
Functional Gradient Motion Planning
in Reproducing Kernel Hilbert Spaces

Marinho Z.
Robotics Institute, CMU
zmarinho@cmu.edu

Dragan A.
Robotics Institute, CMU
adragan@cs.cmu.edu

Byravan A.
University of Washington

barun@uw.edu

Srinivasa S.
Robotics Institute, CMU
siddh@cs.cmu.edu

Gordon G.
Robotics Institute, CMU
ggordon@cs.cmu.edu

Boots B.
Georgia Institute of Technology
bboots@cc.gatech.edu

Abstract

We introduce a functional gradient descent based trajectory optimization
algorithm for robot motion planning in arbitrary Reproducing Kernel
Hilbert Spaces (RKHSs). Functional gradient algorithms are a popular
choice for motion planning in complex many degree-of-freedom robots.
In theory, these algorithms work by directly optimizing continuous tra-
jectories to avoid obstacles while maintaining smoothness. However, in
practice, functional gradient algorithms commit to a finite parametrization of
the trajectories, often as a finite set of waypoints. Such a parametrization
limits expressiveness, and can fail to produce smooth trajectories despite
the inclusion of smoothness in the objective. As a result, we often ob-
serve practical problems such as slow convergence and the requirement
to choose an inconveniently small step size. Our work generalizes the
waypoint parametrization to arbitrary RKHSs by formulating trajectory
optimization as minimization of a cost functional. We derive a gradi-
ent update method that is able to take larger steps and achieve a locally
minimum trajectory in just a few iterations. Depending on the selection
of a kernel, we can directly optimize in spaces of continuous trajectories
that are inherently smooth, and that have a low-dimensional, adaptively cho-
sen parametrization. Our experiments illustrate the effectiveness of the
planner for two different kernels, RBFs and B-splines, as compared to the
standard discretized waypoint representation.

1 Introduction

Motion planning is a critical aspect of robotics. For a given task, motion planning algo-
rithms ensure that robots are able to safely move from a start to goal configuration without
colliding with obstacles. Trajectory optimizers used in motion planning focus on finding
feasible trajectories that are also efficient. Recently, trajectory optimization approaches
to motion planning have demonstrated great success in a number of high-dimensional
real-world problems [1–5]. Some of these algorithms rely on gradient information of a
cost function to perform a gradient-based approach to motion planning, that searches for
smooth, collision-free trajectories through a manipulator’s configuration space [2, 6]. In
this work we exploit the same gradient optimization techniques for ensuring collision free
trajectories in configuration space, with a novel approach of trajectory representation. Pre-
vious work is derived for continuous trajectories in Hilbert spaces, in practice they must

1



commit to a parametrization of the trajectories in order to instantiate a gradient update
[2, 13, 14]. Until now, the only parametrization supported was a large but finite set of
discretized points over time, waypoints. The number of waypoints chosen to represent
a trajectory trades off between computational complexity and trajectory expressiveness.
Our work frees the optimizer from a discrete parametrization, enabling it to perform gra-
dient descent on a much more general trajectory parametrization: Reproducing Kernel
Hilbert Spaces (RKHSs) [7–9], of which waypoint parametrizations are merely one in-
stance. RKHSs impose just enough structure on generic Hilbert spaces to enable a concrete
and implementable gradient update rule, while leaving the choice of a parametrization
flexible: different kernels lead to different parametrizations. Our contribution is two-fold.
Our theoretical contribution is the formulation of functional gradient descent motion plan-
ning in RKHSs: we formulate trajectory optimization as the minimization of a regularized
cost functional. Regularizing the norm in the RKHS is a common way to ensure smooth-
ness in function approximation [10], and we apply the same idea to trajectories.The norm
of the associated space is able to quantify different features of trajectories, such as any
n-th order derivative [11]. A regularization with respect to a norm in RKHS is able to
constrain the solution to a smooth trajectories in the sense of low velocity, acceleration,
jerk.

Our practical contribution is the ability to perform motion planning in inherently
smooth spaces of trajectories with low-dimensional parametrizations. Unlike discretized
parametrizations, which require many points to produce smooth trajectories, RKHSs rep-
resent smooth trajectories with only a few point evaluations. The inherent smoothness of
such spaces increases efficiency because it allows the optimizer to take large steps at every
iteration without breaking trajectory smoothness, therefore converging to a collision-free
trajectory faster. Our experiments (Section 4) illustrate these advantages of RKHSs over
the waypoint parametrization, and compare different choices of kernels.

2 Previous Work

Our RKHS planning algorithm draws on CHOMP [2]. CHOMP is a functional gradi-
ent based optimization algorithm that minimizes a cost functional to produce a smooth
collision-free trajectory. It operates in a Hilbert space of trajectories Ξ, with elements
ξ : [0, 1]→ C, mapping time to robot configurations. The Hilbert space Ξ is equipped with
an inner product 〈ξ1, ξ2〉Ξ = 〈ξ1, Aξ2〉. For example A is the Laplacian operator ∇2 for
Ξ = Ld

2, the space of d-dimensional trajectories whose components are square-integrable.
In the waypoint representation, A is typically the Hessian matrix over points in the trajec-
tory, which makes the norm in Ξ penalize unsmooth and inefficient trajectories. CHOMP
finds the trajectory that minimizes this functional cost U by performing a line search over
the negative gradient direction, where A dictates the shape of the manifold over trajecto-
ries. In practice, this algorithm commits to a waypoint parametrization of the trajectory,
i.e. trajectories are finite vectors of discretized waypoints [2, 13, 14]. CHOMP requires
a commitment to a parametrization in order to instantiate the gradient computation. In
the following section, we derive a directly instantiable gradient update for trajectories
parametrized as part of an RKHS, which generalizes the waypoint parametrization.

3 Motion Planning in an RKHS

3.1 Trajectories in an RKHS

An RKHS of trajectories H is much like the Hilbert space of trajectories with elements
ξ : [0, 1] → C, mapping time to robot configurations, but with additional structure [7,
15, 16]. Trajectories ξ ∈ H in an RKHS can be represented as a sum of point evaluation
functions k(ti, ·) ∈ H [9], where k : [0, 1]× [0, 1] → R is the kernel associated with the
RKHS. Here ξ ≡ ξ(·) denotes a trajectory as a function in the Hilbert space of trajectories.
ξ(t) ∈ C corresponds to a robot configuration evaluated at time t, which in a coordinate
independent notation is equivalent to a value in R. A function evaluation and the inner

2



product in H of two functions ξ1(·) = ∑i aik(ti, ·) and ξ2(·) = ∑j bjk(tj, ·) are defined as:

ξ(·) = ∑
i

aik(ti, ·) , 〈ξ1, ξ2〉H = ∑
i,j

aibjk(ti, tj) (1)

In this paper we represent trajectories as real valued functions, describing a single robot
degree of freedom separately (a function per DOF): Ξ is the product of d RKHSs of 1-
dimensional functions, so that the full kernel function is a sum over each coordinate i,
k(t, t′) = ∑i ki(t, t′). This implies that the norm in this space cannot have interactions
between the different joints. We could extend this derivation to RKHSs of vector-valued
functions [17, 18], we leave that as possible future work.

Cost Functional. We present a cost functional over the space of robot configurations U :
Ξ→ R which maps each trajectory to a scalar cost. U trades off between a regularization
term that measures the shape of the trajectory, and an obstacle term that measures its
proximity to obstacles:

U [ξ] = Uobs[ξ] + β‖ξ‖H (2)

A key component of our work is formulating trajectory optimization as the minimization
of a regularized cost functional (4). This enables us to take advantage of the Representer
Theorem [8, 12], which guarantees that the optimal trajectory will be described in terms of finite
point evaluations T = {tj} : j ∈ [N]:

ξ∗(·) = ∑
j

αjk(tj, ·), αj ∈ R (3)

We introduce a cost functional trading off between an obstacle term and a norm regular-
ization (2):

U [ξ] = ∑
j

c
(

x(ξ(tj), uj)
)
+

β

2
‖ξ‖2

H (4)

While we ensure smoothness by constraining the norm of the trajectory in the RKHS, we
define the obstacle term to become a functional over a finite set of time points that is able
to avoid obstacles. The obstacle cost functional (2) is defined on trajectories, but obstacles
live in the robot’s workspace W ≡ R3. In (4) we use a cost field in the workspace,
c : W → R, computed based on a signed distance field which measures how far the
closest obstacle boundary is: positive outside of obstacles, and negative inside. This
field is usually computed offline for efficiency [2]. x represents the forward kinematics
function that maps a configuration in C and a body point on the robot in B to the location
of that body point in W , and access its cost in c. Previous work defines a similar cost
functional in terms of the arc-length integral of the trajectory [6], but this functional
could not, as easily, be described in terms of point evaluations. Here we choose instead a
cost functional that is given in terms of point evaluations in the RKHS and still achieves a
collision free trajectory.

ξ (0)
ξ (1)

t1 t2
t3 t4

t5
Figure 1: At every iteration, the optimizer takes the current trajectory (gray) and identifies the
points of maximum obstacle cost {tj}(orange points). It then updates the trajectory by a sum of
point evaluation functions centered around the set {tj}.

Our obstacle term penalizes points in the trajectory close to maximum cost regions in
workspace (regions inside/near obstacles). This set of points, T = {tj} : j ∈ [N], are local
maxima of the workspace cost function c in some neighborhood bj centered at the points
tj . The size of this neighborhood bj is arbitrary, and defines the granularity of the search

3



for max points. We can pick many points as local maxima with small neighborhoods vs. a
few points over larger segments of the trajectory. The latter will require fewer parameters
and will be computationally faster, however it can take more iterations to achieve a fully
collision free trajectory. This characteristic is inherent to the choice of cost functional we
adopted and does not apply to other costs. In this paper we picked maximum points over
a ball of fixed radius, smaller than the size of our obstacles, which approximately results
in a point per obstacle:

(tj, uj) = arg max
t∈bj

max
u∈B

c( x(ξ(t), u) ) (5)

Therefore, instead of integrating the workspace cost c along the trajectory, the new ob-
stacle functional evaluates c at only those few key time points—the points of maximum
obstacle penetration (see Fig.1).

Uobs[ξ] = ∑
j

c( x(ξ(tj), uj) ), ∇ξUobs[ξ] = ∑
j
∇c( x(ξ(tj), uj) )JTk(tj, ·) (6)

The workspace function c is differentiable and its gradient can be computed by finite
differencing and stored offline for efficiency. The obstacle functional admits a weak
derivative in terms of ξ, because in general the workspace cost function is not convex
for an arbitrary trajectory ξ. We thus consider the gradient approximation to be the sum
of the workspace gradient at the maximum violating points [19]. In (6) J is a line of
the full Jacobian matrix corresponding to changes of the respective degree of freedom
J = ∂q

∂x in workspace. The smoothness term Usmooth[ξ] =
1
2 ||ξ||2H has a gradient given by

∇ξUsmooth[ξ] = ξ.

Optimization. We perform functional gradient descent on the cost functional U .
At every iteration, we linearize the functional about the current trajectory ξ i, using
U [ξ] ≈ U [ξ i] + 〈ξ − ξ i,∇ξU [ξ i]〉H.

We minimize this functional in a ball around the current trajectory shaped by the norm
in the RKHS, or, equivalently, subject to a regularization around the linearized point that
constraints the trajectory to be “close” to the previous one (analogous to [2]):

ξ i+1 = arg min
ξ
〈ξ − ξ i,∇U [ξ i]〉H + λ‖ξ − ξ i‖2

H (7)

Considering the end-point constraints, for fixed start and goal configurations we impose:
ξ(0) = ξ i(0), and ξ(1) = ξ i(1). We solve the constrained optimization problem in closed
form by setting the derivative of (7) to 0:

ξ∗(·) =
(

1− β

λ

)
ξ i(·)− 1

λ ∑
tj∈T
∇c[ξ i, tj]JTk(tj, ·) (8)

Adding the fixed endpoint constraints with the respective Lagrange multipliers, γ0, γ1,
for the fixed start and end points respectively, yields ξ(0) = ξ i(0)→ γ0〈ξ− ξ i, k(0, ·)〉 = 0,
ξ(1) = ξ i(1)→ γ1〈ξ − ξ i, k(1, ·)〉 = 0. Applying the KKT conditions defines the Lagrange
multipliers γ0 = a−γ1k(1,0)

k(0,0) and γ1 = b k(0,0)−a k(0,1)
k(1,1)k(0,0)−k(0,1)k(0,1) for a = γ0k(0, 0) + γ1k(1, 0), and

b = γ0k(0, 1) + γ1k(1, 1). Finally the fixed start/end-points solution can be obtained in
closed form as well:

ξ i+1(·) =
(

1− β

λ

)
ξ i(·)− 1

λ

 ∑
tj∈T
∇c[ξ i, tj]JTk(tj, ·)− γ0k(0, ·)− γ1k(1, ·)

 (9)

This solution is a generic form of linearized functional gradient optimization in a directly
instantiable obstacle gradient under the norm in the RKHS. The optimal solution is
searched over the full function space of trajectories with desired norm properties, without
committing to a discretization, offering a more expressive form of representation for
fewer number of parameters. This update rule holds for any arbitrary kernel. In our

4



experimental section, we use an RBF kernel for our main comparison to the waypoint
parametrization. We also show experiments with an RKHS over different kernels. Next,
we show that the waypoint parametrization is also a special case of the RKHS.

Waypoint Parametrization as an Instance of RKHS. In previous work, the Hilbert
space of trajectories, Ξ, is equipped with an analogous inner product 〈ξ1, ξ2〉Ξ = 〈ξ1, Aξ2〉
[2]. In the waypoint representation, A is typically the Hessian matrix over points in the
trajectory, which makes the norm in Ξ penalize unsmooth and inefficient trajectories.
The minimization under this norm performs a line search over the negative gradient
direction, where A dictates the shape of the manifold over trajectories. This paper
generalizes the waypoint parametrization, we can represent waypoints by representing
the trajectory in terms of delta Dirac basis functions 〈ξ, δ(t, ·)〉 = ξ(t) with an additional
smoothness metric A. In the limit as σ → 0 the RBF representation becomes a waypoint
representation, where each individual point is allowed to change without affecting
points in the vicinity. With only δ as the kernel, each individual point is allowed to
changed without affecting points in its vicinity. CHOMP overcomes this caveat by
introducing a new metric that propagates changes of a single waypoint to all the other
waypoints, hence kernel evaluation is defined in terms of k(ti, ·) = A−1δ(ti, ·), where
ξ(t) = ∑i ai A−1δ(ti, ·). The inner product of two function in this representation becomes:
〈ξ1, ξ2〉A = ∑i,j aibj A−1δ(ti, tj).

4 Experiments

In what follows, we describe our main experiment (Section 4.1), which compares the
waypoint and RKHS parametrizations on a set of motion planning problems in a 2D
world as in Fig.1. We then introduce a series of smaller experiments that dive deeper
into why RKHSs improve optimization (Section 4.2), and how different kernels affect the
performance of the algorithm (Section 4.3).

4.1 Main Experiment: RKHS with Radial Basis Functions vs. Waypoints

For our main experiment, we systematically evaluate the two parametrizations across a
series of planning problems.
Manipulated Factors: We manipulate the parametrization (waypoints vs Gaussian RBFs)
as well as the number of iterations (which we use as a covariate in the analysis). To control
for the cost functional as a confound, we use the max formulation for both parametriza-
tions. We use iterations as a factor because they are a natural unit in optimization, and
because the amount of time per iteration is similar: the computational bottleneck is com-
puting the maximum penetration points. To control for meta-parameters as a confound,
we optimize each optimizer’s meta-parameters separately on a training set of start-goal
pairs.
Dependent Measures: We measure the obstacle and smoothness cost of the resulting tra-
jectories. For the smoothness cost, we use the norm in the waypoint parametrization as
opposed to the norm in the RKHS as the common metric.
Hypothesis: The RKHS parametrization will result in significantly lower obstacle and smooth-
ness cost for the same number of iterations. We expect this to be true because with the RBF
RKHS parametrization can take larger steps without breaking smoothness. The next sec-
tion, Section 4.2 explicitly supports this argument.
Analysis: Fig.2 shows the smoothness and obstacle cost respectively. We use 100 different
random obstacle placements and keep the start and goal configurations fixed as our exper-
imental setup. The trajectory is represented with 4 maximum violation points over time
and robot body points. In the analysis we performed a t-test using the last iteration sam-
ples, and showed that the the RBF RKHS representation resulted in significantly lower
obstacle cost (t(99) = −2.63, p < .01) and smoothness cost (t(99) = −3.53, p < .001),
supporting our hypothesis.

5



0	

0.02	

0.04	

0.06	

0.08	

0.1	

1	 2	 3	 4	 5	 6	 7	 8	 9	10	

Sm
oo
th
ne
ss
  C
os
t  (
Ξ
,  n
ot
  H
)	

	

Iterations	

(a) Waypoints vs. RBF cost

550	

600	

650	

700	

750	

800	

850	

1	2	3	4	5	6	7	8	9	10	

O
bs
ta
cl
e  
C
os
t	

Iterations	

550	

600	

650	

700	

750	

800	

850	

1	2	3	4	5	6	7	8	9	10	

O
bs
ta
cl
e  
C
os
t	

Iterations	

Waypoints	
Laplace	
Bsplines	
RBF	

(c) Obstacle cost vs. kernel
choice

Figure 2: Cost over iterations for a 3DoF robot in 2D. Error bars show the standard error over 100
samples.

4.2 RKHSs Allow Larger Steps than Waypoints

The main practical advantage of using an RBF RKHS instead of the waypoint parametriza-
tion is the ability to take large steps during the optimization. Fig.4.2 compares the two
while taking large steps: it takes 5 RBF iterations to solve the problem, but would take
28 iterations with smaller steps for the waypoint parametrization – otherwise, large steps
cause oscillation and break smoothness. Fig.3 (a and b) show the same comparison, aver-
aged over multiple planning problems. The resulting obstacle cost is always lower with
RBFs (t(99) = 5.32, p < .0001). The smoothness cost is higher (t(99) = 8.86, p =< .0001),
as we saw in the previous experiment as well– qualitatively, however, as Fig.3(c) shows,
the RBF trajectories appear smoother as they do not break differential continuity. So far,
we used 100 waypoints to represent the trajectory, and only 5 kernel evaluation points for
the RKHS. We did also test the waypoint parametrization when the number of waypoints
is 5 in order to have an equivalently low dimensional representation, which resulted in
much poorer behavior with regards to differential continuity. In order to take gradient
steps in the RKHS, we adopt a maximum cost version of the cost functional, (5). We show
that our new formulation does not hinder the optimization – that it leads to practically
equivalent results as an integral over time and body points [2]. To do so, we manipu-
late the cost functional formulation, and measure the resulting trajectories’ cost in terms
of the integral formulation. We observed the integral cost increased by only 5% when
optimizing for the max.

0!

2!

4!

6!

8!

10!

12!

O
bs

ta
cl

e 
C

os
t!

RBF RKHS!
Waypoints!

(a) Uobs, large steps
0!

50!

100!

150!

200!

250!

300!

350!

400!

Sm
oo

th
ne

ss
 C

os
t (
!,

 n
ot

 H
) "

RBF RKHS!
Waypoints!

(b) ||ξ||Ξ, large steps (c) top: RBF large steps; middle: way-
points large steps; bottom: waypoints
smaller steps

Figure 3: a) b) The costs after 5 large steps (a and b), and the comparison between optimizing using
our obstacle cost formulation vs. the integral formulation. c) A comparison between RBFs and
Waypoints for 5 large steps (a and b), along with a Waypoint trajectory after over 5 times as many
smaller steps.

6



Figure 4: Robot 3DoF in C-space. Trajectory after 10 iterations: top-left: RBF kernel, top-right:
Bsplines kernel, bottom-left: Laplace kernel, bottom-right: Waypoints.

4.3 Other Kernel Functions

Although RBFs are a default choice of kernel in many kernel methods, RKHSs can also
easily represent other types of kernel functions, e.g. B-splines, a popular parametrization
of smooth functions [20, 22, 23] used. Although B-splines are finite dimensional kernels
they are able to express smooth trajectories while avoiding obstacles. Laplace Kernels
yield similar results as the waypoint parametrization since it is less affected by the choice
of the width of the kernel. Figure Fig.4 provides a qualitative evaluation of the effect
of different kernel choices. We compare the effectiveness of obstacle avoidance over 10
iterations in 100 trials of 12 randomly placed obstacles in a 2D environment. We observe
that Waypoints and Laplace kernels with large widths have similar behavior, while RBF
and Bsplines kernel provide a naturally smoother parametrization that allows the algo-
rithm to take larger steps at each iteration. These kernels provide the additional benefit
of controlling the motion amplitude, being the most suitable in the implementation of
an adaptive motion planner. Other kernel functions could be easily considered under
the optimization framework we presented in this paper. Their choice should be applica-
tion driven, in this work we presented a ubiquitous, and expressive kernel approach to
trajectory representation.

5 Discussion and Future Work

We introduced a trajectory optimization method in RKHSs, that can represent smooth
trajectories with only a few adaptive parameters. Our results suggest that optimization
in this spaces can take large steps, leading to a smooth and collision-free trajectory faster.
Our work is only the first step in exploring RKHSs for motion planning. Overall, we are
excited to contribute the flexibility of RKHSs to trajectory optimization for motion plan-
ning, and we look forward to future steps in this direction, including the ability to plan
using learned kernels—for example, we could learn a kernel that penalizes unpredictable
or non-human-like motion. First, a low-dimensional trajectory parametrization enable us
to more easily generate a diverse set of initial trajectories for the optimizer, which aids
techniques that learn how to score initial trajectories for a new motion planning problem
based on data from old problems [24]. Second, RKHSs enable us to plan using kernels
learned from user demonstrations, leading to spaces in which more predictable motions
have lower norm, and ultimate fostering better human-robot interaction [25].

7



References
[1] Khatib O. Quinlan, S. Elastic bands: Connecting path planning and control. In ICRA, 1993.

[2] et. al Zucker, M. CHOMP: Covariant hamiltonian optimization for motion planning. IJRR,
2013.

[3] et. al Schulman, J. Finding locally optimal, collision-free trajectories with sequential convex
optimization. In RSS, 2013.

[4] Li W. Todorov, E. A generalized iterative lqg method for locally-optimal feedback control of
constrained nonlinear stochastic systems. In acc, 2005.

[5] Abbeel P. Goldberg K. van den Berg, J. Lqg-mp: Optimized path planning. IJRR, 2011.

[6] N. Ratliff, M. Zucker, J.A. Bagnell, and S.S. Srinivasa. CHOMP: Gradient optimization tech-
niques for efficient motion planning. In ICRA, 2009.

[7] B. Scholkopf and A.J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2001.

[8] G. S. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. 1971.

[9] N. Aronszajn. Theory of reproducing kernels. In Transactions of the American Mathematical
Society, 1950.

[10] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods in machine
learning. Annals of Statistics, 2008.

[11] Cai T. Yuan, M. A reproducing kernel hilbert space approach to functional linear regression.
Annals of Statististics, 2010.

[12] Schölkopf B. Smola, A.J. and K.R. Müller. The connection between regularization operators
and support vector kernels. Neural Network., 1998.

[13] Pan J. Park, C. and D. Manocha. Itomp: Incremental trajectory optimization for real-time
replanning in dynamic environments. In ICAPS, 2012.

[14] M. Kalakrishnan and Theodorou E. Pastor P. Schaal S. Chitta, S. STOMP: Stochastic Trajectory
Optimization for Motion Planning. In ICRA, 2011.

[15] G. Wahba. Advances in Kernel Methods. MIT Press, 1999.

[16] N.D. Ratliff and J. A. Bagnell. Kernel conjugate gradient for fast kernel machines. In IJCAI,
2007.

[17] Sindhwani V. Minh, H. Q. Vector-valued manifold regularization. In ICML, 2011.

[18] L. Murino V. Minh H., Bazzani. A unifying framework for vector-valued manifold regulariza-
tion and multi-view learning. In ICML, 2013.

[19] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

[20] A. Blake and M. Isard. Active Contours. Springer-Verlag New York, Inc., 1998.

[21] Y.C. Chen. Solving robot trajectory planning problems with uniform cubic b-splines. In Optimal
Control Applications and Methods, 1991.

[22] J. Zhang and A. Knoll. An enhanced optimization approach for generating smooth robot
trajectories in the presence of obstacles. In ECAC, 1995.

[23] Zhang L. Manocha D. Pan, J. Collision-free and smooth trajectory computation in cluttered
environments. In IJRR, 1995.

[24] Liu T. Y. Hebert M. Bagnell J.A. Dey, D. Contextual sequence prediction with application to
control library optimization. In RSS, 2012.

[25] Srinivasa S. Dragan, A. Familiarization to robot motion. International Conference on Human-Robot
Interaction (HRI), 2014.

8


	1 Introduction
	2 Previous Work
	3 Motion Planning in an RKHS
	3.1 Trajectories in an RKHS

	4 Experiments
	4.1 Main Experiment: RKHS with Radial Basis Functions vs. Waypoints
	4.2 RKHSs Allow Larger Steps than Waypoints
	4.3 Other Kernel Functions

	5 Discussion and Future Work

