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Abstract

Recent work on scaling up Gaussian process regression (GPR) to large datasets has
primarily focused on sparse GPR, which leverages a small set of basis functions
to approximate the full Gaussian process during inference. However, the majority
of these approaches are batch methods that operate on the entire training dataset
at once, precluding the use of datasets that are streaming or too large to fit into
memory. Although previous work has considered incrementally solving variational
sparse GPR, most algorithms fail to update the basis functions and therefore
perform suboptimally. We propose a novel incremental learning algorithm for
variational sparse GPR based on stochastic mirror ascent of probability densities
in reproducing kernel Hilbert space. This new formulation allows our algorithm
to update basis functions online in accordance with the manifold structure of
probability densities for fast convergence. We conduct several experiments and
show that our proposed approach achieves better empirical performance in terms of
prediction error than the recent state-of-the-art incremental solutions to variational
sparse GPR.

1 Introduction

Gaussian processes (GPs) are nonparametric statistical models widely used for probabilistic reasoning
about functions. Gaussian process regression (GPR) can be used to infer the distribution of a latent
function f from data. The merit of GPR is that it finds the maximum a posteriori estimate of
the function while providing the profile of the remaining uncertainty. However, GPR also has
drawbacks: like most nonparametric learning techniques the time and space complexity of GPR
scale polynomially with the amount of training data. Given N observations, inference of GPR
involves inverting an N x N covariance matrix which requires O(N?) operations and O(N?) storage.
Therefore, GPR for large NNV is infeasible in practice.

Sparse Gaussian process regression is a pragmatic solution that trades accuracy against computa-
tional complexity. Instead of parameterizing the posterior using all N observations, the idea is
to approximate the full GP using the statistics of finite M < N function values and leverage the
induced low-rank structure to reduce the complexity to O(M2N + M?) and the memory to O(M?).
Often sparse GPRs are expressed in terms of the distribution of f(&;), where X = {#; € X}, are
called inducing points or pseudo-inputs |13} 14, |11} [15]. A more general representation leverages the
information about the inducing function (L; f)(Z;) defined by indirect measurement of f through a
bounded linear operator L; (e.g. integral) to more compactly capture the full GP [16}15]. In this work,
we embrace the general notion of inducing functions, which trivially includes f(Z;) by choosing L;
to be identity. With abuse of notation, we reuse the term inducing points X to denote the parameters
that define the inducing functions.
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Learning a sparse GP representation in regression can be summarized as inference of the hyperpa-
rameters, the inducing points, and the statistics of inducing functions. One approach to learning is
to treat all of the parameters as hyperparameters and find the solution that maximizes the marginal
likelihood [[13} [14} [11]. An alternative approach is to view the inducing points and the statistics of
inducing functions as variational parameters of a class of full GPs, to approximate the true posterior of
f, and solve the problem via variational inference, which has been shown robust to over-fitting [15} [1].

All of the above methods are designed for the batch setting, where all of the data is collected in
advance and used at once. However, if the training dataset is extremely large or the data are streaming
and encountered in sequence, we may want to incrementally update the approximate posterior of the
latent function f. Early work by Csaté and Opper [4] proposed an online version of GPR, which
greedily performs moment matching of the true posterior given one sample instead of the posterior of
all samples. More recently, several attempts have been made to modify variational batch algorithms
to incremental algorithms for learning sparse GPs [l 16, [7]. Most of these methods rely on the
fact that variational sparse GPR with fixed inducing points and hyperparameters is equivalent to
inference of the conjugate exponential family: Hensman et al. [6] propose a stochastic approximation
of the variational sparse GPR problem [[15] based on stochastic natural gradient ascent [8]; Hoang
et al. [7] generalizes this approach to the case with general Gaussian process priors. Unlike the
original variational algorithm for sparse GPR [15]], which finds the optimal inducing points and
hyperparameters, these algorithms only update the statistics of the inducing functions f 5.

In this paper, we propose an incremental learning algorithm for variational sparse GPR, which
we denote as iVSGPR. Leveraging the dual formulation of variational sparse GPR in reproducing
kernel Hilbert space (RKHS), iVSGPR performs stochastic mirror ascent in the space of probability
densities [10]] to update the approximate posterior of f, and stochastic gradient ascent to update the
hyperparameters. Stochastic mirror ascent, similar to stochastic natural gradient ascent, considers the
manifold structure of probability functions and therefore converges faster than the naive gradient ap-
proach. In each iteration, iVSGPR solves a variational sparse GPR problem of the size of a minibatch.
As aresult, iVSGPR has constant complexity per iteration and can learn all the hyperparameters, the
inducing points, and the associated statistics online.

2 Background

Gaussian Processes Regression A GP is a distribution of functions f such that, for any finite index
set X, {f(z)|z € X} is Gaussian distributed N (f(z)|m(z), k(x,2")), where, m(x) and k(z, z")
represent the mean of f(z) and the covariance between f(x) and f(z') for z,2’ € X. In shorthand,
we write f ~ GP(m, k). The objective of GPR is to infer the posterior probability of the function f
given data D = {(z;,y;)} ;. It treats the function value f(z;) as a latent variable and assumes that
yi = f(2i) + €, where ¢; ~ N(€|0,0?). Let X = {z;}}*, . We have p(f|y) = GP(mp, kp):

mip(@) = ke x (Kx +0°1) 7y (1)
k|’D(x7x/) = kr,m’ - kz,X(KX + 021)_1kX,x’ (2)
where y = (y;)¥, € RY, k, x € R™¥ denotes the cross-covariance, and K x € RV*¥ denotes

the empirical covariance matrix on X. The hyperparameters 6 in the GP are learned by maximizing
the log-likelihood of the observation y

max log p(y) = max log NV (y|0, Kx + o°1). 3)

Variational Sparse Gaussian Processes Regression Variational sparse GPR approximates the
posterior p(f|y) by a full GP parameterized by inducing points and the statistics of inducing func-
tions [[I,[15]]. Let fx and f; denote the function values on X and the inducing points X . Specifically,
Titsias [[LS] proposes to use

q(fx, fz) =p(fx|fz)a(fz) 4)

to approximate p( fx, f5|y), where ¢(f5) = N'(f|m, S) is the Gaussian approximation of p(fz|y)
and p(fx|fg) is a conditional GP. The novelty here is that ¢( fx, f¢ ), despite parametrization by
finite parameters, is still a full GP, which, unlike its predecessor [13]], can be infinite-dimensional.



The inference problem of variational sparse GPR is solved by minimizing the KL-divergence
KL[q(fx, f)|lp(fx, f5|y)]. In practice, the minimization problem is transformed into the maxi-
mization of the lower bound of the log-likelihood [15]:

pylfx)p(fx|fz)p(fx)
q(fx: fx)
pylfx)p(fx)
a(fz)

X 1 X
=maxlog N'(y[0, Kx + 0*I) — s Tr(Kx — Kx) 5)
0,X 202

max log p(y) > Ipaxk/q(fx,f;()log
0 0,X,m,S

= maxN/p(fX|f)2)Q(ff()10g
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Compared with previous literature[[T1]], the variational approach in (3) regularizes the learning with
penalty Tr(Kx — Kx) and therefore exhibits better generalization performance.

3 Incremental Variational Sparse Gaussian Process Regression

Despite leveraging sparsity, the batch solution to the variational objective in (3] requires O(M?N)
operations and access to all of the training data during each optimization step [15]], which means
that learning from large datasets is still infeasible. Recently, several attempts have been made to
incrementally solve the variational sparse GPR problem in order to learn better models from large
datasets [[1, 6l [7]. The key idea is to rewrite (3)) explicitly into the sum of individual observations:

max _ /p(fx\ff()q(fj() log PULXIPU %)

0,X,m,S q(fX) dedf)”(

N

= max_/q(f;z) <ZEp(fmf;()[logp(yilfzi)] + log p(f)_()> dfg (6)

0,X 1,8 P a(fx)

The objective function in (6)), with fixed X, becomes identical to the problem of stochastic variational
inference [8] of conjugate exponential families. Hensman et al. [6] exploit this idea to incrementally
update the statistics 7 and S via stochastic natural gradient ascent, which can consider the manifold
structure of probability distribution derived from KL divergence and is known to be Fisher efficient [2]].
Though the optimal inducing points X, like the statistics /7 and .S, should be updated accordingly
as new observations are made, it is hard to design natural gradient ascent for online learning of
the inducing points X. Because p(fx|fg) in (€) depends on all the observations, evaluating the
divergence with respect to p(fx|f¢)q(fz) over iterations becomes infeasible.

We propose a novel approach, iVSGPR, to incremental variational sparse GPR that works by reformu-
lating (©) in its RKHS dual form as

N
)t 1og P
r(fl(%c/q(f) (;logp(yzf) + log q(f)> df, (7

where p(f) and ¢(f) are the Gaussian measures of the prior and the approximate posterior GPs. In
particular, ¢(f) is parametrized by X, /, and S. This avoids the issue of using p(fx|f¢)q(fz)
which refers to all observations. As a result, we can perform stochastic approximation of (3)) while
monitoring the KL divergence between the posterior approximates due to the change of X, m, and
S across iterations. Specifically, we use stochastic mirror ascent [10] in the space of probability
densities in RKHS, which was recently proven as efficient as stochastic natural gradient ascent [12].
In each iteration, iVSGPR solves a subproblem of fractional Bayesian inference, which we show can
be formulated into a standard variational sparse GPR of the size of a minibatch in O(M?2N,,, + M?3)
operations, where N, is the size of a minibatch. See [3] for details.

4 Experiments

We compare our method iVSGPR with VSGPRy,; the state-of-the-art variational sparse GPR based
on stochastic variational inference [6], in which i.i.d. data are sampled from the training dataset



VSGPRy; iVSGPRs iVSGPRy  iVSGPRuda

kin40k 0.0959 0.0648 0.0608 0.0607

SARCOS J4 0.0247 0.0228 0.0214 0.0210

SARCOS Jo 0.0193 0.0176 0.0159 0.0156

SARCOS J3 0.0125 0.0112 0.0104 0.0103

SARCOS J4 0.0048 0.0044 0.0040 0.0038

SARCOS Js5 0.0267 0.0243 0.0229 0.0226

SARCOS Jg 0.0300 0.0259 0.0235 0.0229

SARCOS J7 0.0101 0.0090 0.0082 0.0081

(a) kin40k and SARCOS
VSGPRy;  iVSGPRs  iVSGPRyy  iVSGPRug, VSGPRy;  iVSGPRs  iVSGPRyy  iVSGPRug,
I 0.1699 0.1455 0.1257 0.1176 J1 0.1737 0.1452 0.1284 0.1214
Jo 0.1530 0.1305 0.1221 0.1138 Jo 0.1517 0.1312 0.1183 0.1081
Js 0.1873 0.1554 0.1403 0.1252 Js 0.2108 0.1818 0.1652 0.1544
Jy 0.1376 0.1216 0.1151 0.1108 Ja 0.1357 0.1171 0.1104 0.1046
Js 0.1955 0.1668 0.1487 0.1398 Js 0.2082 0.1846 0.1697 0.1598
Js 0.1766 0.1645 0.1573 0.1506 Js 0.1925 0.1890 0.1855 0.1809
J7 0.1374 0.1357 0.1342 0.1333 Jz 0.1329 0.1309 0.1287 0.1275
(b) KUKAL1 (c) KUKA2

Table 1: Testing error (nMSE) after 500 iterations. IV, = 2048; J; denotes the ith joint.
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Figure 1: Online learning results of SARCOS joint 2. (a) nMSE evaluated on the held out test set; the
dash lines and the solid lines denote the results with V,,, = 512 and N,,, = 2048, respectively. (b)
Number of function calls used by iVSGPR,q, in solving each subproblem (A maximum of 100 calls
is imposed )

to update the models. The experiments of variants of VSGPRE| are conducted on three real-world
robotic datasets datasets, kin40k [14] SARCOSEL KUKA[9]. For example, Figure shows the change
of test error over iterations in learning joint 2 of the SARCOS dataset. In general, the adaptive scheme
iVSGPR,4, performs the best. For all methods, the convergence rate improves with a larger minibatch.
In addition, from Figure [Tb] we observe that the required number of steps iVSGPR,q, needed to
solve each subproblem decays with the number of iterations; only a small number of line searches is
required after the first few iterations.

5 Conclusion

We propose a stochastic approximation of variational sparse GPR [15], iVSGPR. By reformulating
the variational inference in RKHS, the update of the statistics of the inducing functions and the
inducing points can be unified as stochastic mirror ascent on probability densities to consider the
manifold structure. In our experiments, iVSGPR shows better performance than the direct adoption of
stochastic variational inference to solve variational sparse GPs. As iVSGPR executes a fixed number
of operations for each minibatch, it is suitable for applications where training data is abundant, e.g.
sensory data in robotics. In future work, we are interested in applying iVSGPR to extensions of sparse
Gaussian processes such as GP-LVMs and dynamical system modeling.

The subscript denotes the number of function calls allowed in each subproblems and ada denotes solving
the subproblem until the relative function change is less than a threshold.
2 http://www.gaussianprocess.org/gpml/data/
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