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1 Introduction
Recently, a number of researchers have proposed spectral algorithms for learning models of nonlin-
ear dynamical systems—for example, Hidden Markov Models (HMMs) [1, 2], Partially Observable
Markov Decision Processes (POMDPs) [3], and Predictive State Representations (PSRs) [4, 3, 5].
These algorithms are attractive since they are statistically consistent and not subject to local optima.
However, they are batch methods: they need to store their entire training data set in memory at once
and operate on it as a large matrix, and so they cannot scale to extremely large data sets (either many
examples or many features per example). In turn, this restriction limits their ability to learn accurate
models of complex systems.

To remedy this drawback, we propose a fast, online spectral algorithm for PSRs. PSRs subsume
HMMs and POMDPs [6, 4]. In fact, previous spectral learning algorithms for several types of
HMMs [1, 2, 7] are more accurately described as PSR learning algorithms applied to HMMs. There-
fore, our algorithm also improves on past algorithms for these other models. Our method leverages
fast, low-rank modifications of the thin singular value decomposition [8], and uses tricks such as
random projections to scale to extremely large numbers of examples and features per example. Con-
sequently, the new method can handle orders of magnitude larger data sets than previous methods,
and can therefore scale to learn systems that are too complex for previous methods.

Experiments show that our online spectral learning algorithm does a good job recovering the parame-
ters of a nonlinear dynamical system in several partially observable domains. In our first experiment
we empirically demonstrate that our online spectral learning algorithm is unbiased by recovering
the parameters of a small but difficult synthetic Reduced-Rank HMM. In our second experiment we
demonstrate the performance of the new method on a high-bandwidth video understanding task.

This work was presented as a technical paper at AAAI 2011 [9]. The full-length paper can be found
here: http://www.cs.cmu.edu/∼beb/files/boots-gordon-online-PSRs.pdf

2 Online Spectral Updates to Dynamical System Parameters
The main contribution of our work is a novel online spectral learning algorithm for identifying the
parameters of PSRs. A PSR is a compact description of a dynamical system that represents state
as a set of predictions of observable experiments or tests. The key idea behind a PSR is that, if we
know the expected outcomes of all possible tests, then we know everything there is to know about
state. Instead of representing all possible tests, however, PSRs maintain a small number of sufficient
statistics which are linear combinations of predictions for a (potentially very large) set of tests.

This fact encapsulates the main benefit of PSR learning algorithms: given a large set of tests, we can
find low dimensional parameters using spectral methods and regression. In this respect, PSRs are
closely related to the transformed representations of Kalman filters and HMMs found by subspace
identification [10, 11, 1]. The details of PSR learning algorithms will not be discussed here (see [3]
for details). Instead we will focus on the pivotal step in the PSR learning algorithm: a spectral
decomposition used to discover the latent state space of the dynamical system.

We assume for simplicity that our data is a single long sequence of observations o1:T sampled
from the PSR. Our goal will be to recover the PSR state space and dynamics M up to a similarity
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transform—no more is possible, since a similarity transform doesn’t affect predictions [3]. Our al-
gorithm is based on vectors of features of histories and features of future observations. In particular,
write χt = χ(ht) ∈ R` for a vector of features of history (a sequence of observations prior to time
t), and write φt = φ

(
ot:(t+NF−1)

)
∈ Rk for a vector of features of the nextNF observations, where

k, ` ≥ d. Given the above notation, we define the following moments:
Σ = E[φtχ

>
t ] Π = E[φt+1χ

>
t ]

Here, expectations are with respect to the stationary distribution, and are therefore independent of t.

Our algorithm will estimate the above moments from data, and then manipulate the estimated mo-
ments to recover the PSR parameters. To this end, we can express the moments in terms of the PSR
parameters:

Σ = RP Σ = RMP (1)

Here, R ∈ Rk×d and P ∈ Rd×` are derived from PSR parameters as described in the full paper [9].
Eq. 1 implies that the ranks of Σ and Π are no greater than d, the latent dimension of the PSR (since
we can write each matrix as a product of factors, at least one of which has no more than d columns).

Let U be any matrix such that UTR is invertible (e.g., the d leading left singular vectors of Σ). Then,
we can recover the PSR dynamics M (up to a similarity transform) from U , Σ, and Π:

UTΠ(UTΣ)† = UTRMP (UTRP )† = UTRMPP †(UTR)−1 = (UTR)M(UTR)−1

Here we have used the definitions of Σ and Π; the assumption that UTR is invertible; and the
assumptions that ` ≥ d and that P has rank d (so that PP † = I).

The above equations yield a simple spectral learning algorithm: compute Σ̂ = 1
T

∑T
t=1 φtχ

T
t and

Π̂ = 1
T

∑T
t=1 φtχ

T
t . Compute the first d left singular vectors of Σ̂ and collect them into a matrix Û .

Finally, compute M̂ = ÛTΠ̂(ÛTΣ̂)†.

The naı̈ve algorithm requires storing the matrices in Eq. 1, updating these matrices given new in-
formation, and recomputing the PSR parameters.1 This works well when the number of features of
tests and histories is relatively small, and in cases where data is collected in batch. Unfortunately,
these restrictions can be limiting for many real-world data sets. In practice, the number of features
may need to be quite large in order to accurately estimate the parameters of the PSR. Additionally,
we are often interested in estimating PSRs from massive datasets, updating PSR parameters given
a new batch of data, or learning PSRs online from a data stream. In this work we develop several
computationally efficient extensions to overcome these practical obstacles to learning in real-world
situations

PSR parameters are generally much lower dimensional than the moments used to estimate them (e.g.
a d × d matrix rather than a k × l matrix). Therefore, the key idea of the current work is to update
the lower-dimensional parameters directly, instead of the naı̈ve updates suggested above, by taking
advantage of numerical algorithms for updating singular value decompositions efficiently [8]. The
crux of the algorithm involves sequential rank-1 updating schemes for computing a thin SVD of
the matrix Σ̂. In this setting we assume that at each time step we are given a new set of vectors
representing a single sample of features of the future φt, φt+1 and features of histories χt. The
main computational savings come from using incremental SVD to update Û , Ŝ, V̂ directly, which
is much more efficient than the naı̈ve additive update when the number of new data points is much
smaller than the number of features in φt and χt. See the long version of this paper for details and
the additional steps required for learning a full set of PSR parameters [9].

3 Random Projections for High Dimensional Feature Spaces
Despite their simplicity and wide applicability, HMMs, POMDPs, and PSRs are limited in that
they are usually restricted to discrete observations, and the state is usually restricted to have only
moderate cardinality. Recently, Song et al. proposed a spectral learning algorithm for HMMs with
continuous observations by representing distributions over these observations and continuous latent
states as embeddings in an infinite dimensional Hilbert space [7]. These Hilbert Space Embeddings

1In fact, the situation is significantly worse for the full PSR algorithm than the sketch provided above.
See [9] for details.
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Figure 1: A synthetic RR-HMM. (A.) The eigenvalues of the true transition matrix. (B.) RMS
error in the nonzero eigenvalues of the estimated transition matrix vs. number of training samples,
averaged over 10 trials. The error steadily decreases, indicating that the PSR model is becoming
more accurate, as we incorporate more training data.

of HMMs (HSE-HMMs) use essentially the same framework as other spectral learning algorithms
for HMMs and PSRs, but avoid working in the infinite-dimensional Hilbert space by the well-known
“kernel trick.” HSE-HMMs have been shown to perform well on several real-world datasets, often
beating the next best method by a substantial margin. However, they scale poorly due to the need to
work with the kernel matrix, whose size is quadratic in the number of training points.

We can overcome this scaling problem and learn PSRs that approximate HSE-HMMs using random
features for kernel machines [12]: we construct a large but finite set of random features which let
us approximate a desired kernel using ordinary dot products. The benefit of random features is that
we can use fast linear methods that do not depend on the number of data points to approximate the
original kernel machine. If we combine random features with the above online learning algorithm,
we can approximate an HSE-HMM very closely by using an extremely large number of random
features. Such a large set of features would overwhelm batch spectral learning algorithms, but
our online method allows us to approximate an HSE-HMM accurately, and scale HSE-HMMs to
orders of magnitude larger training sets or even to streaming datasets with an inexhaustible supply
of training data.

4 Experimental Results
We designed two sets of experiments to evaluate the statistical properties and practical potential of
our online spectral learning algorithm. In the first experiment we show the convergence behavior
of the algorithm. In the second experiment we demonstrate how the combination of online spectral
updates and random features allows us to model a high-bandwidth, high-dimensional video, where
the amount of training data would overwhelm a kernel-based method like HSE-HMMs and the
number of features would overwhelm a PSR batch learning algorithm.

4.1 A Synthetic Example
First we demonstrate the convergence behavior of our algorithm on a difficult synthetic HMM from
Siddiqi et al. [2]. This HMM is 2-step observable, with 4 states, 2 observations, and a rank-3 transi-
tion matrix. (So, the HMM is reduced rank (an “RR-HMM”) and features of multiple observations
are required to disambiguate state.)

We sample observations from the true model and then estimate the model using the our online
spectral learning algorithm. Since we only expect to recover the transition matrix up to a similarity
transform, we compare the eigenvalues of the estimated transition matrix in the learned model to the
eigenvalues of the transition matrix T of the true model. Fig. 1 shows that the learned eigenvalues
converge to the true ones as the amount of data increases.

4.2 Modeling Video
Next we look at the problem of mapping from video: we collected a sequence of 11,000 160 ×
120 grayscale frames at 24 fps in an indoor environment (a camera circling a conference room,
occasionally switching directions; each full circuit took about 400 frames). This data was collected
by hand, so the camera’s trajectory is quite noisy. The high frame rate and complexity of the video
mean that learning an accurate model requires a very large dataset. Unfortunately, a dataset of this
magnitude makes learning an HSE-HMM difficult or impossible: e.g., the similar but less complex
example of Song et al. [7] used only 1500 frames.
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Figure 2: Modeling video. (A.) Schematic of the camera’s environment. (B.) The second and
third dimension of the learned belief space (the first dimension contains normalization information).
Points are colored red when the camera is traveling clockwise and blue when traveling counter-
clockwise. The learned state space separates into two manifolds, one for each direction, connected
at points where the camera changes direction. (The manifolds appear on top of one another, but are
separated in the fourth latent dimension.) (C.) Loop closing: estimated historical camera positions
after 100, 350, and 600 steps. Red star indicates current camera position. The camera loops around
the table, and the learned map “snaps” to the correct topology when the camera passes its initial
position.

Instead, we used random Fourier features and an online PSR to approximate a HSE-HMM with
Gaussian RBF kernels. We used tests and histories based on 400 sequential frames from the video,
generated 100,000 random features, and learned a 50-dimensional PSR. To duplicate this setup, the
batch PSR algorithm would have to find the SVD of a 100,000×100,000 matrix; by contrast, we can
efficiently update our parameters by incorporating 100,000-element feature vectors one at a time
and maintaining 50× 50 and 50×100,000 matrices.

Figure 2 shows our results. The final learned model does a surprisingly good job at capturing the
major features of this environment, including both the continuous location of the camera and the
discrete direction of motion (either clockwise or counterclockwise). Furthermore, the fact that a
general-purpose online algorithm learns these manifolds is a powerful result: we are essentially
performing simultaneous localization and mapping in a difficult loop closing scenario, without any
prior knowledge (even, say, that the environment is three-dimensional, or whether the sensor is a
camera, a laser rangefinder, or something else).
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