
Closing the Learning-Planning Loop with PSRs

Byron Boots beb@cs.cmu.edu

Sajid M. Siddiqi* siddiqi@google.com

Geoffrey J. Gordon ggordon@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213

Planning a sequence of actions or a policy to maximize future reward has long been considered a fundamental problem
for autonomous agents. Predictive State Representations (PSRs) are generalizations of Partially Observable Markov
Decision Processes (POMDPs) that have attracted interest because they both have greater representational capacity
than POMDPs and yield representations that are at least as compact. The quality of an optimized policy for a
POMDP or PSR depends strongly on the accuracy of the model: inaccurate models usually lead to useless plans.
We can specify a model manually or learn one from data, but due to the difficulty of learning, it is far more common
to see planning algorithms applied to manually-specified models. Unfortunately, it is usually only possible to hand-
specify accurate models for small systems where there is extensive and goal-relevant domain knowledge. For example,
recent extensions of approximate planning techniques for PSRs have only been applied to models constructed by
hand. For the most part, learning models for planning in partially observable environments has been hampered by
the inaccuracy of learning algorithms. For example, Expectation-Maximization (EM) does not avoid local minima
or scale to large state spaces; and, although many learning algorithms have been proposed for PSRs that attempt to
take advantage of the observability of the state representation, few of these have have strong theoretical guarantees
and none have been shown to learn models that are accurate enough for planning. As a result, there have been few
successful attempts at learning a model directly from data and then closing the loop by planning in that model.

We propose a principled and provably statistically consistent model-learning algorithm, and demonstrate positive
results on a challenging high-dimensional problem with continuous observations. In particular, we propose a novel,
consistent spectral algorithm for learning a variant of PSRs called Transformed PSRs (TPSRs) directly from exe-
cution traces. The algorithm is closely related to subspace identification for learning linear dynamical systems and
spectral algorithms for learning Hidden Markov Models. We then demonstrate that this algorithm is able to learn
compact models of a difficult, realistic dynamical system without any prior domain knowledge built into the model
or algorithm (Figure 1). Finally, we perform point-based approximate value iteration in the learned compact models,
and demonstrate that the greedy policy for the resulting value function works well in the original (not the learned)
system. To our knowledge this is the first research that combines all of these achievements, closing the loop from
observations to actions in an unknown domain with no human intervention beyond collecting the raw transition data.
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Figure 1. (A) The Simulated Robot Domain. The robot uses visual sensing to traverse a square domain with multi-colored
walls and a central obstacle. Examples of images recorded by a robot occupying two different positions in the environment
are shown at the bottom. (B) The learned subspace. Each point is the embedding of a single TPSR history, displayed with
color equal to the average RGB color in the first image in the highest probability test. (C) The robot was given high reward
for observing a particular image (facing blue wall). The value function computed for each embedded point is shown; lighter
indicates higher value. (D) Policies executed in the learned subspace. The red, green, magenta, and yellow paths correspond
to the policy executed by an agent with starting positions facing the red, green, magenta, and yellow walls respectively. (E)
The paths taken by the robot in geometric space while executing the policy. Each of the paths corresponds to the path of the
same color in (D). (F) Mean number of actions in path from 100 randomly sampled start position to the target image. The
robot was able to reach the goal in 78 trials. In 22 trials the robot got stuck repeatedly taking actions whose effects cancelled.
The left bar is the mean number of actions in the optimal solution found by A* search in the robot’s configuration space.
The center bar is the mean number of actions taken by executing the policy computed by approximate value iteration in the
learned model (computed for the 78 successful paths). The right bar is the mean number of actions required to find the target
with a random policy. The graph indicates that the policy computed from the learned TPSR is close to optimal.


