
A Proofs

A.1 Proof of (12)
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A.2 Proof of the equivalence between (7) and (13)
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A.3 Solution to subproblem (16)
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Thus, the subproblem is a also variational sparse GPR written in the same inducing functions, but
with likelihood with modified variance
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B Auxiliary Experimental Results

Figure 2: Online learning results of kin40k. nMSE evaluated on the held out test set; N
m

= 2048.
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(a) joint 1 (b) joint 2

(c) joint 3 (d) joint 4

(e) joint 5 (f) joint 6

(g) joint 7

Figure 3: Online learning results of sarcos. nMSE evaluated on the held out test set; the dash lines
and the solid lines denote the results with N

m

= 512 and N
m

= 2048, respectively.
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(a) joint 1 (b) joint 2

(c) joint 3 (d) joint 4

(e) joint 5 (f) joint 6

(g) joint 7

Figure 4: Online learning results of KUKA1. nMSE evaluated on the held out test set; N
m

= 2048
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(a) joint 1 (b) joint 2

(c) joint 3 (d) joint 4

(e) joint 5 (f) joint 6

(g) joint 7

Figure 5: Online learning results of KUKA2. nMSE evaluated on the held out test set; N
m

= 2048
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