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Abstract— To perform complex tasks, robots must be able to
interact with and manipulate their surroundings. One of the
key challenges in accomplishing this is robust state estimation
during physical interactions, where the state involves not only
the robot and the object being manipulated, but also the state
of the contact itself. In this work, within the context of planar
pushing, we extend previous inference-based approaches to state
estimation in several ways. We estimate the robot, object, and
the contact state on multiple manipulation platforms configured
with a vision-based articulated model tracker, and either a
biomimetic tactile sensor or a force-torque sensor. We show how
to fuse raw measurements from the tracker and tactile sensors
to jointly estimate the trajectory of the kinematic states and the
forces in the system via probabilistic inference on factor graphs,
in both batch and incremental settings. We perform several
benchmarks with our framework and show how performance is
affected by incorporating various geometric and physics based
constraints, occluding vision sensors, or injecting noise in tactile
sensors. We also compare with prior work on multiple datasets
and demonstrate that our approach can effectively optimize
over multi-modal sensor data and reduce uncertainty to find
better state estimates.

I. INTRODUCTION & RELATED WORK

Manipulation is a difficult problem, complicated by the
challenge of robustly estimating the state of the robot’s
interaction with the environment. Parameters such as the
contact point and the force vector applied at that point,
can be very hard to robustly estimate. These parameters
are generally partially observable and must be inferred from
noisy information obtained via coarse visual or depth sensors
and highly sensitive but difficult to interpret tactile sensors.
For instance, in the case of “in-hand” manipulation problems,
where a held object is often partially occluded by an end-
effector, tactile sensing offers an additional modality that can
be exploited to estimate the pose of the object [1].

Vision and tactile sensors have been used to localize an
object within a grasp using a gradient-based optimization ap-
proach [2]. This has been extended to incorporate constraints
like signed-distance field penalties and kinematic priors [1].
However, the former is deterministic and the latter handles
uncertainty only per time-step, which is insufficient since
sensors can be highly noisy and sensitive. Particle filtering-
based approaches have been proposed that can infer the
latent belief state from bi-modal and noisy sensory data, to
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Fig. 1: Tracking contact dynamics: (Top-left) Pushing probe with
Force-Torque sensor on the WAM arm. (Top-right) Yumi robot with
mounted biomimetic tactile sensor. (Bottom) Optimized kinematic
and force trajectories on a pushed object.

estimate the object pose for two-dimensional grasps [3] and
online localization of a grasped object [4]. These approaches
are often limited in scope. For example, [4] uses vision
to only initialize the object pose and later relies purely
on contact information and dynamics models. In general,
particle filtering based methods also suffer from practical
limitations like computational complexity, mode collapse,
and particle depletions in tightly constrained state spaces.

Beyond manipulation, sate estimation is a classic problem
in robotics. For example, Simultaneous Localization and
Mapping (SLAM) has been studied for many decades, and
many efficient tools have been developed to address noisy
multi-modal sensor fusion in these domains [5]–[7]. One
of the more successful tools, the smoothing and mapping
(SAM) framework [7], uses factor graphs to perform infer-
ence and exploits the underlying sparsity of the estimation
problem to efficiently find locally optimal distributions of
latent state variables over temporal sequences. This technique
offers the desired combination of being computationally fast
while accounting for uncertainty over time, and has been
recently incorporated into the motion planning [8], [9].

This framework has also been explored for estimation
during manipulation [10]–[12]. In particular, Yu et al. [11]
formulate a factor graph of planar pushing interaction (for
non-prehensile and underactuated object manipulation) using
a simplified dynamics model, with both visual object-pose



and force-torque measurements and show improved pose
recovery over trajectory histories compared to single-step
filtering techniques. However, the scope of [11] is limited to
the use of a purpose-built system, equipped with a vertical
pushing probe mounted on a high-fidelity force-torque sen-
sor, along with a fiducial-based tracking system. Such high
precision measurements are impractical in a realistic setting.

In this work, we extend the capabilities of such factor
graph inference frameworks in several ways to perform
planar pushing tasks in real world settings. We extend the
representation to incorporate various geometric and physics-
based constraints alongside multi-modal information from
vision and tactile sensors. We perform ablation benchmarks
to show the benefits of including such constraints, and bench-
marks where the vision is occluded or the tactile sensors are
very noisy, using data from on our own generalized systems.
We conduct our tests on two systems, a dual-arm ABB
Yumi manipulator equipped a gel-based Syntouch Biotac
tactile sensor [13] and a Barrett WAM arm equipped with
a pushing probe end effector mounted with a force torque
sensor (see Fig.1). Both of these systems are also set up with
a vision-based articulated tracking system that leverages a
depth camera, joint encoders, and contact-point estimates [1].
Through inference, we jointly estimate the history of not only
object poses, and end-effector poses, but also, contact points,
and applied force vectors. Estimating contact points and
applied force vectors can be very useful in tractable dynamics
models to predict future states and can be beneficial to
contact-rich planning and control for manipulation [14]. With
our experiments, we show that we can contend with a
range of multi-modal noisy sensor data and perform efficient
inference in batch and incremental settings to provide high-
fidelity and consistent state estimates.

II. DYNAMICS OF PLANAR PUSHING

In this section, we review the dynamics model for pushing
on planar surfaces. The quasi-static approximation of this
model is used in the next section to describe the motion
model of the pushed object within the factor graph for
estimation.

Given an object of mass m being pushed with an applied
force f , we can describe the planar dynamics of the rigid
body through the primary equations of motion

f + fµ = mẍCM, τ + τµ = ICMω (1)

where xCM is the object position measured at the center-of-
mass (CM), ω the angular velocity of the object frame, ICM
the moment of inertia, and fµ the linear frictional force. The
applied and frictional moments are defined as τ = xCM × f
and τµ = xCM× fµ respectively.

We can estimate the frictional loads on the object by
considering the contribution of each point on the support area
A of the object [10]. The friction force fµ and corresponding
moment τµ is found by integrating Coulomb’s law across the
contact region of the object with the surface

fµ =−µs

∫
A

v(r)
|v(r)|

P(r)dA, τµ =−µs

∫
A

r× v(r)
|v(r)|

P(r)dA (2)

where v(r) denotes the linear velocity at a point r in area A,
and P(r) the pressure distribution. The coefficient of friction
is assumed to be uniform across the support area.

For pusher trajectories that are executed at near-constant
speeds, inertial forces can be considered negligible. The push
is then said to be quasi-static, where the applied force is large
enough to overcome friction and maintain a velocity, but is
insufficient to impart an acceleration [15]. Then, the applied
force f must lie on the limit surface. This surface is defined
in ( fx, fy,τ) space and encloses all loads under which the
object would remain stationary [16]. It can be approximated
as an ellipsoid with principal semi-axes fmax and τmax [17](
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where fmax = µs fn, and fn is the normal force. In order to
calculate τmax, we assume a uniform pressure distribution
and define r with respect to the center of mass (r = rCM):
τmax = −µs

mg
A
∫

A |rCM|dA. For quasi-static pushing, the ve-
locity is aligned with the frictional load, and therefore must
be parallel to the normal of the limit surface. This results in
the following constraints on the object motion

vx

ω
= c2 fx

τ
,

vy

ω
= c2 fy

τ
, and c =

τmax

fmax
(4)

used within our estimation factor graph in the next section.

III. STATE ESTIMATION WITH FACTOR GRAPHS

To solve state estimation during manipulation we formu-
late a factor graph of belief distributions over any state
and force vector trajectory and perform inference over the
trajectory given noisy sensor measurements. The graph con-
struction and inference is performed with GTSAM [7], [18]
via sparsity exploiting nonlinear least squares optimization to
find the maximum a posteriori (MAP) trajectory that satisfies
all the constraints and measurements. In the batch setting
we use a Gauss-Newton optimizer and in an incremental
setting we use iSAM2 that performs incremental inference
via Bayes trees [19]. All random variables and measurements
are assumed to have a Gaussian distribution. In the remainder
of this section, we describe the construction of the relevant
factor graphs depicted in Fig. 2.

A. Model Design

We construct three different factor graphs for state esti-
mation in our pushing task: CP, SDF, and QS (see Fig. 2).
All three models include the latent state variables for a given
time t: the planar object pose xt ∈ SE(2), the projected end-
effector pose et ∈ SE(2), and the contact point pt ∈ R2.

Measurements: Each of the latent state variable is ac-
companied by an associated measurement factor M which
projects corresponding measurements from SE(3) into the
pushing plane. The object poses are estimated by the visual
tracking system with measurements yt ∈ SE(3). Likewise, the
end-effector pose measurements zt ∈ SE(3) may be provided
from robot forward kinematics, or from the tracking system
(DART includes a prior on joint measurements). The contact-
point measurements wt ∈ SE(3) are provided by a tactile
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Fig. 2: Estimation graphs. Filled circles are unknown state variables, unfilled circles are measured values, and squares indicate factors.

sensor model. In the QS graph (Fig. 2c), we include a new
state variable for the applied planar contact force ft ∈ R2

with corresponding measurements αt ∈R3. For simplicity of
graphical representation, we combine the contact point and
force variables:

p̃t =

[
pt
ft

]
, w̃t =

[
wt
αt

]
(5)

Geometric Constraints: We assume constant point-
contact between the end-effector and the object. We include
the factor C which incurs a cost on the difference between
the contact point pt and the closest point to a surface (ξ ) :

C(ξ , pt) = G(ξ , pt)−pt (6)

where G(ξ , pt) is the projection of pt onto ξ , and ξ =
ξ (·) returns the surface geometry of a body with a given
pose: ξ = ξ (xt) for the object, and ξ = ξ (et) for the end-
effector. Additionally, the object and the end-effector must
be prevented from occupying the same region in space. Such
a constraint is necessary in practice where contact-point
estimation is often noisy. Therefore, we introduce a factor
S to penalize intersecting geometries with a signed distance
field. Let the point on the end-effector furthest into the object
be denoted by δ ∈R2, where δ = δ (x,ξ (e)). The projection
of δ onto ξ (x) (the surface of the object) is then defined by
Gδ = G(ξ (x),δ ), and we can apply a penalty

S(x,e) =

{
Gδ −δ , if intersecting
0, otherwise

Dynamics: We add a constant velocity prior V to impose
smoothness on state transitions. For example, for finite-
difference velocities of object poses we have :

V (xt−1,xt ,xt+1) =
xt −xt−1

∆t
− xt+1−xt

∆t+1
(7)

where ∆t and ∆t+1 denote the timestep sizes at t and t +1.
Similar to [11], we introduce an additional factor D to
condition object state transitions on quasi-static pushing.
The corresponding graphical model is denoted by QS and
is shown in Fig. 2c. From Eq. 4 we get

D(xt−1,xt , p̃t) =
vt

ωt
− c2 ft

τt
(8)

where vt = (xtrans,t −xtrans,t−1)/∆t and ωt =
(xrot,t −xrot,t−1)/∆t−1 are the finite-difference linear

and angular velocity, respectively. The final cost
function is optimized with respect to the set of variables
Φ = {(x,e, p̃)}t=T

t=1 over a trajectory of length T

Φ
∗ = argmin

Φ

T

∑
t=1

{
‖D(xt−1,xt , p̃t))‖2

ΣD
+‖V(xt−1,xt ,xt+1)‖2

ΣV

+‖V(et−1,et ,et+1)‖2
ΣV

+‖C(xt ,et)‖2
ΣC

+‖C(p̃t ,xt)‖2
ΣC

+‖C(p̃t ,et)‖2
ΣC

+‖S(xt ,et)‖2
ΣS
+‖M(xt ,yt)‖2

ΣM

+‖M(et ,zt)‖2
ΣM

+‖M(p̃t , w̃t)‖2
ΣM

}
The above equation provides the locally optimal i.e. MAP
solution of the estimation problem.

IV. BASELINE COMPARISON

In order to first ascertain the general performance of our
approach, we evaluate the QS-graph on the MIT planar
pushing dataset [20] using batch optimization. This data
contains a variety of pushing trajectories for a single-point
robotic pushing system. The object poses were tracked with
a motion capture system, and contact forces were measured
with a pushing probe mounted on a force-torque sensor. We
use this data as ground truth as it was sufficiently reliable.
We restrict our experiments to a subset of this data, using
trajectories with zero pushing acceleration and velocities
under 10 cm/s in order to maintain approximately quasi-
static conditions. Additionally, we only consider trajectories
on the ABS surface, with µd ≈ 0.14 but examine different
object types (ellip1, rect1, rect3) with approximately 100
trajectories per object and measurements provided at 100Hz.
Gaussian noise is artificially added to the measurements
prior to inference, with the following sigma values: σxtrans =
0.5cm, σxrot = 0.5rad, σetrans = 0.5cm, σerot = 0.5rad, σp =
0.5cm, σf = 0.5N.

The resulting RMS and covariance values post-
optimization are shown in Table I. The optimized values
exhibit marked reductions in error compared to the sigma
values of the initial measurements. Note that, for object
poses we only include values in which the object is in
motion, in order to exclude trivial stationary estimates. All
position-related values are in cm, with angular values in
radians, and forces in Newtons. An example of an optimized
trajectory is shown in Fig. 3.



TABLE I: RMS and Covariance values on the MIT Dataset.

Object RMS(xtrans) RMS(xrot) Σ(xtrans) Σ(xrot)
ellip1 0.0262 0.283 2.723e-4 4.171e-10
rect1 0.0253 3.471-5 2.931e-4 4.19e-10
rect3 0.0182 1.672e-5 2.563e-4 4.18e-10

Object RMS(etrans) RMS(erot) Σ(etrans) Σ(erot)
ellip1 7.73e-2 9.47e-2 4.74e-3 7.11e-3
rect1 8.59e-2 9.18e-2 5.89e-3 6.01e-3
rect3 0.372 0.376 0.148 0.154

Object RMS(‖f‖) RMS(frot) Σ(‖f‖) Σ(frot)
ellip1 0.118 9.543e-2 9.827e-3 1.635e-4
rect1 0.145 9.683e-2 9.862e-3 1.823e-4
rect3 0.113 9.754e-2 9.145e-3 1.856e-4

Object RMS(ptrans) — Σ(ptrans) —
ellip1 3.42e-2 — 2.54e-3 —
rect1 4.52e-2 — 6.21e-3 —
rect3 3.26e-2 — 3.41e-3 —
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Fig. 3: Example of performing the inference on a trajectory from
the MIT pushing dataset, using the QS graph. Noise is artificially
added to measurements prior to smoothing. Two-sigma contours
and force vectors are displayed at every 15th time-step for visual
clarity.

V. STATE ESTIMATION IN OPEN AND CLUTTERED
SCENES

We first perform pushing experiments with the Barrett
WAM manipulator acting on a laminated box as shown in
Fig. 4. The system is observed by a stationary PrimeSense
depth camera located 2.0m away from the starting push posi-
tion of the end-effector. Vision-based tracking measurements
of the object pose are provided by DART, configured with
contact-based priors and joint estimates [1]. The robot is
equipped with a Force-Torque sensor and a rigid end-effector
mounted with a spherical hard-plastic pushing probe. The
contact forces are measured by the F/T sensor, with contact
point measurements provided through optimization in DART.
Ground-truth poses are provides via a motion-capture system.
The table is mounted with a smooth delrin sheet to provide
approximately uniform friction across the pushing area.

We performed 100 pushing trials with varying initial end-
effector and object poses. The end-effector trajectories were
varied in curvature and maintained a translational speed close

Fig. 4: Left: Setup for pushing experiments with occlusion using
Barrett-WAM manipulator. The white box is the pushed object, with
general pushing direction indicated by the blue arrow. The system
is observed by a depth camera to the left (out of frame). Right:
visualization of the tracked system in DART [21], with the observed
pointcloud marked in dark grey.
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Fig. 5: Mean error and standard deviations of object pose estimates
(after the last iSAM2 step has been performed). CP, SDF, and
QS model results are compared raw measured values, and to
those produced by the graph described in Yu et al. [11]. Tracking
performance is greatly improved with the inclusion of geometric
and physics-based priors. The comparison with [11], which does
not use SDF priors, indicates the importance of enforcing these
constraints in practice.

to 6cm/s to approximate quasi-static conditions. In addition,
the pushing trajectories were also performed in cluttered
scenes, as depicted in Fig. 4. with 85% occlusion of the
pushing object occurring in the middle of the trajectory.
Object pose-tracking measurements were provided at roughly
25Hz, with end-effector poses and force/contact measure-
ments published at 250Hz. Incremental inference of the
factor graph is performed after 5 object pose measurements.

Examples of measured and estimated state trajectories
are shown in Fig. 6. In the fully-observable (unocccluded)
setting, distinct improvement of the object pose can be seen
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Fig. 6: Examples of estimated object trajectories for both un-occluded and occluded scenarios. Measured object pose histories (pink) are
shown in the top rows, and compared below to the incrementally-optimized trajectories (blue) using the CP, SDF, and QS factor graphs
illustrated in Fig. 2. Each column depicts the state estimates at a particular timestep (with respect to object pose measurements). The
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Trajectories of the end-effector (grey circle) are also represented. The measurements show how the tracking system performance degrades
under certain orientations, as less of the object is “seen” as it turns away from the camera. Occlusion causes the system to lose track
of the object entirely. Contact-point factors are insufficient for reliable tracking, and can cause object orientation to deviate wildly under
occlusion. Incorporating SDF constraints helps to prevent many infeasible poses. The QS graph enforces pose changes which adhere to
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Fig. 7: Example of force-estimation using the QS model with
ground-truth poses and non-Gaussian noise added to force mea-
surements and contact points. Force vectors and contact points are
recovered by the optimization process.

with both SDF and QS models. Under heavy occlusion, the
visual tracking system loses the object and is unable to
regain the trajectory state. However, the addition of both
geometric and physics based priors to the factor graph
result in realignment of the tracked object. Fig. 5 shows the
tracking performance for fully observable trajectories using
the CP, SDF, and QS factor graphs. The results are compared
to the model proposed by Yu et al. [11], which includes
quasi-static dynamics factors with contact and zero-velocity
priors.

In addition to improving inference on kinematic trajecto-
ries, the QS graph can be used to improve contact point

TABLE II: Error Results for Force and Contact Recovery

Component RMSE MAE σ

Force magnitude (N) 0.352 0.195 0.043
Force direction (deg.) 3.15 2.54 0.78
Contact location (cm) 0.32 0.14 0.18

and force estimates. To demonstrate this, we artificially
add non-Gaussian noise (bi-modal mixture of two triangular
distributions) to contact points and force measurements on
the ground-truth data. The resulting estimation errors after
optimization are shown in Table II, and indicate that our
approach manages to recover true contact points and pushing
forces. An an example of force-trajectory optimization is
illustrated in Fig. 7.

VI. FORCE ESTIMATION FOR TACTILE SENSING

We further demonstrate inference on force trajectories
using realistic (noisy) tactile data. The Biotac sensor com-
prises of a solid core encased in an elastomeric skin and
is filled with weakly-conductive gel [13]. The core surface
is populated by an array of 19 electrodes, each measuring
impedance as the thickness of the fluid between the electrode
and the skin changes. A transducer provides static pressure
readings which consist of a single scalar value per time-step.
This sensor is also equipped with a thermistor for measuring
fluid temperature. Although the device does not directly
provide a force distribution or contact point measurements,
an analytical method for estimating these values is described
in [13].

Using an ABB YUMI robot with a mounted Biotac
sensor, we generated randomized linear trajectories of the
end effector pushing a 0.65 kg box across a laminated surface
(see Fig. 1) starting from a number of different poses. We
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Fig. 8: Examples of pushing trajectories performed on the YUMI
system. Initial object and finger pose estimates are provided by
the DART tracking system. Contact points and force measurements
are estimated by the analytic tactile sensor model [13]. Each
trajectory is optimized using the QS graph depicted in Fig. 2c. Two-
sigma values and force vectors shown at every 10th timestep for
visual clarity. Joint inference over kinematic and force trajectories
decreases uncertainty in poses as well as contact points and forces,
and smoothens noisy tactile data to agree with physics-based
constraints.

.

used the DART tracking system [1] to obtain object and end-
effector pose measurements, along with approximate contact
points. The analytical force sensor model [13], was used to
provide initial force measurements.

Examples of initial and optimized trajectories are shown
in Fig. 8-9. The presence of the contact surface factor shrinks
the contact point covariance in the direction of push, as
is expected. The covariances for finger and object pose
estimates are drastically reduced, exhibiting the benefits of
joint-inference across trajectory histories. Also, the dynamics
factor aligns the force vector in the direction of motion of
the object. This is further clarified in Fig. 9, where force
vectors are correctly aligned with the object center-of-mass
for linear trajectories, and provide a moment arm during
angular displacement. This demonstrates the importance of
contact and geometric factors in aligning the surface tangents
of the finger and the object at the point of contact.

VII. CONCLUSION

We proposed a factor graph-based inference framework
to solve estimation problems for robotic manipulation in
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Fig. 9: Visualizations of measurements for corresponding trajecto-
ries in Fig. 8. Measured positions, contact points and force-vector
outputs from the learned sensor model are shown on the left-hand
side. Optimized values are shown on the right, indicating consis-
tency of finger-object surface contact. Our approach produces force
trajectories which more closely adhere to quasi-static mechanics.
Joint inference allows kinematic trajectories to inform the force
estimates, aligning forces to the object center of mass during linear
motion, and correcting applied moments when motion is non-linear.

batch and incremental settings. Our approach can leverage
geometric and physics-based constraints along with vision
and tactile based multi-modal sensor information to jointly
estimate the history of robot and objects poses along with
contact locations and force vectors. We perform several
benchmarks on various datasets with multiple manipulators
in real environments and show that our framework can
contend with sensitive, noisy sensor data and occlusions in
vision to efficiently solve for locally optimal state estimates
that closely match ground truth. Future work will include
incorporating the approach within a motion planning context
[9], combining vision and tactile modalities in learning
predictive sensor models [22], [23], and the possibility of
integration into a hierarchical task-planning framework.
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