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Abstract

Predicting calibrated confidence scores for multi-class deep networks is important
for avoiding rare but costly mistakes. A common approach is to learn a post-hoc
calibration function that transforms the output of the original network into cal-
ibrated confidence scores while maintaining the network’s accuracy. However,
previous post-hoc calibration techniques work only with simple calibration func-
tions, potentially lacking sufficient representation to calibrate the complex function
landscape of deep networks. In this work, we aim to learn general post-hoc cal-
ibration functions that can preserve the top-k predictions of any deep network.
We call this family of functions intra order-preserving functions. We propose a
new neural network architecture that represents a class of intra order-preserving
functions by combining common neural network components. Additionally, we
introduce order-invariant and diagonal sub-families, which can act as regulariza-
tion for better generalization when the training data size is small. We show the
effectiveness of the proposed method across a wide range of datasets and classifiers.
Our method outperforms state-of-the-art post-hoc calibration methods, namely
temperature scaling and Dirichlet calibration, in several evaluation metrics for the
task.

1 Introduction

Deep neural networks have demonstrated impressive accuracy in classification tasks, such as image
recognition [8, 28] and medical research [10, 3]. These exciting results have recently motivated
engineers to adopt deep networks as default components in building decision systems; for example,
a multi-class neural network can be treated as a probabilistic predictor and its softmax output can
provide the confidence scores of different actions for the downstream decision making pipeline [6,
2, 21]. While this is an intuitive idea, recent research has found that deep networks, despite being
accurate, can be overconfident in their predictions, exhibiting high calibration error [20, 7, 11]. In
other words, trusting the network’s output naively as confidence scores in system design could cause
undesired consequences: a serious issue for applications where mistakes are costly, such as medical
diagnosis and autonomous driving.

A promising approach to address the miscalibration is to augment a given network with a pa-
rameterized calibration function, such as extra learnable layers. This additional component is
tuned post-hoc using a held-out calibration dataset, so that the effective full network becomes cali-
brated [7, 14, 16, 15, 27, 35]. In contrast to usual deep learning, the calibration dataset here is typically
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Fig(b)  Performance vs. calibration set size 
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Fig(a) Learned calibration functions visualisation on simplex.
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Figure 1: Comparing instances of intra order-preserving and order-invariant family defined on the
2-dimensional unit simplex. Points C1 = [1, 0, 0]>, C2 = [0, 1, 0]>, C3 = [0, 0, 1]> are the simplex
corners. Arrows depict how an input is mapped by each function. Unconstrained function freely
maps the input probabilities, intra order-preserving function enforces the outputs to stay within the
same colored region as the inputs, and order-invariant function further enforces the vector fields to be
the same among all the 6 colored regions as reflected in the symmetry in the visualization.

small. Therefore, learning an overly general calibration function can easily overfit and actually reduce
the accuracy of the given network [7, 14]. Careful design regularization and parameterization of
calibration functions is imperative.

A classical non-parametric technique is isotonic regression [36], which learns a monotonic staircase
calibration function with minimal change in the accuracy. But the complexity of non-parametric
learning can be too expensive to provide the needed generalization [16, 15]. By contrast, Guo et
al. [7] proposed to learn a scalar parameter to rescale the original output logits, at the cost of being
suboptimal in calibration [20]; see also Section 6. Recently, Kull et al. [14] proposed to learn linear
transformations of the output logits. While this scheme is more expressive than the temperature
scaling above, it does not explore non-linear calibration functions.

In general, a preferable hypothesis space needs to be expressive and, at the same time, provably
preserve the accuracy of any given network it calibrates. Limiting the expressivity of calibration
functions can be an issue, especially when calibrating deep networks with complicated landscapes.

The main contribution of this paper is introducing a learnable space of functions, called intra order-
preserving family. Informally speaking, an intra order-preserving function f : Rn → Rn is a
vector-valued function whose output values always share the same ordering as the input values across
the n dimensions. For example, if x ∈ Rn is increasing from coordinate 1 to n, then so is f(x). In
addition, we introduce order-invariant and diagonal structures, which utilize the shared characteristics
between different input dimensions to improve generalization. For illustration, we depict instances
of 3-dimensional intra order-preserving and order-invariant functions defined on the unit simplex
and compare them to an unconstrained function in Fig. 1. We use arrows to show how inputs on the
simplex are mapped by each function. Each colored subset in the simplex denotes a region with the
same input order; for example, we have x3 > x2 > x1 inside the red region where the subscript i
denotes the ith element of a vector. For the intra order-preserving function shown in Fig. 1a arrows
stay within the same colored region as the inputs, but the vector fields in two different colored
region are independent to each other. Order-invariant function in Fig. 1b further keeps the function
permutation invariant, enforcing the vector fields to be the same among all the 6 colored regions (as
reflected in the symmetry in Fig. 1b). This property of order-preserving functions significantly reduce
the hypothesis space in learning, from the functions on whole simplex to functions on one colored
region, for better generalization.

We identify necessary and sufficient conditions for describing intra order-preserving functions, study
their differentiability, and propose a novel neural network architecture that can represent complex
intra order-preserving function through common neural network components. From practical point
of view, we devise a new post-hoc network confidence calibration technique using different intra
order-invariant sub-families. Because a post-hoc calibration function keeps the top-k class prediction
if and only if it is an intra order-preserving function, learning the post-hoc calibration function within
the intra order-preserving family presents a solution to the dilemma between accuracy and flexibility
faced in the previous approaches. We conduct several experiments to validate the benefits of learning
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with these new functions for post-hoc network calibration. The results demonstrate improvement over
various calibration performance metrics, compared with the original network, temperature scaling [7],
and Dirichlet calibration [14].

2 Problem Setup

We address the problem of calibrating neural networks for n-class classification. Let define [n] :=
{1, . . . , n}, Z ⊆ Rd be the domain, Y = [n] be the label space, and let ∆n denote the n − 1
dimensional unit simplex. Suppose we are given a trained probabilistic predictor φo : Rd → ∆n and
a small calibration dataset Dc of i.i.d. samples drawn from an unknown distribution π on Z × Y .
For simplicity of exposition, we assume that φo can be expressed as the composition φo =: sm ◦ g,
with g : Rd → Rn being a non-probabilistic n-way classifier and sm : Rn → ∆n being the softmax
operator2, i.e. smi(x) = exp(xi)∑n

j=1 exp(xj)
, for i ∈ Y , where the subscript i denotes the ith element

of a vector. When queried at z ∈ Z , the probabilistic predictor φo returns arg maxi φo,i(z) as the
predicted label and maxi φo,i(z) as the associated confidence score. (The top-k prediction is defined
similarly.) We say g(z) is the logits of z with respect to φo.

Given φo and Dc, our goal is to learn a post-hoc calibration function f : Rn → Rn such that the
new probabilistic predictor φ := sm ◦ f ◦ g is better calibrated and keeps the accuracy (or similar
performance concepts like top-k accuracy) of the original network φo. That is, we want to learn
new logits f(g(z)) of z. As we will discuss, this task is non-trivial, because while learning f might
improve calibration, doing so could also risk over-fitting to the small dataset Dc and damaging
accuracy. To make this statement more precise, below we first review the definition of perfect
calibration [7] and common calibration metrics and then discuss challenges in learning f with Dc.
Definition 1. For a distribution π on Z × Y and a probabilistic predictor ψ : Rd → ∆n, let
random variables z ∈ Z , y ∈ Y be distributed according to π, and define random variables
ŷ := arg maxiψi(z) and p̂ := ψŷ(z). We say ψ is perfectly calibrated with respect to π, if for any
p ∈ [0, 1], it satisfies Prob(ŷ = y|p̂ = p) = p.

Note that z, y, ŷ and p̂ are correlated random variables. Therefore, Definition 1 essentially means
that, if ψ is perfectly calibrated, then for any p ∈ [0, 1], the true label y and the predicted label ŷ
match, with a probability exactly p in the events where z satisfies maxiψi(z) = p.

In practice, learning a perfectly calibrated predictor is unrealistic, so we need a way to measure the
calibration error. A common calibration metric is called Expected Calibration Error (ECE) [23]:
ECE =

∑M
m=1

|Bm|
N |acc(Bm) − conf(Bm)|. This equation is calculated in two steps: First the

confidence scores of samples inDc are partitioned intoM equally spaced bins {Bm}Mm=1. Second the
weighted average of the differences between the average confidence conf(Bm) = 1

|Bm|
∑
i∈Bm

p̂i

and the accuracy acc(Bm) = 1
|Bm|

∑
i∈Bm

1(yi = ŷi) in each bin is computed as the ECE metric,
where |Bm| denotes the size of bin Bm, 1 is the indicator function, and the superscript i indexes the
sampled random variable. In addition to ECE, other calibration metrics have also been proposed [7,
25, 1, 17]; e.g., Classwise-ECE [14] and Brier score [1] are proposed as measures of classwise-
calibration. All the metrics for measuring calibration have their own pros and cons. Here, we consider
the most commonly used metrics for measuring calibration and leave their analysis for future work.

While the calibration metrics above measure the deviation from perfect calibration in Definition 1,
they are usually not suitable loss functions for optimizing neural networks, e.g., due to the lack of
continuity or non-trivial computation time. Instead, the calibration function f in φ = sm ◦ f ◦ g is
often optimized indirectly through a surrogate loss function (e.g. the negative log-likelihood) defined
on the held-out calibration dataset Dc [7].

2.1 Importance of Inductive Bias

Unlike regular deep learning scenarios, here the calibration dataset Dc is relatively small. Therefore,
controlling the capacity of the hypothesis space of f becomes a crucial topic [7, 15, 14]. There
is typically a trade-off between preserving accuracy and improving calibration: Learning f could

2The softmax requirement is not an assumption but for making the notation consistent with the literature.
The proposed algorithm can also be applied to the output of general probabilistic predictors.
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improve the calibration performance, but it could also change the decision boundary of φ from φo
decreasing the accuracy. While using simple calibration functions may be applicable when φo has a
simple function landscape or is already close to being well calibrated, such a function class might not
be sufficient to calibrate modern deep networks with complex decision boundaries as we will show in
the experiments in Section 6.

The observation above motivates us to investigate the possibility of learning calibration functions
within a hypothesis space that can provably guarantee preserving the accuracy of the original network
φo. The identification of such functions would address the previous dilemma and give precisely the
needed structure to ensure generalization of calibration when the calibration datatset Dc is small.

3 Intra Order-Preserving Functions

In this section, we formally describe this desirable class of functions for post-hoc network calibration.
We name them intra order-preserving functions. Learning within this family is both necessary and
sufficient to keep the top-k accuracy of the original network unchanged. We also study additional
function structures on this family (e.g. limiting how different dimensions can interact), which can
be used as regularization in learning calibration functions. Last, we discuss a new neural network
architecture for representing these functions.

3.1 Setup: Sorting and Ranking

We begin by defining sorting functions and ranking in preparation for the formal definition of intra
order-preserving functions. Let Pn ⊂ {0, 1}n×n denote the set of n × n permutation matrices.
Sorting can be viewed as a permutation matrix; Given a vector x ∈ Rn, we say S : Rn → Pn is a
sorting function if y = S(x)x satisfies y1 ≥ y2 ≥ · · · ≥ yn. In case there are ties in the input vector
x, the sorting matrix can not be uniquely defined. To resolve this, we use a pre-defined tie breaker
vector which is used as a tie breaking protocol. We say a vector t ∈ Rn is a tie breaker if t = Pr, for
some P ∈ Pn, where r = [1, . . . , n]> ∈ Rn. Tie breaker pre-assigns priorities to indices of the input
vector and is used to resolve ties. For instance, S1 =

[
1 0
0 1

]
and S2 =

[
0 1
1 0

]
are the unique sorting

matrices of input x = [0, 0]> with respect to tie breaker t1 = [1, 2]> and t2 = [2, 1]>, respectively.
We say two vectors u,v ∈ Rn share the same ranking if S(u) = S(v) for any tie breaker t.

3.2 Intra Order-Preserving Functions

We define the intra order-preserving property with respect to different coordinates of a vector input.

Definition 2. We say a function f : Rn → Rn is intra order-preserving, if, for any x ∈ Rn, both x
and f(x) share the same ranking.

The output of an intra order-preserving function f(x) maintains all ties and strict inequalities between
elements of the input vector x. Namely, for all i, j ∈ [n], we have xi > xj (or xi = xj) if and only
if fi(x) > fj(x) (or fi(x) = fj(x)). For example, a simple intra order-preserving function is the
temperature scaling f(x) = x/t for some t > 0. Another common instance is the softmax operator.

Clearly, applying an intra order-preserving function as the calibration function in φ = sm ◦ f ◦ g
does not change top-k predictions between φ and φo = sm ◦ g.

Next, we provide a necessary and sufficient condition for constructing continuous, intra order-
invariant functions. This theorem will be later used to design neural network architectures for learning
calibration functions. Note that for a vector v ∈ Rn and an upper-triangular matrix of ones U , Uv is
the reverse cumulative sum of v (i.e. (Uv)i =

∑n
j=i vi).

Theorem 1. A continuous function f : Rn → Rn is intra order-preserving, if and only if f(x) =
S(x)−1Uw(x) with U being an upper-triangular matrix of ones and w : Rn → Rn being a
continuous function such that

• wi(x) = 0, if yi = yi+1 and i < n,

• wi(x) > 0, if yi > yi+1 and i < n,

• wn(x) is arbitrary,
where y = S(x)x is the sorted version of x.
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The proof is deferred to Appendix. Here we provide as sketch as to why Theorem 1 is true. Since
wi(x) ≥ 0 for i < n, applying the matrix U on w(x) results in a sorted vector Uw(x). Thus,
applying S(x)−1 further on Uw(x) makes sure that f(x) has the same ordering as the input vector x.
The reverse direction can be proved similarly. For the continuity, observe that the sorting function
S(x) is piece-wise constant with discontinuities only when there is a tie in the input x. This means that
if the corresponding elements in Uw(x) are also equally valued when a tie happens, the discontinuity
of the sorting function S does not affect the continuity of f inherited from w.

3.3 Order-invariant and Diagonal Sub-families

Different classes in a classification task typically have shared characteristics. Therefore, calibration
functions sharing properties across different classes can work as a suitable inductive bias in learning.
Here we use this idea to define two additional structures interesting to intra order-preserving functions:
order-invariant and diagonal properties. Similar to the purpose of the previous section, we will study
necessary and sufficient conditions for functions with these properties.

First, we study the concept of order-invariant functions.

Definition 3. We say a function f : Rn → Rn is order-invariant, if f(Px) = P f(x) for all x ∈ Rn
and permutation matrices P ∈ Pn.

For an order-invariant function f , when two elements xi and xj in the input x are swapped, the
corresponding elements fi(x) and fj(x) in the output f(x) are also swapped. In this way, the mapping
learned for the ith class can also be used for the jth class. Thus, the order-invariant family shares the
calibration function between different classes while allowing the output of each class be a function of
all other class predictions.

We characterize in the theorem below the properties of functions that are both intra order-preserving
and order-invariant (an instance is the softmax operator). It shows that, to make an intra order-
preserving function also order-invariant, we just need to feed the function w in Theorem 1 with the
sorted input y = S(x)x instead of x. This scheme makes the learning of w easier since it always
sees sorted vectors (which are a subset of Rn).

Theorem 2. A continuous, intra order-preserving function f : Rn → Rn is order-invariant, if and
only if f(x) = S(x)−1Uw(y), where U , w, and y are in Theorem 1.

Another structure of interest here is the diagonal property.

Definition 4. We say a function f : Rn → Rn is diagonal, if f(x) = [f1(x1), . . . , fn(xn)] for
fi : R→ R with i ∈ [n].

In the context of calibration, a diagonal calibration function means that different class predictions
do not interact with each other in f . Defining diagonal family is mostly motivated by the success of
temperature scaling method [7], which is a linear diagonal intra order-preserving function. There-
fore, although diagonal intra order-preserving functions may sound limiting in learning calibration
functions, they still represent a useful class of functions.

The next theorem relates diagonal intra order-preserving functions to increasing functions.

Theorem 3. A continuous, intra order-preserving function f : Rn → Rn is diagonal, if and only if
f(x) = [f̄(x1), . . . , f̄(xn)] for some continuous and increasing function f̄ : R→ R.

Compared with general diagonal functions, diagonal intra order-preserving automatically implies
that the same function f̄ is shared across all dimensions. Thus, learning with diagonal intra order-
preserving functions benefits from parameter-sharing across different dimensions, which could
drastically decrease the number of parameters.

Finally, below we show that functions in this sub-family are also order-invariant and inter order-
preserving. Note that inter and intra order-preserving are orthogonal definitions. Inter order-
preserving is also an important property for calibration functions, since this property guarantees that
fi(x) increases with the original class logit xi. The set diagram in Fig. 2 depicts the relationship
among different intra order-preserving families.

Definition 5. We say a function f : Rm → Rn is inter order-preserving if, for any x,y ∈ Rm such
that x ≥ y, f(x) ≥ f(y), where ≥ denotes elementwise comparison.
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Figure 2: Relationship between different function families. Theorem 1 specifies the intra order-
preserving functions A. Theorem 2 specifies the intra order-preserving and order-invariant functions
A ∩ B. Theorem 3 specifies the diagonal intra order-preserving functions D. By Corollary 1, these
functions are also order-invariant and inter order-preserving i.e. D ⊆ A ∩ B ∩ C.

Corollary 1. A diagonal, intra order-preserving function is order-invariant and inter order-
preserving

3.4 Practical Considerations

Theorems 1 and 2 describe general representations of intra order-preserving functions through a
function w that satisfies certain non-negative constraints. Inspired by these theoretical results, we
propose a neural network architecture, Fig. 3, to represent exactly a family of intra order-preserving
functions.

The main idea in Fig. 3 is to parameterize w through a composition of smaller functions. For i < n,
we set wi(x) = σ(yi−yi+1)mi(x), where σ : R→ R is a positive function such that σ(a) = 0 only
when a = 0, and mi is a strictly positive function. It is easy to verify that this parameterization of w
satisfies the requirements on w in Theorem 1. However, we note that this class of functions cannot
represent all possible w stated in Theorem 1. In general, the speed wi(x) converges to 0 can be a
function of x, but in the proposed factorization above, the rate of convergence to zero is a function of
only two elements yi and yi+1. Fortunately, such a limitation does not substantially decrease the
expressiveness of f in practice, because the subspace where wi vanishes has zero measure in Rn (i.e.
subspaces where there is at least one tie in x ∈ Rn).

By Theorem 1 and Theorem 2, the proposed architecture in Fig. 3 ensures f(x) is continuous in x as
long as σ(yi−yi+1) and mi(x) are continuous in x. In the appendix, we show that this is true when
σ and mi are continuous functions. Additionally, we prove that when σ and m are continuously
differentiable, f(x) is also directionally differentiable with respect to x. Note that the differentiability
to the input is not a requirement to learn the parameters of m with a first order optimization algorithm
which only needs f to be differentiable with respect to the parameters of m. The latter condition
holds in general, since the only potential sources of non-differentiable f , S(x)−1 and y are constant
with respect to the parameters of m. Thus, if m is differentiable with respect to its parameters, f is
also differentiable with respect to the parameters of m.

4 Implementation

Given a calibration dataset Dc = {(zi, yi)}Ni=1 and a calibration function f parameterized by some
vector θ, we define the empirical calibration loss as 1

N

∑N
i=1 `(y

i, f(xi))+ λ
2 ||θ||2, where xi = g(zi),

` : Y × Rn → R is a classification cost function, and λ ≥ 0 is the regularization weight. Here
we follow the calibration literature [30, 7, 14] and use the negative log likelihood (NLL) loss, i.e.,
`(y, f(x)) = − log(smy(f(x))), where sm is the softmax operator and smy is its yth element. We
use the NLL loss in all the experiments to study the benefit of learning f with different structures.
The study of other loss functions for calibration [29, 33] is outside the scope of this paper.

To ensure f is within the intra order-preserving family, we restrict f to have the structure in Theorem 1
and set wi(x) = σ(yi − yi+1)m(x), as described in Section 3.4. We parameterize function m by
a generic multi-layer neural network and utilize the softplus activation s+(a) = log(1 + exp(a))
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S(x)−1x

Input: x

y = S(x)x
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Figure 3: Flow graph of the intra order-preserving function. The vector x ∈ Rn is the input to the graph.
Function m is estimated using a generic multi-layer neural network with non-linear activation for the hidden
layers. The input to the network is sorted for learning order-preserving functions. We employ softplus activation
function s+ to impose strict positivity constraints.

on the last layer when strict positivity is desired and represent σ as σ(a) = |a|. For example, when
mi(x) is constant, our architecture recovers the temperature scaling scheme [7].

The order-invariant version in Theorem 2 can be constructed similarly. The only difference is that
the neural network that parameterizes m receives instead the sorted input. Fig. 3 illustrates the
architecture of these models.

The diagonal intra order-preserving version in Theorem 3 is formed by learning an increasing function
shared across all logit dimensions. We use the official implementation of proposed architecture in [31]
that learns monotonic functions with unconstrained neural networks.

5 Related Work

Many different post-hoc calibration methods have been studied in the literature [27, 7, 14, 16, 15, 17].
Their main difference is in the parametric family of the calibration function. In Platt scaling [27], scale
and shift parameters a, b ∈ R are used to transform the scalar logit output x ∈ R i.e. f(x) = ax+ b
of a binary classifier. Temperature scaling [7] is a simple extension of Platt scaling for multi-class
calibration in which only a single scalar temperature parameter is learned. Dirichlet calibration [14]
allows learning within a richer linear functions family f(x) = Wx + b, where W ∈ Rn×n
and b ∈ Rn but the learned calibration function may also change the decision boundary of the
original model; Kull et al. [14] suggested regularizing the off-diagonal elements of W to avoid
overfitting. Similar to our work, the concurrent work in Zhang et al. [39] also give special attention
to order preserving transformations for calibration. However, their introduced functions are less
expressive than the ones presented in this work. Earlier works like isotonic regression [36], histogram
binning [35], and Bayesian binning [36] are also post-hoc calibration methods.

In contrast to post-hoc calibration methods, several researches proposed to modify the training
process to learn a calibrated network in the first place. Data augmentation methods [30, 34] overcome
overfitting by enriching the training data with new artificially generated pseudo data points and labels.
Mixup [38] creates pseudo data points by computing the convex combination of randomly sampled
pairs. Cutmix [34] uses a more efficient combination algorithm specifically designed for image
classification in which two images are combined by overlaying a randomly cropped part of the first
image on the second image. In label smoothing [26, 22], the training loss is augmented to penalize
high confidence outputs. To discourage overconfident predictions, [29] modifies the original NNL
loss by adding a cross-entropy loss term with respect to the uniform distribution. Similarly, [18] adds
a calibration regularization to the NLL loss via kernel mean embedding.

Bayesian neural networks [5, 20] derive the uncertainty of the prediction by making stochastic
perturbations of the original model. Notably, [5] uses dropout as approximate Bayesian inference.
[20] estimates the posterior distribution over the parameters and uses samples from this distribution
for Bayesian model averaging. These methods are computationally inefficient since they typically
feed each sample to the network multiple times.

6 Experiments

We evaluate the performance of intra order-preserving (OP), order-invariant intra order-preserving
(OI), and diagonal intra order-preserving (DIAG) families in calibrating the output of various im-
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Table 1: ECE (with M = 15 bins) on various image classification datasets and models with different calibration
methods. The subscript numbers represent the rank of the corresponding method on the given model/dataset.
The accuracy of the uncalibrated model is shown in parentheses. The number in parentheses in DIR, MS, and
UNCONSTRAINED methods show the change in accuracy for each method.

Dataset Model Uncal. TS DIR MS DIAG OI OP UNCONSTRAINED
CIFAR10 ResNet 110 0.04758(93.6%) 0.01135 0.01094(−0.1%) 0.01063(−0.1%) 0.00672 0.00611 0.01196 0.01707(−0.4%)
CIFAR10 Wide ResNet 32 0.04518(93.9%) 0.00784 0.00845(+0.3%) 0.00732(+0.3%) 0.01367 0.00641 0.00773 0.00976(−0.1%)
CIFAR10 DenseNet 40 0.05508(92.4%) 0.00952 0.01104(+0.1%) 0.00993(+0.1%) 0.00691 0.01165 0.01287 0.01256(−0.5%)

SVHN ResNet 152 (SD) 0.00868(98.1%) 0.00615 0.00583(+0.0%) 0.00604(+0.0%) 0.00572 00.01166 0.01187 0.00151(+0.0%)
CIFAR100 ResNet 110 0.18488(71.5%) 0.02382 0.02825(+0.2%) 0.02744(+0.1%) 0.05077 0.01191 0.02533 0.03466(−4.4%)
CIFAR100 Wide ResNet 32 0.18788(73.8%) 0.01472 0.01895(+0.1%) 0.02586(+0.1%) 0.01723 0.01261 0.01734 0.04217(−6.1%)
CIFAR100 DenseNet 40 0.21168(70.0%) 0.00902 0.01144(+0.1%) 0.02206(+0.4%) 0.00751 0.00983 0.01545 0.09907(−12.9%)

CARS ResNet 50 (pre) 0.02397(91.3%) 0.01443 0.02438(+0.2%) 0.01866(−0.3%) 0.01052 0.01031 0.01855 0.01824(−3.5%)
CARS ResNet 101 (pre) 0.02187(92.2%) 0.01655 0.02258(+0.0%) 0.01916(−0.8%) 0.01021 0.01353 0.01252 0.01554(−3.9%)
CARS ResNet 101 0.04218(85.2%) 0.03014 0.02453(−0.3%) 0.03456(−1.1%) 0.02061 0.03235 0.03587 0.02362(−7.0%)
BIRDS ResNet 50 (NTS) 0.07148(87.4%) 0.03195 0.04866(−0.2%) 0.05857(−1.1%) 0.01882 0.01721 0.02924 0.02763(−2.2%)

ImageNet ResNet 152 0.06547(76.2%) 0.02084 0.04525(+0.1%) 0.05676(+0.1%) 0.00871 0.01092 0.01673 0.12978(−33.4%)
ImageNet DenseNet 161 0.05727(77.1%) 0.01984 0.03745(+0.1%) 0.04436(+0.4%) 0.01031 0.01232 0.01683 0.13808(−28.1%)
ImageNet PNASNet5 large 0.06107(83.1%) 0.07138 0.03986(+0.0%) 0.02174(+0.3%) 0.01172 0.00841 0.01333 0.03165(−4.8%)

Average Relative Error 1.008 0.424 0.495 0.506 0.271 0.332 0.413 0.667

age classification deep networks and compare their results with the previous post-hoc calibration
techniques.

Datasets. We use six different datasets: CIFAR-{10,100} [13], SVHN [24], CARS [12], BIRDS [32],
and ImageNet [4]. In these datasets, the number of classes vary from 10 to 1000. We evaluate the
performance of different post-hoc calibration methods to calibrate ResNet [8], Wide ResNet [37],
DenseNet [9], and PNASNet5 [19] networks. We follow the experiment protocol in [14, 16] and
use cross validation on the calibration dataset to find the best hyperparameters and architectures for
all the methods. Please refer to the Appendix for detailed description of the datasets, pre-trained
networks, and hyperparameter tuning.

Baselines. We compare the proposed function structures with temperature scaling (TS) [7], Dirichlet
calibration with off-diagonal regularization (DIR) [14], and matrix scaling with off-diagonal regu-
larization (MS) [14] as they are the current best performing post-hoc calibration methods. We also
present the results of the original uncalibrated models (Uncal.) for comparison. To show the effect of
intra order-preserving regularization, we also show the results of applying unconstrained multi-layer
neural network without intra order-preserving constraint (UNCONSTRAINED). In cross-validation,
we tune the architecture as well as regularization weight of UNCONSTRAINED and order-preserving
functions. As we are using the same logits as [14], we report their results directly on CIFAR-10,
CIFAR-100, and SVHN. However, since they do not present the results for CARS, BIRDS, and
ImageNet datasets, we report the results of their official implementation3 on these datasets.

Results. Table 1 summarizes the results of our calibration methods and other baselines in terms of
ECE and presents the average relative error with respect to the uncalibrated model. Overall, DIAG
has the lowest average relative error followed by OI among the models and datasets presented in
Table 1. OI is the best-performing method in 7 out of 14 experiments including ResNet 110 and
Wide ResNet 32 models on CIFAR datasets as well as state-of-the-art PNASNet5 large model. DIAG
family’s relative average error is half the MS and DIR methods and 15% less compared to Temp.
Scaling. Although DIR and MS were able to maintain the accuracy of the original models in most
of the cases by imposing off diagonal regularization, order-preserving family could significantly
outperform them regarding the ECE metric. Finally, we remark that learning an unconstrained
multi-layer neural network does not exhibit a good calibration performance and drastically hurts the
accuracy in some datasets as shown in the last column of Table 1.

Fig. 4 illustrates the reliability diagrams of models trained on ResNet 152 (top row) and PNAS-
Net5 large (bottom row). Weighted reliability diagrams are also presented to better indicate the
differences regarding the ECE metric. Surprisingly, these diagrams show that the uncalibrated PNAS-
Net5 large model is underconfident. The differences between the mappings learned by DIAG and
temperature scaling on these models are illustrated on the right column. DIAG is capable of learning
complex increasing functions while temperature scaling only scales all the logits. Compared with DIR
and MS which learn a linear transformation, all intra order-preserving methods can learn non-linear
transformations on the logits while decoupling accuracy from calibration of the predictions.

3https://github.com/dirichletcal/experiments_dnn/
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Figure 4: Performance evaluations of ResNet 152 (Top Row) and PNASNet5 large (Bottom Row) on
ImageNet dataset. (Left) Reliability diagrams. As suggested by [20] we show the difference between the
estimated confidence and accuracy over M = 15 bins. The dashed grey lines represent the perfectly calibrated
network at y = 0. Points above (below) the grey line show overconfident (underconfident) predictions in a bin.
(Middle) Weighted reliability diagrams where bin values are weighted by data frequency distribution. Since
the uncalibrated network has different distances to the perfect calibration in different bins, scaling by a single
temperature will lead to a mix of underconfident and overconfident regions. Our order-preserving functions, on
the other hand, have more flexibility to reduce the calibration error. (Right) Transformation learned by DIAG
function compared to temperature scaling and uncalibrated model (identity map).

In addition to ECE, which considers the top prediction, we also measure the NLL, Marginal Cali-
bration Error [17], Classwise-ECE, and Berier score. As it is shown in Table 2, DIAG and OI have
the best overall performance in terms of average relative error in most cases, while DIR is the top
performing method in Classwise-ECE. Refer to the Appendix for discussions and the performance
comparisons over all the datasets.

Table 2: Average relative error. Each entry shows the relative error compared to the uncalibrated model
averaged over all the datasets. The subscripts represent the rank of the corresponding method on the given
metric. See the Appendix for per dataset performance comparisons.

Evaluation Metric Uncal. TS DIR MS DIAG OI OP
ECE 1.0007 0.4204 0.4905 0.5006 0.2701 0.3302 0.4103

Debiased ECE [17] 1.0007 0.3573 0.4306 0.4095 0.2131 0.3372 0.4064
NLL 1.0007 0.7664 0.7726 0.7685 0.7491 0.7512 0.7653

Marginal Caliration Error [17] 1.0007 0.7503 0.7352 0.9966 0.7251 0.7784 0.8985
Classwise-ECE 1.0007 0.7526 0.7041 0.7343 0.7292 0.7404 0.7435

Brier 1.0007 0.9365 0.9303 0.9365 0.9241 0.9292 0.9314

7 Conclusion
In this work, we introduce the family of intra order-preserving functions which retain the top-k
predictions of any deep network when used as the post-hoc calibration function. We propose a new
neural network architecture to represent these functions, and new regularization techniques based on
order-invariant and diagonal structures. In short, calibrating neural network with this new family of
functions generalizes many existing calibration techniques, with additional flexibility to express the
post-hoc calibration function. The experimental results show the importance of learning within the
intra order-preserving family as well as support the effectiveness of the proposed regularization in
calibrating multiple classifiers on various datasets.

We believe the applications of intra order-preserving family are not limited to network calibration.
Other promising domains include, e.g., data compression, depth perception system calibration, and
tone-mapping in images where tone-maps need to be monotonic. Exploring the applicability of intra
order-preserving functions in other applications is an interesting future direction.
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Broader Impact

Predicting calibrated confidence scores for multi-class deep networks is important for avoiding rare
but costly mistakes. Trusting the network’s output naively as confidence scores in system design
could cause undesired consequences: a serious issue for applications where mistakes are costly,
such as medical diagnosis, autonomous driving, suspicious events detection, or stock-market. As
an example, in medical diagnosis, it is vital to estimate the chance of a patient being recovered by
a certain operation given her/his condition. If the estimation is overconfident/underconfident this
will put the life of the patient at risk. Confidence calibrated models would enable integration into
downstream decision-making systems, allow machine learning interpretability, and help gain the user
trust. While this work focuses primarily on some of the theoretical aspects of the neural network
calibration, it also proposes novel techniques to potentially improve broader set of applications where
preserving the rank of set of inputs is desired e.g. tone-mapping in images where tone-maps need to
be monotonic, depth perception system calibration, and data compression.

We need to remark that our research shows that methods perform differently under various calibration
metrics. Unfortunately, discrepancy between different calibration metrics is not well understood
and fully explored in the literature. We believe more insights into these inconsistencies would be
valuable to the field. We report the performance under different calibration metrics to highlight these
differences for the future research. This also means that integrating the proposed work or any other
calibration method into decision making systems requires application specific considerations. Other
than that, since this work is mostly on the theoretical aspect of improving calibration, we do not
foresee any direct negative impacts.
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