Bi

rq̇i,

where we denote zk = ψlk(q) and the last equation follows from the fact that
zik = ψlk = zk for all i.

Therefore, for the Lyapunov function candidate V , we have,

d

dt
V =

N∑
i=1

d

dt
Ki +

∑
k∈K

ż>k∇zk
Φlk

= −
N∑
i=1

( ∑
k∈Ki

(żik)>∇zk
Φlk

)
+
∑
k∈K

ż>k∇zk
Φlk −

N∑
i=1

q̇>i Bi
rq̇i

= −
∑
k∈K

(∑
i∈Ik

(żik)>∇zk
Φlk

)
+
∑
k∈K

ż>k∇zk
Φlk −

N∑
i=1

q̇>i Bi
rq̇i

= −
N∑
i=1

q̇>i Bi
rq̇i,

(10)

where the last equation follows from żk =
∑
i∈Il Jiek q̇i =

∑
i∈Ik żik. Then by

LaSalle’s invariance principle [19], the system converges to a forward invariant
set C∞ := {(q, q̇) : ∇qiΦ

i
r = 0, q̇i = 0,∀i ∈ I}. �

B Details of the Experiments

In this appendix, we introduce the construction of unitary goal attractor RMP,
which is used in many of the experiments, and provide the choice of parameters
for the simulation and experiments.

B.1 Unitary Goal Attractor RMP

In multi-robot scenarios, instead of planning paths for every robot, it is com-
mon to plan a path or assign a goal to one robot, called the leader. The other
robots may simply follow the leader or maintain a given formation depending
on other subtasks assigned to the team. In this case, a goal attractor RMP may
be assigned to the leader. A number of controllers for multi-robot systems are
also based on going to a goal position, such as the cyclic pursuit behavior [3]
and Voronoi-based coverage controls [3, 18].
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There are several design options for goal attractor RMPs. We will discuss
two examples. The first goal attractor RMP is introduced in [16]. The attractor
RMP for robot i is defined on the subtask space z = xi − gi, where gi is the
desired configuration for the robot. The metric is designed as G(z) = w(z) I.
The weight function w(z) is defined as w(z) = γ(z)wu + (1 − γ(z))wl, with

0 ≤ wl ≤ wu < ∞ and γ(z) = exp(−‖z‖
2

2σ2 ) for some σ > 0. The weights wl
and wu control the importance of the RMP when the robots are far from the
goal and close to the goal, respectively. As the robot approaches the goal, the
weight w(z) will smoothly increase from wl to wu. The parameter σ determines
the characteristic length of the metric. The main intuition for the metric is that
when the robot is far from the goal, the attractor should be permissive enough for
other subtasks such as collision avoidance, distance preservation, etc. However,
when the robot is close to the goal, the attractor should have high importance so
that the robot can reach the goal. The potential function is designed such that,

∇zΦ(z) = β w(z)

(
1− e−2α‖z‖

1 + e−2α‖z‖

)
ẑ = β w(z) sα

(
‖z‖
)
ẑ, (11)

where β > 0, sα(0) = 0 and sα(r) → 1 as r → ∞. The parameter α deter-
mines the characteristic length of the potential. The potential function defined
in (11) provides a soft-normalization for x so that the transition near the origin is
smooth. The damping matrix is B(z) = η w(z) I, where η > 0 is a positive scalar.
We will refer to this goal attractor RMP as Goal Attractor RMPa in subsequent
sections. Although more complicated, it produces better results when combined
with other RMPs, especially collision avoidance RMPs (see Appendix C).

Another possible goal attractor RMP is based on a PD controller. This RMP
is also defined on the subtask space z = ψ(xi) = xi − gi. The metric is a
constant times identity matrix, G = c I with some c > 0. The potential function
is defined as Φ(z) = 1

2α‖z‖
2 and the damping is B ≡ η I, with α, η > 0. This

RMP is equivalent to a PD controller with kp = α/c and kd = η/c. This goal
attractor will be referred to as Goal Attractor RMPb in subsequent sections.

B.2 Choice of Parameters

Simulated Formation Preservation Task For each robot, we define a goal
attractor RMPa, with parameters wu = 10, wl = 1, σ = 0.1, β = 0.1, α =
10, η = 1. We use a damper RMP with G ≡ 0.01 I B ≡ I, Φ ≡ 0. For the
distance preserving RMPa we set parameters G = c = 1 and η = 2. For distance
preservation RMPb (which is shown to be equivalent to the potential-based
controller in the previous simulation), we choose parameters G = I and η = 2.

Centralized RMPflow Framework We use distance preservation RMPa’s
with G = c = 10, and η = 5. The safety distance between robots is dS = 0.18.
The parameters for the collision avoidance RMPs are set as α = 1e − 5, ε =
1e − 8, and η = 0.5. For goal attractors, we use goal attractor RMPa’s with
wu = 10, wl = 0.01, σ = 0.1, β = 1, α = 1, and η = 1. The damping RMPs have
parameters G ≡ 0.01 I B ≡ I, Φ ≡ 0.
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Decentralized Partial RMPflow Framework For the cyclic pursuit tasks,
the robots are attracted by points moving along the circle with angular velocity
0.06 rad/s. The parameters for the associated goal attractor RMPa’s are wu = 10,
wl = 0.01, σ = 0.1, β = 1, α = 1, η = 1. For robots from sub-team 2, the distance
preservation RMPa’s have parameters G = c = 10, η = 2. The goal attractor
are goal attractor RMPa’s with parameters wu = 10, wl = 1, σ = 0.1, β = 1,
α = 10, η = 2. The parameters for the collision avoidance RMPs are α = 1e− 5,
ε = 1e− 8, and η = 1, with safety distance dS = 0.18.

C Additional Simulation Results

RMPs & Potential-based Controllers As is discussed in Section 3, many
potential-based multi-robot controllers can be reconstructed by the RMP frame-
work up to degree normalization. In this example, we consider a formation con-
trol task with five robots. The robots are tasked with forming a regular pentagon
with circumcircle radius 0.4. The robots are initialized with a regular pentagon
formation, but with a larger circumcircle radius of 1.

(a) Potential-based (b) Dist. Presv. RMPb

t rajectories

t = 0.0

t = 0.7

t = 1.7

t = 3.3

t = 5.0

t = 6.6

t = 9.9

t = 13.2

Fig. 7: (a) The potential-based controller introduced in [2]. The blue pentagons
from light to dark denotes the shape from t = 0.0s to t = 13.2s. The orange
curves represent the trajectories of the robots. (b) The controller generated from
the centralized RMP framework with Distance Preservation RMPa. The fact that
(a) and (b) are identical shows that the two controllers have the same behavior.

We consider a degree-normalized potential field controller from [2],

ui = − 1

Di

∑
j:(i,j)∈E

(
∇xi

{1

2
(‖xi − xj‖ − dij)2

}
− η ẋi

)
= − 1

Di

∑
j:(i,j)∈E

(‖xi − xj‖ − dij
‖xi − xj‖

(xi − xj)− η ẋi

)
,

(12)

where dij is the desired distance between robot i and robot j, E is the set of
edges in the formation graph, and Di is the degree of robot i in the formation
graph. For the RMP implementation, we use the controller given by (4). The
potential-based controller (12) is equivalent to the controller generated by the
distance preservation RMP given by (4) when choosing c = α = 1. In simulation,



Multi-Objective Policy Generation for Multi-Robot Systems Using RMPs 21

we choose η = 2 for both the RMP controller and the potential-based controller.
The trajectories of the robots under the two controllers are displayed in Fig. 7a
and Fig. 7b, respectively. The results are identical implying the controllers have
exactly the same behavior.

Goal Attractor RMPs & Collision Avoidance RMPs An advantage of
the multi-robot RMP framework is that it can leverage existing single-robot
controllers, which may have desirable properties, especially when combined with
other controllers. In this simulation task, the performance of the two goal attrac-
tor RMPs are compared when combined with pairwise collision avoidance RMPs.
In the simulation, three robots are tasked with reaching a goal on the other side
of the field while avoiding collisions with each of the others. The parameters for
the collision avoidance RMPs are set as α = ε = 1e − 5, and η = 0.2. Fig. 8a
and Fig. 8b show the behavior of the resulting controllers with the two choices
goal attractor RMPs discussed in Section B.1, respectively. For goal attractor a,
we use parameters wu = 10, wl = 0.01, σ = 0.1, α = 1, and η = 1. we use c = 1,
α = 1, and η = 2 for goal attractor RMPb. We notice that goal attractor RMPa
generates smoother trajectories compared to goal attractor RMPb.

The Centralized & Decentralized RMP Algorithms The centralized and
the decentralized RMP algorithms are also compared through the same sim-
ulation of three robots reaching goals. Goal attractor RMPa’s with the same
parameters were used. For the collision avoidance RMP, we set α = ε = 1e− 5,
and η = 0.2. The trajectories of the robots under the decentralized algorithm
are illustrated in Fig. 8c. Compared to trajectories generated from centralized
RMPs, the robots oscillate slightly when approaching other robots, and made
aggressive turns to avoid collisions.

(a) Centralized/RMPa (b) Centralized/RMPb (c) Decentralized/RMPa

Fig. 8: The performance of goal attractor RMPs combined with pairwise collision
avoidance RMPs. The blue dots and green stars denote the initial and goal
positions, respectively. The trajectories are represented by orange curves. (a)
The more sophisticated goal attractor RMPa generates smooth trajectories when
combined with collision avoidance RMP in the centralized framework. (b) Goal
attractor RMPb, which is equivalent to a PD controller, generates more distorted
trajectories. (c) Under the decentralized RMP framework, the robots oscillate
slightly near the origin and turn abruptly against each other.
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D On Heterogeneous Robotic Teams

A significant feature of RMPs is that they are intrinsically coordinate-free [16].
Consider two robots i and j with configuration space Ci and Cj , respectively.
Assume that there exists a smooth map ψ from Cj to Ci. Then the RMP-tree
designed for one robot i can be directly transferred to robot j by connecting the
tree to the root node of robot j through the map ψ. Therefore, RMPs provides
a level of abstraction for heterogeneous robotic teams so that the user only
needs to design desired behaviors for a homogeneous team with simple dynamics
models, for example, double integrator dynamics, and seamlessly transfer it to
the heterogeneous team. This insight could bridge the gap between theoretical
results, which are usually derived for homogeneous robotic teams with simple
dynamics models, and real robotics applications.


