Incremental Variational Sparse Gaussian Process
Regression

Ching-An Cheng Byron Boots
Institute for Robotics and Intelligent Machines Institute for Robotics and Intelligent Machines
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, GA 30332 Atlanta, GA 30332
cacheng@gatech.edu bboots@cc.gatech.edu

Abstract

Recent work on scaling up Gaussian process regression (GPR) to large datasets has
primarily focused on sparse GPR, which leverages a small set of basis functions
to approximate the full Gaussian process during inference. However, the majority
of these approaches are batch methods that operate on the entire training dataset
at once, precluding the use of datasets that are streaming or too large to fit into
memory. Although previous work has considered incrementally solving variational
sparse GPR, most algorithms fail to update the basis functions and therefore
perform suboptimally. We propose a novel incremental learning algorithm for
variational sparse GPR based on stochastic mirror ascent of probability densities
in reproducing kernel Hilbert space. This new formulation allows our algorithm
to update basis functions online in accordance with the manifold structure of
probability densities for fast convergence. We conduct several experiments and
show that our proposed approach achieves better empirical performance in terms of
prediction error than the recent state-of-the-art incremental solutions to variational
sparse GPR.

1 Introduction

Gaussian processes (GPs) are nonparametric statistical models widely used for probabilistic reasoning
about functions. Gaussian process regression (GPR) can be used to infer the distribution of a latent
function f from data. The merit of GPR is that it finds the maximum a posteriori estimate of
the function while providing the profile of the remaining uncertainty. However, GPR also has
drawbacks: like most nonparametric learning techniques the time and space complexity of GPR
scale polynomially with the amount of training data. Given N observations, inference of GPR
involves inverting an N x N covariance matrix which requires O(N?) operations and O(NN?) storage.
Therefore, GPR for large IV is infeasible in practice.

Sparse Gaussian process regression is a pragmatic solution that trades accuracy against computa-
tional complexity. Instead of parameterizing the posterior using all N observations, the idea is
to approximate the full GP using the statistics of finite M/ < N function values and leverage the
induced low-rank structure to reduce the complexity to O(M?2N + M?) and the memory to O(M?).
Often sparse GPRs are expressed in terms of the distribution of f(%;), where X = {; € X}, are
called inducing points or pseudo-inputs [20, 22, 17, 25]. A more general representation leverages the
information about the inducing function (L; f)(&;) defined by indirect measurement of f through a
bounded linear operator L; (e.g. integral) to more compactly capture the full GP [26, 8]. In this work,
we embrace the general notion of inducing functions, which trivially includes f(Z;) by choosing L;
to be identity. With abuse of notation, we reuse the term inducing points X to denote the parameters
that define the inducing functions.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Learning a sparse GP representation in regression can be summarized as inference of the hyperpa-
rameters, the inducing points, and the statistics of inducing functions. One approach to learning is
to treat all of the parameters as hyperparameters and find the solution that maximizes the marginal
likelihood [20, 22, 17]. An alternative approach is to view the inducing points and the statistics of
inducing functions as variational parameters of a class of full GPs, to approximate the true posterior of
f, and solve the problem via variational inference, which has been shown robust to over-fitting [25, 1].

All of the above methods are designed for the batch setting, where all of the data is collected in
advance and used at once. However, if the training dataset is extremely large or the data are streaming
and encountered in sequence, we may want to incrementally update the approximate posterior of the
latent function f. Early work by Csaté and Opper [6] proposed an online version of GPR, which
greedily performs moment matching of the true posterior given one sample instead of the posterior of
all samples. More recently, several attempts have been made to modify variational batch algorithms
to incremental algorithms for learning sparse GPs [1, 9, 10]. Most of these methods rely on the
fact that variational sparse GPR with fixed inducing points and hyperparameters is equivalent to
inference of the conjugate exponential family: Hensman et al. [9] propose a stochastic approximation
of the variational sparse GPR problem [25] based on stochastic natural gradient ascent [11]; Hoang
et al. [10] generalizes this approach to the case with general Gaussian process priors. Unlike the
original variational algorithm for sparse GPR [25], which finds the optimal inducing points and
hyperparameters, these algorithms only update the statistics of the inducing functions f 5.

In this paper, we propose an incremental learning algorithm for variational sparse GPR, which
we denote as iVSGPR. Leveraging the dual formulation of variational sparse GPR in reproducing
kernel Hilbert space (RKHS), iVSGPR performs stochastic mirror ascent in the space of probability
densities [16] to update the approximate posterior of f, and stochastic gradient ascent to update the
hyperparameters. Stochastic mirror ascent, similar to stochastic natural gradient ascent, considers the
manifold structure of probability functions and therefore converges faster than the naive gradient ap-
proach. In each iteration, iZVSGPR solves a variational sparse GPR problem of the size of a minibatch.
As aresult, iVSGPR has constant complexity per iteration and can learn all the hyperparameters, the
inducing points, and the associated statistics online.

2 Background

In this section, we provide a brief summary of Gaussian process regression and sparse Gaussian
process regression for efficient inference before proceeding to introduce our incremental algorithm
for variational sparse Gaussian process regression in Section 3.

2.1 Gaussian Processes Regression

Let F be a family of real-valued continuous functions f : X — R. A GP is a distribution of
functions f in F such that, for any finite set X C X, {f(x)|x € X} is Gaussian distributed
N(f(z)|m(z), k(z,2")): for any z,z’ € X, m(zx) and k(z, z’) represent the mean of f(x) and the
covariance between f(x) and f(z'), respectively. In shorthand, we write f ~ GP(m, k).

The mean m(x) and the covariance k(z, 2") (the kernel function) are often parametrized by a set of
hyperparameters which encode our prior belief of the unknown function f. In this work, for simplicity,
we assume that m(x) = 0 and the kernel can be parameterized as k(z,z') = p?gs(x,2'), where
gs(x, ") is a positive definite kernel, p? is a scaling factor and s denotes other hyperparameters [19].

The objective of GPR is to infer the posterior probability of the function f given data D =
{(zs,y:)}X,. In learning, the function value f(z;) is treated as a latent variable and the obser-
vation y; = f(z;) + €; is modeled as the function corrupted by i.i.d. noise €; ~ N(€|0,02). Let
X = {z;}}¥,. The posterior probability distribution p(f|y) can be compactly summarized as
GP(mp, kp):

myp () = ke x (Kx +0°I) 1y (1)
klp(xvx/) = k2 — ko x(Kx + 02[)71]{:)(@/ )

where y = (yi)f\il e RN, kz x € RN denotes the vector of the cross-covariance between z and X,
and Kx € RY*¥ denotes the empirical covariance matrix of the training set. The hyperparameters



6 := (s, p, o) in the GP are learned by maximizing the log-likelihood of the observation y

max logp(y) = max log N (y|0, Kx + o°1). 3)

2.2 Sparse Gaussian Processes Regression

A straightforward approach to sparse GPR is to approximate the GP prior of interest with a degenerate
GP [20, 22, 17]. Formally, for any x;,z; € X, it assumes that

fl@i) Lyilfz,  fl@) L f(x)|fx, 4)

where f¢ denotes ((L; f) (:f:z))f\il and | denotes probabilistic independence between two random
variables. That is, the original empirical covariance matrix K x is replaced by a rank-M approxi-

mation Ky = Ky ¢ K 'K y, where K is the covariance of f¢ and K ¢ € RN*M is the
cross-covariance between fx and fg. Let A € RV*N be diagonal. The inducing points X are
treated as hyperparameters and can be found by jointly maximizing the log-likelihood with 6

max log N (y]0, Kx + I + A), (5)
0,X

Several approaches to sparse GPR can be viewed as special cases of this problem [17]: the Determin-
istic Training Conditional (DTC) [20] approximation sets A as zero. To heal the degeneracy in p(fx),
the Fully Independent Training Conditional (FITC) approximation [22] includes heteroscedastic
noise, setting A = diag(Kx — Kx). As aresult, their sum A + K x matches the true covariance
K x in the diagonal term. This general maximum likelihood scheme for finding the inducing points
is adopted with variations in [23, 26, §, 2]. A major drawback of all of these approaches is that they

can over-fit due to the high degrees-of-freedom X in the prior parametrization [25].

Variational sparse GPR can alternatively be formulated to approximate the posterior of the latent
function by a full GP parameterized by the inducing points and the statistics of inducing functions [1,
25]. Specifically, Titsias [25] proposes to use

a(fx, fg) =p(fx|fz)a(fx) (6)

to approximate p(fx, f¢|y), where ¢(f¢) = N (fg|m, S) is the Gaussian approximation of p(fzly)
and p(fx|f5) = N(fx|Kx ;(K)T(lf)—(, Kx — Kx) is the conditional probability in the full GP. The
novelty here is that ¢(fx, f¢ ), despite parametrization by finite parameters, is still a full GP, which,
unlike its predecessor [20], can be infinite-dimensional.

The inference problem of variational sparse GPR is solved by minimizing the KL-divergence
KL[g(fx, fg)|lp(fx, fg|y)]. In practice, the minimization problem is transformed into the maxi-
mization of the lower bound of the log-likelihood [25]:

plfx)p(fx|fz)p(fx)
q(fx: fx)
p(ylfx)p(fx)
a(fx)

. 1 A
=maxlog N (y|0, Kx + 0?I) — —Tr(Kx — Kx). (7)
0,X 202

mgxxlogp(y) > ma}R/Q(fX,f;z)lOg

0,X,m,3

= mafc_/p(fxlf;z)q(f;z)log

6,X,m,

dfxdfg

dfxdfg

The last equality results from exact maximization over m and S; for treatment of non-conjugate
likelihoods, see [21]. We note that ¢(f¢) is a function of 7 and .S, whereas p(f¢) and p(fx|fg)
are functions of X. As a result, X become variational parameters that can be optimized without
over-fitting. Compared with (5), the variational approach in (7) regularizes the learning with penalty
Tr(Kx — K x ) and therefore exhibits better generalization performance. Several subsequent works
employ similar strategies: Alvarez et al. [3] adopt the same variational approach in the multi-output
regression setting with scaled basis functions, and Abdel-Gawad et al. [1] use expectation propagation
to solve for the approximate posterior under the same factorization.



3 Incremental Variational Sparse Gaussian Process Regression

Despite leveraging sparsity, the batch solution to the variational objective in (7) requires O(M?N')
operations and access to all of the training data during each optimization step [25], which means
that learning from large datasets is still infeasible. Recently, several attempts have been made to
incrementally solve the variational sparse GPR problem in order to learn better models from large
datasets [1, 9, 10]. The key idea is to rewrite (7) explicitly into the sum of individual observations:

Jmax [ plixroat ) tog UL

i, a(f%) Wxdix

N

= max _ / a(fx) (Z]Epmif;n[logp(yilfm)} + log pgff‘)) dfx. @)

0,X,m,5 P a(f3)

The objective function in (8), with fixed X, is identical to the problem of stochastic variational
inference [11] of conjugate exponential families. Hensman et al. [9] exploit this idea to incrementally
update the statistics 1 and S via stochastic natural gradient ascent,! which, at the ¢th iteration, takes
the direction derived from the limit of maximizing (8) subject to KL*Y" (¢:(f¢)||gi—1(f5)) < € as
€ — 0. Natural gradient ascent considers the manifold structure of probability distribution derived
from KL divergence and is known to be Fisher efficient [4]. Although the optimal inducing points X,
like the statistics 77 and S, should be updated given new observations, it is difficult to design natural
gradient ascent for learning the inducing points X online. Because p(fx|fz)in (8) depends on all
the observations, evaluating the divergence with respect to p(fx|f)q(fy) over iterations becomes
infeasible.

We propose a novel approach to incremental variational sparse GPR, iVSGPR, that works by re-
formulating (7) in its RKHS dual form. This avoids the issue of the posterior approximation
p(fx|fz)a(fg) referring to all observations. As a result, we can perform stochastic approximation
of (7) while monitoring the KL divergence between the posterior approximates due to the change
of m, S, and X across iterations. Specifically, we use stochastic mirror ascent [16] in the space
of probability densities in RKHS, which was recently proven to be as efficient as stochastic natural
gradient ascent [18]. In each iteration, iVSGPR solves a subproblem of fractional Bayesian inference,
which we show can be formulated into a standard variational sparse GPR of the size of a minibatch in
O(M?N,, + M?3) operations, where N,,, is the size of a minibatch.

3.1 Dual Representations of Gaussian Processes in RKHS

An RKHS #H is a Hilbert space of functions satisfying the reproducing property: 3k, € H such that
Vf e H, f(x) = (f, kz)%. In general, H can be infinite-dimensional and uniformly approximate
continuous functions on a compact set [15]. To simplify the notation we write kZ f for (f, k. )3;, and
fTLg for (f, Lg), where f,g € H and L : H + H, even if H is infinite-dimensional.

A Gaussian process GP(m, k) has a dual representation in an RKHS H [12]: there exists i € H and
a positive semi-definite linear operator X : H > H such that for any x, 2’ € X, ¢, ¢ € H,

m(z) = pdy . k(z,2') = p*¢; Sy ©)
That is, the mean function has a realization p in H, which is defined by the reproducing kernel
k(z,2") = p?>¢L ¢,; the covariance function can be equivalently represented by a linear operator
3. In shorthand, with abuse of notation, we write N'(f|u,%).> Note that we do not assume the
samples from GP(m, k) are in H. In the following, without loss of generality, we assume the GP
prior considered in regression has ;4 = 0 and ¥ = I. That is, m(z) = 0 and k(z, 2') = p?>¢L .

3.1.1 Subspace Parametrization of the Approximate Posterior
The full GP posterior approximation p(fx|fz)q(fx) in (7) can be written equivalently in a subspace
parametrization using {1z, € H|%; € X} M :

fi=Vga, Y=I+TzAVL, (10)

! Although X was fixed in their experiments, it can potentially be updated by stochastic gradient ascent.
*Because a GP can be infinite-dimensional, it cannot define a density but only a Gaussian measure. The
notation N'(f|u, 2) is used to indicate that the Gaussian measure can be defined, equivalently, by 1 and 3.



where a € RM, A € RMXM gych that 3 = 0, and Ve : RM — H is defined as ¥ ga =

Zij\i1 ais, . Sl}ppose q(fz) = N(fglm,S) and define 3, to satisfy \Ilﬁﬁ = 7m. By (10),
m=Kgaand S = K3 + K ¢ AK 3, which implies the relationship
_ =l _ pe—1&p—1 _ pe—1

G_KX m, A_K)”( SKX K)”(’ (11

where the covariances related to the inducing functions are defined as Ky = \IIJTE\I! vand Ky ¢ =

p®% V. The sparse structure results in f(z) ~ GP(k, X-K)t(lm,km,x + kK, X(K)f(lSK)T(l -

K)f(l)kxx), which is the same as [ p(f(z)|fz)q(fx)df 5, the posterior GP found in (7), where

kyo = k(z,z) and k, ¢ = podT W - We note that the scaling factor p is associated with the

evaluation of f(z), not the inducing functions f . In addition, we distinguish the hyperparameter s
(e.g. length scale) that controls the measurement basis ¢, from the parameters in inducing points X .

A subspace parametrization corresponds to a full GP if ¥ > 0. More precisely, because (10) is
completely determined by the statistics 1, S, and the inducing points X, the family of subspace
parametrized GPs lie on a nonlinear submanifold in the space of all GPs (the degenerate GP in (4) is
a special case if we allow [ in (10) to be ignored).

3.1.2 Sparse Gaussian Processes Regression in RKHS

We now reformulate the variational inference problem (7) in RKHS?. Following the previous section,
the sparse GP structure on the posterior approximate ¢(fx, fg) in (6) has a corresponding dual

representation in RKHS ¢(f) = N (f|f, X). Specially, ¢(f) and ¢(fx, f5) are related as follows:

a(f) = p(fx|F)a(fo) Kz |2 Kx — Kx['?, (12)
in which the determinant is due to the change of measure. The equality (12) allows us to rewrite (7)
in terms of ¢(f) simply as

p(ylf)p(f)
max L = max/ log ——~—>~df, (13)
max L{g(f)) =max [ q(f)log = m==df

or equivalently as min, sy KL[g(f)|[p(f|y)]. Due to space limitations, the proofs of (12) and the

equivalence between (7) and (13) can be found in the Appendix.

The benefit of the formulation of (13) is that in its sampling form,

N
1)t 1o 2
rqn(%c/q(f) (;logp(yzf) + log q(f)> df, (14)

the approximate posterior ¢( f) nicely summarizes all the variational parameters X, 7, and S without
referring to the samples as in p( fx|f¢)q(fg ). Therefore, the KL-divergence of ¢( f) across iterations
can be used to regulate online learning.

3.2 Incremental Learning

Stochastic mirror ascent [16] considers (non-)Euclidean structure on variables induced by a Bregman
divergence (or prox-function) [5] in convex optimization. We apply it to solve the variational inference
problem in (14), because (14) is convex in the space of probability densities [16]. Here, we ignore
the dependency of ¢(f) on f for simplicity. At the ¢th iteration, stochastic mirror ascent solves the
subproblem

qt+1 = argmqax*yt/é/.:(qt,yt)q(f)df - KL[QHQt]v 5)

where v, is the step size, éﬁ(qt, y¢) is the sampled subgradient of £ with respect to ¢ when the

observation is (z,%;). The algorithm converges in O(t~'/2) if (15) is solved within numerical error
€ such that Y~ ¢, ~ O(Y47) [7].

3Here we assume the set X is finite and countable. This assumption suffices in learning and allows us to
restrict H be the finite-dimensional span of ® x. Rigorously, for infinite-dimensional H, the equivalence can be
written in terms of Radon—Nikodym derivative between ¢(f)df and normal Gaussian measure, where q( f)df
denotes a Gaussian measure that has an RKHS representation given as q(f)




The subproblem (15) is actually equivalent to sparse variational GP regression with a general Gaussian
prior. By definition of £(g) in (14), (15) can be derived as

p(f) N
2 f)) af — KLigllal]

el DN p(F) a0 (f)
q(f)

qr41 = arg mngt/q(f) (N log p(y:|f) + log

= argmax/q(f) log I (16)
q

This equation is equivalent to (13) but with the prior modified to p(f)7q;(f)!~7* and the likelihood
modified to p(y;|f)N"t. Because p(f) is an isotropic zero-mean Gaussian, p(f)?*q;(f)' =7 has the
subspace parametrization expressed in the same basis functions as qy. Suppose ¢; has mean ji; and

precision %; 1. Then p(f)"* q ( f)1 Tt s equlvalent to N(f|f1, %) up to a constant factor, where
Mt (1 — fyt)EtEt Mt and E (1 — ’yt)E + ’}/tI

By (10), 5, = I-W 4 (A; '+ K 3) 'V ; for some A;, and therefore sl = I—(1—y) Wz (A7 '+
K X)_I\If ¢» which is expressed in the same basis. In addition, by (12), (16) can be further written in
the form of (7) and therefore solved by a standard sparse variational GPR program with modified 1
and S (Please see Appendix for details).

Although we derived the equations for a single observation, minibatchs can be used with the same

N
convergence rate and reduced variance by changing the factor p(y;|f)™V" to Hl 1 (Y, )N%rf The
hyperparameters § = (s, p, o) in the GP can be updated along with the variational parameters using

stochastic gradient ascent along the gradient of [ ¢;(f) log Md f.

3.3 Related Work

The subproblem (16) is equivalent to first performing stochastic natural gradient ascent [11] of g(f)
in (14) and then projecting the distribution back to the low-dimensional manifold specified by the
subspace parametrization. At the tth iteration, define ¢ (f) := p(v:|f)™V " p(f) " q:(f)' 7. Because
a GP can be viewed as an infinite-dimensional Gaussian distribution in RKHS, ¢;(f) (16) can be
viewed as the result of taking natural stochastic gradient ascent with step size ; from g;(f). Then
(16) becomes min, KL[g||g;] in order to project g; back to subspace parametrization specified by
M basis functions. Therefore, (16) can also be viewed as performing stochastic natural gradient
ascent with a KL divergence projection. From this perspective, we can see that if X, which controls
the inducing functions, are fixed in the subproblem (16), iVSGPR degenerates to the algorithm of
Hensman et al. [9].

Recently, several researches have considered the manifold structure induced by KL divergence in
Bayesian inference [7, 24, 13]. Theis and Hoffman [24] use trust regions to mitigate the sensitivity
of stochastic variational inference to choices of hyperparameters and initialization. Let &, be the
size of the trust region. At the ¢th iteration, it solves the objective max, £(gq) — &KL[g||q:], which
is the same as subproblem (16) if applied to (14). The difference is that in (16) ; is a decaying
step sequence in stochastic mirror ascent, whereas £; is manually selected. A similar formulation
also appears in [13], where the part of £(g) non-convex to the variational parameters is linearized.
Dai et al. [7] use particles or a kernel density estimator to approximate the posterior of X in the
setting low-rank GP priorsetting. By contrast, we follow Titsias [25] to adopt the full GP as the
approximate posterior, and therefore avoid the difficulties in estimating the posterior of X and focus
on the approximate posterior g( f) related to the function values.

The stochastic mirror ascent framework sheds light on the convergence condition of the algorithm. As
pointed out in Dai et al. [7], the subproblem (15) can be solved up to €; accuracy as long as » _ € is
order O(>_~?2), where 74 ~ O(1/+/t) [16]. Also, Khan et al. [13] solves a linearized approximation
of (15) in each step and reports satisfactory empirical results. Although variational sparse GPR (16) is
anonconvex optimization in X and is often solved by nonlinear conjugate gradient ascent, empirically
the objective function increases most significantly in the first few iterations. Therefore, based on the
results in [7], we argue that in online learning (16) can be solved approximately by performing a
small fixed number of line searches.



4 Experiments

We compare our method iVSGPR with VSGPRy,; the state-of-the-art variational sparse GPR method
based on stochastic variational inference [9], in which i.i.d. data are sampled from the training
dataset to update the models. We consider a zero-mean GP prior generated by a squared-exponential

with automatic relevance determination (SE-ARD) kernel [19] k(z, ') = p? [, exp((“imd)z),

where s; > 0 is the length scale of dimension d and D is the dimensionality of the input. For the
inducing functions, we modified the multi-scale kernel in [26] to

D\ g —
z,dbx’ ,d Ntd — Lgll
L p = I I ST exp E ; a7
2a+82, at ZQ/ d

i=d d=1 37

where [, q is the length-scale parameter. The definition (17) includes the SE-ARD kernel as a special
case, which can be recovered by identifying ¢, = ¢, and (lm’d)g’:l = (sd)dDzl, and hence their cross
covariance can be computed.

In the following experiments, we set the number inducing functions to 512. All models were
initialized with the same hyperparameters and inducing points: the hyperparameters were selected as
the optimal ones in the batch variational sparse GPR [25] trained on subset of the training dataset
of size 2048; the inducing points were initialized as random samples from the first minibatch. We
chose the learning rate to be y; = (1 + /%) !, for stochastic mirror ascent to update the posterior
approximation; the learning rate for the stochastic gradient ascent to update the hyperparameters is
set to 10~ 4y, . We evaluate the models in terms of the normalized mean squared error (1MSE) on a
held-out test set after 500 iterations.

We performed experiments on three real-world robotic datasets datasets, kind0k*, SARCOS®, KUKA®,
and three variations of iVSGPR: iVSGPRs, iVSGPR), and iVSGPR,4,.” For the kin40k and SARCOS
datasets, we also implemented VSGPR;,;, which uses stochastic variational inference to update m

and S but fixes hyperparameters and inducing points as the solution to the batch variational sparse
GPR [25] with all of the training data. Because VSGPR}, reflects the perfect scenario of performing
stochastic approximation under the selected learning rate, we consider it as the optimal goal we want
to approach.

The experimental results of kin40k and SARCOS are summarized in Table 1a. In general, the adaptive
scheme iVSGPR,q4, performs the best, but we observe that even performing a small fixed number of
iterations ( iVSGPRs, iVSGPR) results in performance that is close to, if not better than VSGPRWl
Possible explanations are that the change of objective function in gradient-based algorithms is
dominant in the first few iterations and that the found inducing points and hyper-parameters have
finite numerical resolution in batch optimization. For example, Figure 1a shows the change of test
error over iterations in learning joint 2 of SARCOS dataset. For all methods, the convergence rate
improves with a larger minibatch. In addition, from Figure 1b, we observe that the required number
of steps iVSGPR,4, needed to solve (16) decays with the number of iterations; only a small number
line searches is required after the first few iterations.

Table 1b and Table 1c¢ show the experimental results on two larger datasets. In the experiments, we
mixed the offline and online partitions in the original KUKA dataset and then split 90% into training
and 10% into testing datasets in order to create an online i.i.d. streaming scenario. We did not
compare to VSGPR},; on these datasets, since computing the inducing points and hyperparameters
in batch is infeasible. As above, iVSGPR,4, stands out from other models, closely followed by
iVSGPR1y. We found that the difference between VSGPR,,; and iVSGPRs is much greater on these
larger real-world benchmarks.

Auxiliary experimental results illustrating convergence for all experiments summarized in Ta-
bles 1a, 1b, and 1c are included in the Appendix.

*kin40k: 10000 training data, 30000 testing data, 8 attributes [22]

SSARCOS: 44484 training data, 4449 testing data, 28 attributes. http://www.gaussianprocess.org/gpml/data/
SKUKA1&KUKA?2: 17560 offline data, 180360 online data, 28 attributes. [14]

"The number in the subscript denotes the number of function calls allowed in nonlinear conjugate gradient

descent [19] to solve subproblems (16) and ada denotes (16) is solved until the relative function change is less
than 1075,




VSGPR;,

svi

kin40k 0.0959 0.0648  0.0608 0.0607 0.0535
SARCOS J;  0.0247 0.0228 0.0214  0.0210 0.0208
SARCOSJ, 0.0193 0.0176  0.0159  0.0156 0.0156
SARCOS J;  0.0125 0.0112  0.0104  0.0103 0.0104
SARCOS J;  0.0048 0.0044  0.0040  0.0038 0.0039
SARCOS J5  0.0267 0.0243  0.0229  0.0226 0.0230
SARCOS Js  0.0300 0.0259  0.0235 0.0229 0.0230
SARCOS J; 0.0101 0.0090 0.0082  0.0081 0.0101

VSGPRy; iVSGPRs iVSGPR iVSGPRyqa

(a) kin40k and SARCOS

VSGPRy; iVSGPRs iVSGPRy iVSGPRq, VSGPR; iVSGPRs iVSGPR iVSGPRq,
Ji 01699  0.1455 0.1257  0.1176 Ji 01737  0.1452  0.1284  0.1214
Jo 01530  0.1305 0.1221  0.1138 Jo 01517 0.1312 0.1183  0.1081
J5 0.1873  0.1554 0.1403  0.1252 J; 02108  0.1818 0.1652  0.1544
J. 01376  0.1216 0.1151  0.1108 Ji. 01357  0.1171 0.1104  0.1046
J5 0.1955  0.1668 0.1487  0.1398 J5 02082  0.1846 0.1697  0.1598
Jo  0.1766  0.1645 0.1573  0.1506 Jo 0.1925  0.1890 0.1855  0.1809
J; 01374 0.1357 0.1342  0.1333 J; 0.1329  0.1309 0.1287  0.1275

(b) KUKAL (c) KUKA2

Table 1: Testing error (nMSE) after 500 iterations. IV,,, = 2048; J; denotes the th joint.
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Figure 1: Online learning results of SARCOS joint 2. (a) nMSE evaluated on the held out test set; the
dash lines and the solid lines denote the results with V,,, = 512 and N,,, = 2048, respectively. (b)
Number of function calls used by iVSGPR,q, in solving (16) (A maximum of 100 calls is imposed )

5 Conclusion

We propose a stochastic approximation of variational sparse GPR [25], iVSGPR. By reformulating
the variational inference in RKHS, the update of the statistics of the inducing functions and the
inducing points can be unified as stochastic mirror ascent on probability densities to consider the
manifold structure. In our experiments, iVSGPR shows better performance than the direct adoption of
stochastic variational inference to solve variational sparse GPs. As iVSGPR executes a fixed number
of operations for each minibatch, it is suitable for applications where training data is abundant, e.g.
sensory data in robotics. In future work, we are interested in applying iVSGPR to extensions of sparse
Gaussian processes such as GP-LVMs and dynamical system modeling.
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