
Learning Predictive Models of a Depth Camera &
Manipulator from Raw Execution Traces

Byron Boots
University of Washington

Seattle, WA
bboots@cs.washington.edu

Arunkumar Byravan
University of Washington

Seattle, WA
fox@cs.washington.edu

Dieter Fox
University of Washington

Seattle, WA
fox@cs.washington.edu

Abstract
We attack the problem of learning a predictive model of a depth camera and ma-
nipulator directly from raw execution traces. While the problem of learning ma-
nipulator models from visual and proprioceptive data has been addressed before,
existing techniques often rely on assumptions about the structure of the robot or
tracked features in observation space. We make no such assumptions. Instead, we
formulate the problem as that of learning a high-dimensional controlled stochastic
process. We leverage recent work on nonparametric predictive state represen-
tations to learn a generative model of the depth camera and robotic arm from
sequences of uninterpreted actions and observations. We perform several exper-
iments in which we demonstrate that our learned model can accurately predict
future observations in response to sequences of motor commands.

1 Introduction
One of the most fundamental challenges in robotics is the general identification problem (Kuipers,
1985)1: a robot, capable of performing a set of actions a ∈ A and receiving observations o ∈ O, is
placed in an unknown environment. The robot has no interpretation for its actions or observations
and no knowledge of the structure of the environment. The problem is to program the robot to
learn about its observations, actions, and environment well enough to make predictions of future
observations given sequences of actions. In other words, the goal is to learn a generative model of
the observations directly from raw execution traces.

In this paper we investigate an instance of the general identification problem: A robot observes a
manipulator under its control with a Kinect RGB-D camera. The goal is to learn a generative model
of RGB-D observations as the robot controls its manipulator (Figure 1). While the problem of
learning manipulator models, or body schemas, from visual and proprioceptive modalities has been
addressed before, existing techniques rely critically on assumptions about the kinematic structure of
the robot and tracked features in observation space (Hersch et al., 2008; Sturm et al., 2008; Sturm
et al., 2009; Deisenroth & Fox, 20e11). Here, we address this problem in its most challenging
instance: The observations are streams of raw depth images (1.2 million pixels), and the robot has
no prior knowledge about what it is controlling.

We make as few assumptions as possible. Actions and observations are allowed to be continuous or
discrete and potentially very high-dimensional. The system may be partially observable and have
nonlinear dynamics. Finally, actions and observations are assumed to be sampled from unknown
probability distributions. This is a difficult problem and we approach it from a machine learning per-
spective. We dispense with problem-dependent geometric and physical intuitions and instead model
the sensorimotor data as a controlled stochastic process. Specifically, we use a Predictive State
Representation (PSR) (Littman et al., 2002; Singh et al., 2004), a general probabilistic modeling
framework that can represent a wide variety of stochastic process models including Kalman filters

1The general identification problem was first proposed by Ron Rivest in 1984 and originally called the
Critter Problem

C.
7-DOF

A. B.RGB Depth

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6
Joint 7

Figure 1: Observations and Actions. The robot receives sense data from a Kinect RGB-D depth
camera, but has no knowledge of the geometry of the scene or the physics of the camera. The
robot can control a 7–degree-of-freedom Barrett WAM arm, but has no a priori knowledge of the
geometry, kinematics, or any aspects of the action space of the arm. (A) An example 640× 480× 3
RGB image. (B) An example 640× 480 depth map. Darker indicates increased distance. Together,
the RGB-D observation vector has 1228800 elements. (C) The 7 degree-of-freedom arm. Each
action is a continuous-valued 7-dimensional vector.

(KFs) (Rudary et al., 2005), input output hidden Markov models (IO-HMMs) (Bengio & Frasconi,
1995; Boots et al., 2010), and nonparametric processes models (Boots et al., 2013). Specifically, we
show that a recent nonparametric variant of PSRs, called Hilbert Space Embeddings of PSRs, can
represent a generative model of the RGB-D camera and robotic arm directly from sequences of un-
interpreted actions and observations. Although the problem is far more difficult than the simulated
problems explored in previous PSR work (Wingate & Singh, 2007; Boots et al., 2010; Ong et al.,
2013; Hamilton et al., 2013) and the robot has many additional degrees of freedom compared to the
systems considered in recent work on bootstrapping in robotics (Censi & Murray, 2011a; Censi &
Murray, 2011b; Censi & Murray, 2012), we are able to learn a model with good prediction accuracy.

We run several experiments that show qualitative examples of our learned model tracking the current
state of the system and predicting future RGB-D images given motor commands. We also provide
rigorous quantitative results which demonstrate that our learned model is accurate at tracking and
predicting RGB-D observations given previously unseen sequences of motor commands.

2 Predictive State Representations
A PSR represents the state of a dynamical system as a set of predictions of experiments or tests
that can be performed in the system. A test of length N is an ordered sequence of future action-
observations pairs τ = a1, o1, . . . aN , oN that can be selected and observed at any time t. A test
τi is executed at time t if we intervene (Pearl, 2000) to select the sequence of actions specified by
the test τAi = a1, . . . , aN . A test is said to succeed at time t if it is executed and the sequence of
observations in the test τOi = o1, . . . , oN matches the observations generated by the system. The
prediction for test i at time t is the probability of the test succeeding given a history ht and given
that we execute it:2

P
[
τOi,t | τAi,t, ht

]
(1)

The key idea behind a PSR is that if we know the expected outcomes of executing all possible tests,
then we know everything there is to know about the state of a dynamical system (Singh et al., 2004).
In practice we work with the predictions of some set of tests. Let T = {τi} be a set of d tests, then

s(ht) =
(
P
[
τOi,t | τAi,t, ht

])d
i=1

(2)

is the prediction vector of success probabilities for the tests τi ∈ T given a history ht.Knowing
the success probabilities of some tests may allow us to compute the success probabilities of other
tests. That is, given a test τl and a prediction vector s(ht), there may exist a prediction function
fτl such that P

[
τOl | τAl , ht

]
= fτl(s(ht)). In this case, we say s(ht) is a sufficient statistic for

P
[
τOl | τAl , ht

]
. A core set of tests is a set whose prediction vector s(ht) is a sufficient statistic for

the predictions of all tests τl at time t. Therefore, s(ht) is a state for a PSR.

2For simplicity, we assume that all probabilities involving actions refer to our PSR as controlled by an
arbitrary blind or open-loop policy (Bowling et al., 2006).

After taking action a and seeing observation o, we can update the predictive state s(ht) to the state
s(ht+1) using Bayes’ rule. The key idea is that the set of functions F allows us to predict any test
from our core set of tests.

The state update proceeds as follows: first, we predict the success of any core test τi prepended by
an action a and an observation o, which we call aoτi, as a function of our core test predictions s(ht):

P
[
τOi,t+1, ot=o | τAi,t+1, at=a, ht

]
= faoτi(s(ht)) (3)

Second, we predict the likelihood of any observation o given that we select action a:

P [ot = o | at = a, ht] = fao(s(ht)) (4)

After executing action a and seeing observation o, Equations 3 and 4 allow us to find the prediction
for a core test τi from s(ht) using Bayes’ Rule:

si(ht+1) =
faoτi(s(ht))

fao(s(ht))
(5)

This recursive application of Bayes’ rule to the predictive belief state is an instance of a Bayes filter.

The predictive state and the Bayes’ rule state update together provide a very general framework for
modeling dynamical systems. In the next section we show how a recent variant of PSRs can be used
to learn models of dynamical systems with high-dimensional continuous actions and observations.

3 Hilbert Space Embeddings of PSRs
PSRs generally either assume small discrete sets of actions A and observations O along with linear
prediction functions fτ ∈ F (Boots et al., 2010), or if the actions and observations are continuous,
they assume Gaussian distributions and linear functions (Rudary et al., 2005). Researchers have
relied heavily on these assumptions in order to devise computationally and statistically efficient
learning algorithms. Unfortunately, such restrictions can be unsuitable for robotics applications.

Instead, we consider a recent generalization of PSRs for continuous actions and observations called
Hilbert Space Embeddings of PSRs (HSE-PSRs) (Boots et al., 2013). The essence of the method
is to represent probability distributions of tests, observations, and actions as elements in a Hilbert
space of functions, defined through a chosen kernel. The distributions are learned nonparametrically
from samples and no assumptions are made about the shape of the underlying distributions. This
results in an extremely flexible model. A HSE-PSR is capable of modeling non-linear dynamics and
estimating multi-modal distributions for continuous or discrete random variables without having to
contend with problems such as density estimation and numerical integration. During filtering these
points are conceptually updated entirely in Hilbert space using a kernel version of Bayes’ rule. In
practice, the “kernel trick” is leveraged to represent the state and required operators implicitly and
to maintain a state vector with length proportional to the size of the training dataset.

In the following subsections, we provide a very brief overview HSE-PSRs. We ask the reader to
refer to (Boots et al., 2013) for a more complete treatment.

3.1 Hilbert Space Embeddings of Distributions

Let F be a reproducing kernel Hilbert space (RKHS) associated with kernel KX(x, x′)
def
=〈

φX(x), φX(x′)
〉
F for x ∈ X . Let P be the set of probability distributions on X , and X be a

random variable with distribution P ∈ P . Following Smola et al. (Smola et al., 2007), we define the
mean map (or the embedding) of P ∈ P into RKHS F to be µX

def
= E

[
φX(X)

]
. A characteristic

RKHS is one for which the mean map is injective: that is, each distribution P has a unique embed-
ding (Sriperumbudur et al., 2008). This property holds for many commonly used kernels including
the Gaussian RBF kernel when X = Rd. Given i.i.d. observations xt, t = 1 . . . T , an estimate of
the mean map is:

µ̂X
def
=

1

T

T∑
t=1

φX(xt) =
1

T
ΥX1T (6)

where ΥX def
= (φX(x1), . . . , φX(xT)) is the linear operator which maps the tth unit vector of RT

to φX(xt). Below, we’ll sometimes need to embed a joint distribution P[X,Y]. It is natural to

embed P[X,Y] into a tensor product RKHS: let KY (y, y′) =
〈
φY (y), φY (y′)

〉
G be a kernel on

Y with associated RKHS G. Then we write µXY for the mean map of P[X,Y] under the kernel
KXY ((x, y), (x′, y′))

def
= KX(x, x′)KY (y, y′) for the tensor product RKHS F ⊗ G. We also de-

fine the uncentered covariance operator CXY
def
= EXY

[
φX(X)⊗ φY (Y)

]
. Both µXY and CXY

represent the distribution P [X,Y]. One is defined as an element of F ⊗ G, and the other as a lin-
ear operator from G to F , but they are isomorphic under the standard identification of these spaces
(Fukumizu et al., 2011), so we abuse notation and write µXY = CXY . Given T i.i.d. pairs of obser-
vations (xt, yt), define ΥX =

(
φX(x1), . . . , φX(xT)

)
and ΥY =

(
φY (y1), . . . , φY (yT)

)
. Write

Υ∗ for the adjoint of Υ. Analogous to (6), we can estimate

ĈXY =
1

T
ΥXΥY ∗. (7)

3.2 Kernel Bayes’ Rule
We now define the kernel mean map implementation of Bayes’ rule (called the Kernel Bayes’
Rule, or KBR). In particular, we want the kernel analog of P [X | y, z] = P [X, y | z] /P [y | z].
In deriving the kernel realization of this rule we need the kernel mean representation of a con-
ditional joint probability P [X,Y | z]. Given Hilbert spaces F , G, and H corresponding to the
random variables X , Y , and Z respectively, P [X,Y | z] can be represented as a mean map
µXY |z

def
= E

[
φX(X)⊗ φY (Y) | z

]
or the corresponding operator CXY |z . Under some assump-

tions (Fukumizu et al., 2011), this operator satisfies:

CXY |z = µXY |z
def
= C(XY)ZC−1ZZφ(z) (8)

Here the operator C(XY)Z represents the covariance of the random variable (X,Y) with the random
variable Z. We now define KBR in terms of conditional covariance operators (Fukumizu et al.,
2011): µX|y,z = CXY |zC−1Y Y |zφ(y) (9)

To use KBR in practice, we need to estimate the operators on the RKHS of (9) from data.
Given T i.i.d. triples (xt, yt, zt) from P [X,Y, Z], write ΥX =

(
φX(x1), . . . , φX(xT)

)
, ΥY =(

φY (y1), . . . , φY (yT)
)
, and ΥZ =

(
φZ(z1), . . . , φZ(zT)

)
. We can now estimate the covariance

operators ĈXY |z and ĈY Y |z via Equation 8 and then apply KBR via Equation 9. We express this
process with Gram matrices, using a ridge parameter λ that goes to zero at an appropriate rate with
T (Fukumizu et al., 2011):

Λz = diag((GZ,Z + λTI)−1ΥZ∗φZ(z)) (10)

ŴX|Y,z = ΥX(ΛzGY,Y + λTI)−1ΛzΥ
Y ∗ (11)

µ̂X|y,z = ŴX|Y,zφ
Y (y) (12)

where GY,Y
def
= ΥY ∗ΥY has (i, j)th entry KY (yi, yj), and GZ,Z

def
= ΥZ∗ΥZ has (i, j)th entry

KZ(zi, zj). The diagonal elements of Λz encode the conditioning information from z.

3.3 Nonparametric Representation of PSRs
We now use Hilbert space embeddings to represent predictive states and kernel Bayes’ rule to update
the distributions given a new action and observation.

3.3.1 Parameters
HSE-PSR models are represented nonparametrically as Gram matrices of training data. Given T +
1 i.i.d. tuples of actions, observations, and histories {(at, ot, ht)}Tt=1 generated by a controlled
stochastic process, we denote

ΥA
def
=
(
φA(a1), . . . , φA(aT)

)
ΥO

def
=
(
φO(o1), . . . , φO(oT)

)
(13)

along with Gram matrices GA,A = ΥA
∗
ΥA and GO,O = ΥO

∗
ΥO. We also define test embeddings

ΥT
def
=
(
φT (h1), . . . , φT (hT)

)
ΥT

′ def
=
(
φT (h2), . . . , φT (hT+1)

)
(14)

along with Gram matrices GT ,T = ΥT
∗
ΥT and GT ,T ′ = ΥT

∗
ΥT
′. Here primes indicate tests

shifted forward in time by one step. The Gram matrices are the parameters for our nonparametric
dynamical system model. We will use them below in order to create an initial feasible state as well
as update the state with KBR.

A. B.

En
co

de
r E

rr
or

 (d
eg

.)
Joint Position (deg.)

-1.0

-0.5

0.0

1.0

0.5

0 50 100 150

lower torque

higher torque

Figure 2: Motor encoder and kinematic error. (A) Motor encoder error caused by cable stretch in
Joint 4 of the WAM arm. The motor encoder returns joint position estimates that deviate from the
true joint positions as a stochastic function of torque. The higher the torque, the more the motor
encoders err. (B) The arm in four configurations. In each configuration, the encoders and forward
kinematics erroneously predict the same hand pose. To show the deviation, a ball is attached to the
end effector. The center-to-center distance between the two farthest ball positions is approximately
8 cm. (Figure in (B) from (Krainin et al., 2011))

3.3.2 Estimating a Feasible State
We estimate an initial feasible state S∗ for the HSE-PSR as the mean map of the stationary distribu-
tions of tests ΥT αh∗ where

αh∗ =
1

T
1T (15)

Therefore, the initial state is the vector αh∗ with length equal to the size of the training dataset.

3.3.3 Gram Matrix State Updates
Given a HSE-PSR state αt, kernel Bayes’ rule is applied to update state given a new action and
observation. Updating consists of several steps.

The first step is extending the test distribution (Boots et al., 2013). A transition function which
accomplishes this is computed (GT ,T + λTI)−1GT ,T ′ . The transition is applied to the state

α̂t = (GT ,T + λTI)−1GT ,T ′αt (16)

resulting in a weight vector α̂t encodes the embeddings of the extended test predictions at time t.
Given a diagonal matrix Λt = diag(α̂t), and a new action at, we can condition the embedded test
predictions by right-multiplying

αat = Λt(GA,A+λTI)−1ΥA
∗
φA(at) (17)

The weight vector αat encodes the embeddings of extended test predictions at time t given action at.
Next, given a diagonal matrix Λat = diag(αat), and a new observation ot, we apply KBR to calculate
the next state:

αaot = (ΛatGO,O + λTI)−1ΛatΥO
∗
φO(ot) (18)

This completes the state update. The nonparametric state at time t+ 1 is represented by the weight
vector αt+1 = αaot . We can continue to filter on actions and observations by recursively applying
Eqs. 16–18.

4 Modeling a Depth Camera & Manipulator
In this work, we seek to enable a robotic system to autonomously learn a generative model of RGB-
D images collected from a depth camera that observes the robot’s manipulation space. Our robot
consists of a Kinect depth camera observing a Barrett WAM arm located approximately 1.5 meters
away. The robot can execute actions and receive observations at a rate of 30 frames per second.

At each point in time, the robot executes a motor command to each of the 7 active joints in the arm
(see Figure 1(B)). For each joint, the motor command specifies a desired joint configuration. The
exact movement is a function of the commanded target configuration and the controller’s estimate
of the current joint position as provided by the arm’s motor encoders. After executing a motor
command, the robot receives an RGB-D observation from the depth camera. The observation is a
vectorized 640 × 480 × 3 pixel RGB image and a time-aligned 640 × 480 pixel depth map (see
Figure 1(A)).

Ex
pe

ct
ed

 O
bs

er
va

tio
n

M
A

P
O

bs
er

va
tio

n
A

ct
ua

l O
bs

er
va

tio
n

Predicted Observations at Time t=195 Predicted Observations at Time t=930

Figure 3: Example predictions from the learned HSE-PSR model. We can calculate the expected
observation or the Maximum A Posteriori observation from an embedding of the probability dis-
tribution over the next observation given that we take a specific action. The two columns on the
left show the two predictions after filtering for 195 time steps. The two columns on the right show
the two predictions after filtering for 930 time steps. The bottom row shows the actual observation.
The expected observation is the weighted average of many images in the training data set. The MAP
observation is the the highest probability observation in the training data set. Both are able to predict
the actual observation well.

If the motor encoders and RGB-D images were accurate enough, then it would be possible to pre-
cisely specify a generative model of the RGB-D images given the true configuration of the arm
joints and known geometry and kinematics. Unfortunately, this is not the case. Both the actions and
observations contain error due to unmodeled physics in the arm’s movements, inaccuracies in the
motor encoders, and limitations of the depth camera.

An important example of unmodeled physics is cable stretch. The WAM am is driven by cables
which wind and unwind as the arm moves. Under differing torques, the cables are wound with dif-
fering tensions causing inaccuracies in the joint angles reported by the motor encoders (Figure 4(A)).
This results in hysteresis in the reported angles and ultimately in inaccurate predictions of the arm’s
location in 3D space (Figure 4(B)).

Many of the factors contributing to inaccuracies in the sensor and robot arm can be mitigated by
building higher precision parts. However, for many cheaper robots, at least some form of error
is likely to affect actions and observations. Modeling a robot as a stochastic process is a natural
framework for contending with these errors.

4.1 Learning the Model

The training data consisted of observations in response to motor babbling: we randomly moved the
arm at different velocities to positions randomly sampled from a uniform distribution in the 7D con-
figuration space (with some velocity and joint-limit constraints). We collected a long execution trace
of 30,000 actions and observations; or roughly 16 minutes of data. This data was used as training
data for our HSE-PSR algorithm. A sequence of 2000 similarly collected actions and observations
were held out as test data.

This is a very large quantity of training data. Previous work on learning HSE-PSRs learned models
from ∼ 500 training data samples (Boots et al., 2013). The quantity of training data was kept low
in these prior experiments due to the computational complexity in learning, predicting, and filtering,
each of which is O(T 3) in the number of samples. Given the physical complexity of the robot
considered here, it would be very difficult to learn an accurate model from so few training examples
(500 samples is roughly 15 seconds of data). To overcome this problem, we use a standard trick
for computing a sparse representation of Hilbert space embeddings via an incomplete Cholesky

approximation (Shawe-Taylor & Cristianini, 2004; Grunewalder et al., 2012). This reduced the
complexity of our state updates from an intractable 30, 0003 to a more reasonable 10003.

4.1.1 State
The core component of our dynamical system model is the predictive state. We model the robot
with 1-step tests. That is, each test is an action-observation pair τ = a1, o1 that can be executed and
observed at each time t. The state of the robot is, therefore, the probability distributions of the next
RGB-D images in response to motor commands: P[ot | at, ht].
The predictive distributions are represented nonparametrically as Hilbert space embeddings. The
Gram matrices GO,O, GA,A, GT ,T and GT ,T ′ were computed using Gaussian RBF kernels and
bandwidth parameters set by the median of squared distance between training points (the “median
trick”) (Song et al., 2010). Finally, the initial state was set to the stationary distribution of observa-
tions given our data collection policy: αh∗ = 1

T 1T (Eq. 15). Given these parameters and Eqs. 16–18,
we can filter and predict observations from our model.

4.1.2 Predicting
We have described above how to implicitly maintain the PSR state nonparametrically as a set of
weights on training data. However, our ultimate goal is to make predictions about future observa-
tions. We can do so with mean embeddings: for example, given the extended state α̂t (Eq. 16) at
some history ht, we fill in an action using Eq. 17 to find the mean embedding of the distribution of
observations:

µO|ht,at = ΥOαat (19)

Once we have the embedding of the predictive distribution, we have two options for efficiently
computing a prediction. We can either compute the maximum a posteri (MAP) observation from
the embedded distribution or we can compute the expected observation. The MAP observation is
computed:

ô = arg max
o

〈
µO|h,a, φ

O(o)
〉

However, the number of possible observations for our robot is very large, so this maximization is
not tractable in practice; instead, we approximate it by using the standard approach of maximizing
over all observations in the training set (Boots et al., 2013).

We can also compute the expectation of our embedded distribution of observations. Since the mean
embedding µX satisfies EX [f(x)] = 〈f, µX〉 for any f in our RKHS, we can write πi(ot) for the
function which extracts the ith coordinate of an observation. If these coordinate projections are in
our RKHS, we can compute E[ot|ht, at], the expected observation, by computing

〈
πi, µO|ht,at

〉
for

all i. Examples of MAP and expected observations from embedded tests are shown in Figure 3.

5 Quantitative Results
We designed several experiments to illustrate the behavior of the HSE-PSR and to rigorously evalu-
ate the learned model’s predictive accuracy. All evaluations are performed on heldout data consisting
of random trajectories that were never observed in the training data.

Specifically, we studied the filtering or tracking performance of the model as the robot executes
motor commands and receives RGB-D observations. We also studied the long-range predictive
accuracy of the model in response to sequences of motor commands. We compared the learned
HSE-PSR model to nonparametric function approximation methods for mapping motor commands
directly to observations. We show that the learned dynamical system model greatly outperforms the
non-dynamic methods by learning to accurately track the state of the robot.

5.1 Filtering Accuracy
First we studied the filtering performance of the HSE-PSR. As the learned model executes actions
and receives observations, the model’s prediction accuracy should increase. Additionally, the pro-
cess of filtering should help to overcome error in the reported joint angles and observations leading
to more accurate predictions than models which do not take history into account.

To test this hypothesis, we performed filtering over sequences of 100 actions and observations,
comparing the predictive accuracy of the model as measured by mean squared error (MSE) in the
prediction of the next observation given the current action. We then compared to a baseline pro-
vided by kernel regression from motor commands to observations. We trained kernel regression on

A. B.

M
SE

Filtering Accuracy Long-range Prediction Accuracyx 104 x 104

100
1.5

2.5

3.5

Kernel Regression
HSE-PSR

Kernel Regression
HSE-PSR

10000 0 MSE 8x104

Filtering (Expectation)

Filtering (MAP)

Kernel Regression

1-NN

1-Step Prediction AccuracyC.

Figure 4: Accuracy of the learned model. Mean Squared Error (MSE) is computed by taking the
squared difference between predicted and true depth maps (at the pixel level) for 1000 experiments.
(A.) Filtering for 100 time steps starting from the stationary distribution. The graph shows the mean
squared error in the prediction of the next observation given that we take a specified action. The
HSE-PSR model increases its prediction accuracy over time, and, once it is accurately tracking the
system, is able to substantially outperform kernel regression which does not model dynamics. (B.)
Predicting forward 100 time steps. After filtering, we used the learned model to predict 100 time
steps into the future using only actions (no observations). The graph shows the mean squared error
of these predictions. Prediction accuracy decreases over time until the prediction is close to kernel
regression. This shows that long rang predictions are no worse than kernel regression and short
term predictions are much more accurate.(C.) We compare the accuracy of several models on the
task of predicting the next observation. Mean Squared Error (MSE) computed by taking the squared
difference between predicted and true depth maps (at the pixel level) for 1000 experiments.

the same dataset as the HSE-PSR and used Gaussian RBF kernels. The squared error of the pre-
dictions was averaged over 1000 trials (Figure 4(A)). As expected, the model quickly incorporates
information from the actions and observations to accurately track the state of the system. 1-step
predictions indicate that the model soundly outperforms kernel regression while tracking.

5.2 Long-range Prediction Accuracy
Next we consider the motivating problem of this paper: Can we make accurate long range predic-
tions of what the depth camera will see given that the robot executes a sequence of motor commands?
We expect the predictive performance of the model to degrade over time, but long range prediction
performance should not be worse than non-parametric regression models which do not take history
or dynamics into account.

To test this hypothesis, we performed filtering for 1000 different extents t1 = 101, ..., 1100, and
then predicted observations a further t2 steps in the future, for t2 = 1, ..., 100, using the given
sequence of actions. We then averaged the squared prediction error over all t1. Again, we compared
to kernel regression with Gaussian RBF kernels learned on the training data set. The squared error of
the predictions was averaged over 1000 trials (Figure 4(B)). The prediction accuracy of the learned
model degrades over time, as expected. However, the model continues to produce predictions that
are more accurate than kernel regression at 100 time steps into the future.

5.3 MAP vs. Expectation
In the previous experiments we measured prediction accuracy by looking at the expected observation
given the HSE-PSR state. We then compared this prediction with the result of kernel regression
which can be interpreted as the expected observation given a motor command.

Often it makes sense to consider the MAP observation instead of the expected observation. (For a
visual comparison, see Figure 3). For example, if the predictive distribution is multimodal, then the
MAP observation may result in a more accurate prediction. Or, if we require a visualization of the
predictions, then MAP observations may provide a qualitatively better looking prediction.

We compared four methods, the expected and MAP observation from our model as computed by
Section 4.1.2, as well as their nonparametric regression counterparts: kernel regression and nearest
neighbor regression. The results are shown in Figure 4(C). First, the results indicate that the HSE-
PSR produces much better predictions than the nonparametric regression approaches. This result
is likely attributable to inaccuracies in the motor commands. Second, the expected observations
have higher predictive accuracy than MAP observations. This is likely due to the fact that the
action and observation spaces are high-dimensional and (approximately) continuous. Since the MAP
approaches are calculated with a limited set of training samples, we cannot expect to always have
access to an observation in the training data set that is close to the observation we wish to predict.

References
Bengio, Y., & Frasconi, P. (1995). An Input Output HMM Architecture. Advances in Neural Information
Processing Systems.

Boots, B., Gretton, A., & Gordon, G. J. (2013). Hilbert Space Embeddings of Predictive State Representations.
Proc. UAI.

Boots, B., Siddiqi, S. M., & Gordon, G. J. (2010). Closing the learning-planning loop with predictive state
representations. Proceedings of Robotics: Science and Systems VI.

Bowling, M., McCracken, P., James, M., Neufeld, J., & Wilkinson, D. (2006). Learning predictive state
representations using non-blind policies. Proc. ICML.

Censi, A., & Murray, R. M. (2011a). Bootstrapping bilinear models of robotic sensorimotor cascades. Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China.

Censi, A., & Murray, R. M. (2011b). Bootstrapping sensorimotor cascades: a group-theoretic perspective.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, CA.

Censi, A., & Murray, R. M. (2012). Learning diffeomorphism models of robotic sensorimotor cascades. Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA). Saint Paul, MN.

Deisenroth, M., & Fox, D. (20e11). Learning to control a low-cost manipulator using data-efficient reinforce-
ment learning. Proc. of Robotics: Science and Systems (RSS).

Fukumizu, K., Song, L., & Gretton, A. (2011). Kernel bayes’ rule. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira and K. Weinberger (Eds.), Advances in neural information processing systems 24, 1737–1745.

Grunewalder, S., Lever, G., Baldassarre, L., Pontil, M., & Gretton, A. (2012). Modelling transition dynamics
in MDPs with RKHS embeddings. CoRR, abs/1206.4655.

Hamilton, W. L., Fard, M. M., & Pineau, J. (2013). Modelling sparse dynamical systems with compressed pre-
dictive state representations. Proceedings of the 30th International Conference on Machine Learning (ICML-
13) (pp. 178–186). JMLR Workshop and Conference Proceedings.

Hersch, M., Sauser, E. L., & Billard, A. (2008). Online learning of the body schema. I. J. Humanoid Robotics,
5, 161–181.

Krainin, M., Henry, P., Ren, X., & Fox, D. (2011). Manipulator and object tracking for in-hand 3d object
modeling. Int. J. Rob. Res., 30, 1311–1327.

Kuipers, B. (1985). The map-learning critter (Technical Report).

Littman, M., Sutton, R., & Singh, S. (2002). Predictive representations of state. Advances in Neural Information
Processing Systems (NIPS).

Ong, S. C., Grinberg, Y., & Pineau, J. (2013). Mixed observability predictive state representations.

Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge University Press.

Rudary, M., Singh, S., & Wingate, D. (2005). Predictive linear-Gaussian models of stochastic dynamical
systems. Proc. UAI.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. New York, NY, USA: Cam-
bridge University Press.

Singh, S., James, M., & Rudary, M. (2004). Predictive state representations: A new theory for modeling
dynamical systems. Proc. UAI.

Smola, A., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions.
Algorithmic Learning Theory. Springer.

Song, L., Boots, B., Siddiqi, S. M., Gordon, G. J., & Smola, A. J. (2010). Hilbert space embeddings of hidden
Markov models. Proc. 27th Intl. Conf. on Machine Learning (ICML).

Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G., & Schölkopf, B. (2008). Injective Hilbert space
embeddings of probability measures. .

Sturm, J., Plagemann, C., & Burgard, W. (2008). Unsupervised body scheme learning through self-perception.
ICRA (pp. 3328–3333). IEEE.

Sturm, J., Plagemann, C., & Burgard, W. (2009). Body schema learning for robotic manipulators from visual
self-perception. Journal of Physiology-Paris, 103, 220–231. Neurorobotics.

Wingate, D., & Singh, S. (2007). On discovery and learning of models with predictive representations of state
for agents with continuous actions and observations. Proc. AAMAS.

	Introduction
	Predictive State Representations
	Hilbert Space Embeddings of PSRs
	Hilbert Space Embeddings of Distributions
	Kernel Bayes' Rule
	Nonparametric Representation of PSRs
	Parameters
	Estimating a Feasible State
	Gram Matrix State Updates

	Modeling a Depth Camera & Manipulator
	Learning the Model
	State
	Predicting

	Quantitative Results
	Filtering Accuracy
	Long-range Prediction Accuracy
	MAP vs. Expectation

