
Appendix

A Variational Inference Problem

In this section, we provides details of implementing the variational inference problem

L(q) = −
N∑
n=1

Eq(f(xn))[log p(yn|f(xn))] + KL(q||p) (4)

when the variational posterior q(f) = GPH(µ,Σ) is parameterized using a decoupled basis

µ = Ψαa, Σ = I + ΨβAΨ>β . (5)

Without loss of generality, we assume A = K−1
β SK−1

β −K−1
β . That is, we focus on the following

form of parametrization with S � 0,

µ = Ψαa, Σ = I + ΨβAΨ>β := (I −ΨβK−1
β Ψ>β ) + ΨβK−1

β SK−1
β Ψ>β . (18)

A.1 KL Divergence

We first show how the KL divergence can be computed using finite-dimensional variables. The proof
is similar to strategy in [5, Appendix]
Proposition A.1. For p = GPH(0, I) and q(f) = GPH(µ,Σ) with

µ = Ψαa, Σ =
(
I −ΨβK−1

β Ψ>β
)

+ ΨβK−1
β SK−1

β Ψ>β

Then It satisfies

KL(q||p) =
1

2

(
a>Kαa + tr

(
SK−1

β

)
− log |S|+ log |Kβ | − |β|

)
For the orthogonally decoupled basis (12) in particular, we can write

KL(q||p) =
1

2

(
a>γ (Kγ −Kγ,βK−1

β Kβ,γ)aγ + a>β Kβaβ + tr
(
SK−1

β

)
− log |S|+ log |Kβ | − |β|

)
.

A.2 Expected Log-Likelihoods

The expected log-likelihood can be computed by first computing the predictive Gaussian distribution
q(f(x)) = N (f(x)|m(x), s(x)) for each data point x. For example, for the orthogonally decoupled
basis (12), this is given as

m(x) = (kx,γ − kx,βK−1
β Kβ,γ)aγ + kx,βaβ

s(x) = (kx − kx,βK−1
β kβ,x) + kx,βK−1

β SK−1
β kβ,x.

Given m(x) and s(x), then the expected log-likelihood can be computed exactly (for Gaussian case)
or using quadrature approximation.

A.3 Gradient Computation

Using the above formulas, a differentiable computational graph can be constructed and then the
gradient can to (aγ ,aβ ,L) can be computed using automatic differentiation. When a>γ Kγaγ in
the KL-divergence is further approximated by column sampling Kγ , an unbiased gradient can be
computed in time complexity O(|γ||β|+ |β|3).

B Convexity of the Variational Inference Problem

Here we show the objective function in (4) is strictly convex in (aγ ,aβ ,L) if the likelihood is
log-strictly-convex.
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B.1 KL Divergence

We first study the KL divergence term. It is easy to see that it is strongly convex in (aγ ,aβ). When
S = LL>, where L is lower triangle and with positive diagonal terms, the KL divergence is strongly
convex in L as well. To see this, we notice that

− log |S| = − log |LL>| = −2

|β|∑
i=1

log |Lii|

is strictly convex and

tr
(
K−1
β S

)
= tr

(
LL>K−1

β

)
= vec(L)>(I⊗K−1

β )vec(L)

is strongly convex, because K−1
β � 0.

B.2 Expected Log-likelihood

Here we show the negative expected log-likelihood part is strictly convex. For the negative expected
log-likelihood, let F (·) = − log(yn|·) and we can write

En = Eq(f(xn))[− log p(yn|f(xn))]

= Eζ,ξ[F (m(xn) + ζ + kxn,βK−1
β Lξ)]

in which ζ ∼ N (ζ|0, kxn − kxn,βK−1
β kβ,xn) and ξ ∼ N (ξ|0, I).

Then we give a lemma below.
Lemma B.1. Suppose f is θ-strictly convex. Then f(Ax) is also θ-strictly convex.

Proof. Let u = Ax and v = Ay. Let g(x) = f(Ax).

f(v)− f(u) ≥ 〈∇f(u), v − u〉+
θ

2
(〈∇f(u), v − u〉)2

= 〈∇f(u), A(y − x)〉+
θ

2
(〈∇f(u), A(y − x)〉)2

=
〈
A>∇f(u), y − x

〉
+
θ

2
(
〈
A>∇f(u), y − x

〉
)2

= 〈∇g(x), y − x〉+
θ

2
(〈∇g(x), y − x〉)2 �

Because F is strictly convex when likelihood is log-strictly-concave and m(xn) is linearly
parametrized, the desired strict convexity follows.

C Uniqueness of Parametrization and Natural Parameters

Here we provide some additional details regarding natural parameters and natural gradient descent.

C.1 Necessity of Including β as Subset of α

We show that the partition condition in Section 3.2 is necessary to derive proper natural parameters.
Suppose the contrary case where α is a general set of inducing points. Using a similar derivation as
Section 3.3, we show that

1

2
Σ−1 =

1

2

(
I −ΨβK−1

β Ψ>β
)

+
1

2
ΨβS−1Ψ>β

Σ−1µ =
((
I −ΨβK−1

β Ψ>β
)

+ ΨβS−1Ψ>β
)

Ψαa

= (I −ΨβK−1
β Ψ>β )Ψαj̃α + Ψβ j̃β
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where j̃α = aα and j̃β = S−1Kβaα. Therefore, we might consider choosing (jα, jβ ,
1
2S−1) as a

candidate for natural parameters. However the above choice of parametrization is actually coupled
due to the condition that jα and jβ have to satisfy, i.e.

j̃β = S−1Kβ j̃α

Thus, they cannot satisfy the requirement of being natural parameters. This is mainly because µ is
given in only α basis, whereas Σ−1µ is given in both α and β bases.

C.2 Alternate Choices of Natural Parameters

As discussed previously in Section 3.3, the choice of natural parameters is only unique up to affine
transformation. While in this paper we propose to use the unique orthogonal version, other choices
of parametrization are possible. For instance, here we consider the hybrid parametrization in [5,
appendix] and give an overview on finding its natural parameters.

The hybrid parametrization use the following decoupled basis:

µ = Ψγaγ + Ψβaβ Σ = (I −ΨβK−1
β Ψ>β ) + ΨβK−1

β SK−1
β Ψ>β

To facilitate a clear comparison, here we remove the K−1
β in the original form suggested by Cheng

and Boots [5], which uses µ = Ψγaγ + ΨβK−1
β aβ . Note in the experiments, their original form was

used.

As the covariance part above is the same form as our orthogonally decoupled basis in (12), here we
only consider the mean part. Following a similar derivation, we can write

Σ−1µ =
((
I −ΨβK−1

β Ψ>β
)

+ ΨβS−1Ψ>β
)

(Ψγaγ + Ψβaβ)

= Ψγaγ + Ψβ(S−1 −K−1
β )Kβ,γaγ + ΨβS−1Kβaβ

= (Ψγ −ΨβK−1
β Kβ,γ)aγ + ΨβS−1(Kβaβ + Kβ,γaγ)

= (I −ΨβK−1
β Ψ>β )Ψγjγ + Ψβjβ

That is, we can choose the natural parameters as

jγ = aγ , jβ = S−1(Kβaβ + Kβ,γaγ), Θ =
1

2
S−1 (19)

This set of natural parameters, unlike the one in the previous section, is proper, because β included as
a subset of α.

Comparing (19) with (13), we can see that there is a coupling between aγ and jβ in (19). This would
lead to a more complicated update rule in computing the natural gradient. This coupling phenomenon
also applies to other choice of parametrizations, excerpt for our orthogonally decoupled basis.

C.3 Invariance of Natural Gradient Descent

As discussed above, the choice of natural parameters for the mean part is not unique, but here we
show they all lead to the same natural gradient descent update. Therefore, our orthogonal choice (12),
among all possible equivalent parameterizations, has the cleanest update rule.

This equivalence between different parameterizations can be easily seen from that the KL divergence
between Gaussians are quadratic in Σ−1µ. Therefore, the natural gradient of Σ−1µ has the form as
the proximal update below

arg min
x

〈∇xf, x〉+
1

2
(x− y)>Q(x− y) = y −Q−1g

for some function f , vector y and positive-definite matrix Q.
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To see the invariance of invertible linear transformations, suppose we reparametrize x, y above as
x = Au+ b and y = Av + b, for some invertible A and b. Then the update becomes

arg min
u

〈∇zf, u〉+
1

2
(u− v)>A>QA(u− v)

arg min
u

〈
A>∇xf, u

〉
+

1

2
(u− v)>A>QA(u− v)

= v −A−1Q−1∇xf
which represents the same update step in x because

A(v −A−1Q−1∇xf) + b = y −Q−1∇xf.

C.4 Transformation of Natural Parameters and Expectation Parameters

Here we provide a more rigorous proof of identifying natural and expectation parameters of decoupled
bases, as the density function p(f), which is used to illustrate the idea in Section 3.3, is not defined
for GPs. Here we show the transformation of natural parameters and expectation parameters based on
KL divergence. We start from d-dimensional exponential families and then show that the formulation
extends to arbitrary d .

Consider a d-dimensional exponential family. Its KL divergence of an exponential family can be
written as

KL(q||p) = A(ηp) +A∗(θq)− 〈ηp, θq〉 (20)

where A is the log-partition function, A∗ is its Legendre dual of A, θ is the expectation parameter,
and η is the natural parameter. It holds the duality property that θp = ∇A(ηp) and ηp = ∇A∗(θp).

As (20) is expressed in terms of inner product, it holds for arbitrary d and it is defined finitely
for GPs with decoupled basis [5]. Therefore, here we show that when we parametrize problem
by ηp = Hη̃p + b, η̃p is also a candidate natural parameter satisfying (20) for some transformed
expectation parameter θ̃q . It can be shown as below

KL(q||p) = A(ηp) +A∗(θq)− 〈ηp, θq〉
= A(Hη̃p + b) +A∗(θq)− 〈Hη̃p + b, θq〉
= A(Hη̃p + b) +A∗(θq)−

〈
η̃p, H

>θq
〉
− 〈b, θq〉

= A(Hη̃p + b) +
(
A∗(H−>θ̃q)−

〈
b,H−>θ̃q

〉)
−
〈
η̃p, θ̃q

〉
=: Ã(η̃p) + Ã∗(θ̃q)−

〈
η̃p, θ̃h

〉
where we define

θ̃q = H>θq

Ã(η̃p) = A(Hη̃p + b)

Ã∗(θ̃q) = A∗(H−>θ̃q)−
〈
b,H−>θ̃q

〉
It can be verified that Ã∗ is indeed the Legendre dual of Ã.

max
x
〈w, x〉 − Ã(x) = max

x
〈w, x〉 −A(Hx+ b)

= max
z

〈
w,H−1(z − b)

〉
−A(z)

= −
〈
H−>w, b

〉
+ max

z

〈
H−>w, z

〉
−A(z)

= −
〈
H−>w, b

〉
+A∗(H−>w) = Ã∗(w)

Note the inversion requirement on H can be removed by replacing −> with pseudo-inverse, because
θ̃q lies in the range ofH>. Thus, if η = Hη̃+b and θ are one choice of natural-expectation parameter
pair, then η̃ and θ̃ = HT η is another natural-expectation parameter pair.

14



D Primal Representation of Orthogonally Decoupled GPs

In this section, we demonstrate that the orthogonally decoupled GPs have an equivalent construction
from the primal viewpoint adopted by variational inference framework of Titsias [32]. The key idea is
to use two sets of inducing points. We use them to form a posterior process by conditioning the prior
like the usual way, but in the meantime imposing a particular restriction on the variational distribution
at the inducing points.

D.1 The Variational Posterior Process Proposed by Titsias [32]

The approach of Titsias [32] begins with expressing the prior process in terms of the following
factorization∗:

p(f) =p(f |fβ)p(fβ) ,

where fβ are function values at locations β, often referred to as “inducing points.” For simplicity we
assume zero prior mean, so the prior at the inducing points is p(fβ) = N (fβ |0,Kβ) and the prior
conditional process p(f |fβ) is a GP which we denote as GP(mfβ , sfβ ) with

mfβ (x) =k>x,βK−1
β fβ

sfβ (x, x′) =k(x, x′)− k>x,βK−1
β kβ,x′

The key idea of Titsias [32], which is later developed by [12, 22], is to define the variational posterior
process as

q(f) = p(f |fβ)q(fβ) , (21)

where q(fβ) = N (fβ |mβ ,Sβ) for some variational parameters mβ and Sβ . Since the conditional
process is linear in fβ and q(fβ) is Gaussian, we can use standard properties for Gaussians (i.e.,∫
x
N (y|a+ Lx,A)N (x|b, B)dx ∝ N (y|a+ Lb,A+ LBL>)) to derive the mean and covariance

functions of the variational posterior process q(f) in (21):

m(x) =kx,βK−1
β mβ (22)

s(x, x′) =k(x, x′) + kx,βK−1
β (Sβ −Kβ)K−1

β kβ,x′ (23)

D.2 The Equivalent Posterior Process of the Orthogonally Decoupled Basis

To derive our orthogonally decoupled approach, we introduce further a set of disjoint inducing points
denoted as γ. Let fγ be the function values at locations γ. The prior process can be expressed as

p(f) =p(f |fγ , fβ)p(fγ |fβ)p(fβ), (24)

where p(fβ) is defined as before, the prior conditional distribution of fγ given fβ can be written as

p(fγ |fβ) = N (Kγ,βK−1
β fβ , Kγ −Kγ,βK−1

β Kβ,γ),

and p(f |fγ , fβ) the prior conditional process conditioned on fγ and fβ is a GP, which we denote as
GP(mfγ ,fβ , sfγ ,fβ ) and has the following mean and covariance functions

mfγ ,fβ (x) = [kx,γ kx,β ]

[
Kγ Kγ,β

Kβ,γ Kβ

]−1 [
fγ
fβ

]
(25)

sfγ ,fβ (x, x′) =k(x, x′)− [kx,γ kx,β ]

[
Kγ Kγ,β

Kβ,γ Kβ

]−1 [
kγ,x
kβ,x

]
(26)

Following the same idea of Titsias [32], we consider a variational posterior written as

q(f) =p(f |fγ , fβ)q(fγ , fβ). (27)
∗We follow the conventional abuse of notation by writing the process as if it has a density. See Matthews

[22] for a rigorous treatment that defines the posterior processes as in terms of Radon-Nikodym derivative with
respect to the prior.
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Now we show how to parameterize q(fγ , fβ) so that (27) defines an orthogonally decoupled GP. Note
that if we parameterized this distribution as a full-rank Gaussian with no further restriction, it would
be equivalent to just absorbing γ into β and would incur the computational complexity that we seek
to avoid.

To obtain an orthogonally decoupled posterior, we use the form
q(fγ , fβ) = q(fγ |fβ)q(fβ) ,

where q(fβ) = N (mβ ,Sβ), and we define
q(fγ |fβ) = N (mγ⊥β + Kγ,βK−1

β fβ , Kγ −Kγ,βK−1
β Kβ,γ) (28)

for some variational parameter mγ⊥β . Note that q(fγ |fβ) is a Gaussian distribution that matches
p(fγ |fβ) in (24) in covariance, but does not match in the mean unless mγ⊥β = 0. If we were to set
q(fγ |fβ) = p(fγ |fβ) we would recover the standard result using β alone. This is because we would
have effectively absorbed fγ into the prior conditional process.

Since our choice for q(fγ |fβ) matches the prior in the covariance and has the same linear dependency
on fβ , the posterior process of q(f) in (27) has a covariance function as (26). To find its mean
function, let us first write q(fγ , fβ) as a joint distribution:

q

([
fγ
fβ

])
= N

([
mγ⊥β + Kγ,βK−1

β mβ

mβ

]
,

[
Kγ + Kγ,βK−1

β (Sβ −Kβ)K−1
β Kβ,γ Kγ,βK−1

β Sβ
SβK−1

β Kβ,γ Sβ

])
We then can derive the posterior process mean function as

m(x) = [kx,γ kx,β ]

[
Kγ Kγ,β

Kβ,γ Kβ

]−1 [
mγ⊥β + Kγ,βK−1

β mβ

mβ

]
(29)

To simplify the above expression, we write the inverse block matrix explicitly as[
Kγ Kγ,β

Kβ,γ Kβ

]−1

=

[
K−1
γ⊥β −K−1

γ⊥βKγ,βK−1
β

−K−1
β Kβ,γK

−1
γ⊥β K−1

β + K−1
β Kβ,γK

−1
γ⊥βKγ,βK−1

β

]
(30)

where we define
Kγ⊥β = Kγ −Kβ,γK

−1
β Kβ,γ . (31)

After canceling several terms, we arrive at the expression
m(x) = kx,γK

−1
γ⊥βmγ⊥β − kx,βKβ,γK

−1
γ⊥βbγ + Kx,βK−1

β mβ (32)

A natural choice is to define aγ = K−1
γ⊥βmγ⊥β (which agrees with the definition in Figure 1). In this

case, we obtain
m(x) = (kx,γ − kx,βKβ,γ)aγ + Kx,βK−1

β mβ . (33)

which is exactly the result for the orthogonally decoupled basis, as mβ = K−1
β aβ .

E Expression for the Optimal Variational Parameters in Decoupled Bases

In the case of the Gaussian likelihood we can solve the variational inference problem 4 analytically,
although doing so incurs a cost that scales cubically in α and prohibits the use of minibatches.

To make the results mirror the familiar expression for the optimal variational parameters in the
coupled case [32], we use the basis

µ = Ψαa, Σ = I + ΨβK−1
β (S−Kβ)K−1

β Ψ>β ,

This basis is equivalent to the HYBRID and DECOUPLED bases through redefinition of parameters.
The solution for S is exactly the same as in the coupled case:

S =

(
1

σ2
K−1
β KβXKXβK−1

β + K−1
β

)−1

= Kβ

(
1

σ2
KβXKXβ + Kβ

)−1

Kβ .

For a, we have

a =

(
1

σ2
KαXKXα + Kα

)−1

KαXy
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F Experimental Details

In our experiments we use sensible defaults and do not hand tune for specific datasets. The full details
are as follows:

Kernel We use the sum of a Matern52 kernel with lengthscale 0.1
√
D and an RBF kernel with

lengthscale
√
D, where D is the input dimension. Both kernels are intialized to unit amplitude for

regression and amplitude 5 for classification.

Inducing point initalizations We use kmeans to initialize β and use a random sample of the data
for γ. We take care to use the same random seeds to ensure consistency between methods. For the
DECOUPLED basis α we concatenate γ and β for a fair comparison with the other methods.

Data preprocessing and splits The datasets we used had already been preprocessed to have zero
mean and unit standard deviation. We construct test sets with a random 10% split. The splits are the
same, so the results are directly comparable between our methods. The results from Klambauer et al.
[18] used a different split from ours, however.

Variational Parameter Initializations We initialize the variational parameters to the prior. I.e.
zero mean and S = Kβ (NB the B in the DECOUPLED basis is initialized to near zero).

Optimization We the adam optimizer with the default settings in the tensorflow implementation
(including a learning rate of 0.001) for 20000 iterations. We use a step size of 0.005 for the natural
gradient updates. For the non-conjugate likelihoods we increase from 10−5 to 0.005 linearly over the
first 100 iterations, following the suggestion in Salimbeni et al. [29].

Likelihood We initialize the Gaussian likelihood variance to 0.1.

Minibatches We use a batch size of 1024 for data sub-sampling, and a batch of size 64 for the
sub-sampling the columns of the aγ

>Kγaγ term in the ELBO.

We implemented all our methods in tensorflow, using on an open-source Gaussian process package,
GPflow [21]. Our code ∗ and datasets † are publicly available.

G Further Results

0 5000 10000 15000 20000
Iterations

−4.4

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

T
es

t
lo

g-
lik

el
ih

oo
d

(a) Test log-likelihood

0 5000 10000 15000 20000
Iterations

4

6

8

10

T
es

t
R

M
S

E

(b) Test MAE

Figure 3: Test log-likelihood (a), and accuracy (b) for the large scale experiment. The ELBO is
reported in the main text, Figure 2c

∗https://github.com/hughsalimbeni/orth_decoupled_var_gps
†https://github.com/hughsalimbeni/bayesian_benchmarks
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Table 3: Regression results normalized test likelihoods. High numbers are better. The coupled bases
had |β| = 400 (|β| = 300 for the † bases), and the decoupled all had γ = 700, β = 300. We note
that the orthogonal bases always outperform their coupled counterparts with the same β, but this does
not hold for the DECOUPLED or HYBRID bases

N D COUPLED† COUPLEDNAT† COUPLED COUPLEDNAT ORTHNAT ORTH HYBRID DECOUPLED

3droad 434874 3 -0.7630 -0.7632 -0.7218 -0.7228 -0.5947 -0.6103 -0.7617 -0.9438
houseelectric 2049280 11 1.3130 1.3563 1.3383 1.3727 1.3899 1.3719 1.3092 0.6032
slice 53500 385 0.7816 0.7868 0.8321 0.8415 0.8776 0.8701 0.7852 0.0655
elevators 16599 18 -0.4475 -0.4455 -0.4448 -0.4438 -0.4479 -0.4441 -0.4585 -0.4966
bike 17379 17 0.0059 0.0135 0.0321 0.0419 0.0271 0.0317 -0.0318 -0.1783
keggdirected 48827 20 1.0134 1.0158 1.0214 1.0223 1.0224 1.0216 1.0102 0.8947
pol 15000 26 0.0726 0.0821 0.1047 0.1132 0.1586 0.1451 0.0784 -0.2502
keggundirected 63608 27 0.6984 0.6999 0.6994 0.7020 0.7007 0.6967 0.6878 0.6374
protein 45730 9 -0.9531 -0.9535 -0.9375 -0.9361 -0.9138 -0.9165 -0.9527 -1.0464
song 515345 90 -1.1902 -1.1898 -1.1890 -1.1884 -1.1880 -1.1882 -1.1909 -1.2266
buzz 583250 77 -0.0566 -0.0551 -0.0512 -0.0490 -0.0480 -0.0484 -0.0614 -0.2285
kin40k 40000 8 0.0561 0.1580 0.2191 0.2234 0.1931 0.1777 0.1531 -0.3877
Mean 0.0442 0.0588 0.0752 0.0814 0.0981 0.0923 0.0472 -0.2131
Median 0.031 0.048 0.068 0.078 0.093 0.088 0.023 -0.239
Avg Rank 2.917 4.000 5.417 6.750 7.083 6.250 2.583 1.000

Table 4: As Table 3 but reporting test RMSE. Lower numbers are better.

N D COUPLED† COUPLEDNAT† COUPLED COUPLEDNAT ORTHNAT ORTH HYBRID DECOUPLED

3droad 434874 3 0.5166 0.5163 0.4946 0.4951 0.4332 0.4395 0.6179 0.5150
houseelectric 2049280 11 0.0639 0.0611 0.0615 0.0595 0.0583 0.0594 0.1286 0.0636
slice 53500 385 0.0840 0.0848 0.0787 0.0779 0.0730 0.0736 0.2112 0.0838
elevators 16599 18 0.3767 0.3760 0.3756 0.3753 0.3770 0.3752 0.3973 0.3812
bike 17379 17 0.2342 0.2324 0.2283 0.2261 0.2293 0.2282 0.2848 0.2438
keggdirected 48827 20 0.0883 0.0878 0.0874 0.0871 0.0871 0.0873 0.0980 0.0883
pol 15000 26 0.2073 0.2059 0.2012 0.2000 0.1906 0.1931 0.2867 0.2065
keggundirected 63608 27 0.1200 0.1196 0.1197 0.1191 0.1194 0.1202 0.1304 0.1223
protein 45730 9 0.6207 0.6216 0.6118 0.6113 0.5963 0.5972 0.6868 0.6209
song 515345 90 0.7954 0.7952 0.7944 0.7939 0.7936 0.7938 0.8275 0.7960
buzz 583250 77 0.2601 0.2606 0.2586 0.2579 0.2574 0.2576 0.3106 0.2617
kin40k 40000 8 0.2087 0.1885 0.1768 0.1746 0.1740 0.1776 0.3501 0.1887

Mean 0.2980 0.2958 0.2907 0.2898 0.2824 0.2836 0.3608 0.2977
Median 0.221 0.219 0.215 0.213 0.210 0.211 0.299 0.225
Avg Rank 6.083 5.167 3.750 2.417 1.833 2.500 8.000 6.250

Table 5: Classification accuracy results, including the results from Klambauer et al. [18].

N D K Selu COUPLED COUPLEDNAT ORTH ORTHNAT HYBRID DECOUPLED

adult 48842 15 2 84.76 85.85 86.11 85.65 86.15 85.73 84.37
chess-krvk 28056 7 18 88.05 67.38 60.23 67.76 60.70 59.34 53.56
connect-4 67557 43 2 88.07 85.54 86.44 85.99 86.33 85.13 83.12
letter 20000 17 26 97.26 95.69 93.22 95.77 93.45 95.26 92.68
magic 19020 11 2 86.92 89.24 89.50 89.35 89.42 89.19 88.33
miniboone 130064 51 2 93.07 93.21 93.60 93.49 93.59 93.36 92.04
mushroom 8124 22 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
nursery 12960 9 5 99.78 97.30 97.30 97.30 97.30 97.30 97.29
page-blocks 5473 11 5 95.83 97.99 97.79 97.21 97.81 97.49 96.98
pendigits 10992 17 10 97.06 99.65 99.64 99.66 99.64 99.66 99.62
ringnorm 7400 21 2 97.51 98.92 98.78 98.78 98.78 98.86 98.92
statlog-landsat 6435 37 6 91.00 90.26 91.45 91.28 91.08 91.35 90.35
statlog-shuttle 58000 10 7 99.90 99.87 99.74 99.90 99.81 99.79 99.80
thyroid 7200 22 3 98.16 99.41 99.56 99.47 99.31 99.52 99.13
twonorm 7400 21 2 98.05 97.67 97.65 97.65 97.72 97.69 97.72
wall-following 5456 25 4 90.98 94.79 95.64 95.56 95.76 93.07 91.48
waveform 5000 22 3 84.80 85.80 86.54 86.13 86.21 86.53 87.55
waveform-noise 5000 41 3 86.08 82.59 82.71 82.93 83.12 83.05 82.71
wine-quality-white 4898 12 7 63.73 57.14 58.61 57.05 59.56 56.58 55.71

Mean 91.6 90.4 90.2 90.6 90.3 89.9 89.0
Median 93.1 94.8 93.6 95.6 93.6 93.4 92.0
Avg Rank 4.16 3.89 3.53 3.68 3.42 3.89 5.42
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Table 6: As Table 5 but reporting test log-likelihoods. The test log-likelihood results from [18] were
not reported

N D K COUPLED COUPLEDNAT ORTH ORTHNAT HYBRID DECOUPLED

adult 48842 15 2 -0.3048 -0.2970 -0.3045 -0.2973 -0.3067 -0.3234
chess-krvk 28056 7 18 -2.1239 -3.2821 -2.1625 -3.2145 -3.0443 -3.5380
connect-4 67557 43 2 -0.3160 -0.3009 -0.3086 -0.3017 -0.3244 -0.3680
letter 20000 17 26 -0.2316 -0.4892 -0.2276 -0.4793 -0.2810 -0.4861
magic 19020 11 2 -0.2666 -0.2641 -0.2658 -0.2646 -0.2697 -0.2863
miniboone 130064 51 2 -0.1680 -0.1584 -0.1618 -0.1585 -0.1645 -0.1902
mushroom 8124 22 2 -0.0006 -0.0007 -0.0009 -0.0008 -0.0007 -0.0007
nursery 12960 9 5 -0.2228 -0.2233 -0.2225 -0.2229 -0.2236 -0.2241
page-blocks 5473 11 5 -0.1301 -0.0989 -0.1328 -0.1112 -0.1368 -0.1538
pendigits 10992 17 10 -0.0251 -0.0216 -0.0209 -0.0207 -0.0216 -0.0241
ringnorm 7400 21 2 -0.0345 -0.0458 -0.0466 -0.0465 -0.0410 -0.0418
statlog-landsat 6435 37 6 -0.4503 -0.4102 -0.3956 -0.3920 -0.3771 -0.4938
statlog-shuttle 58000 10 7 -0.0047 -0.0199 -0.0049 -0.0174 -0.0170 -0.0166
thyroid 7200 22 3 -0.0257 -0.0133 -0.0115 -0.0211 -0.0127 -0.0290
twonorm 7400 21 2 -0.0590 -0.0588 -0.0590 -0.0595 -0.0607 -0.0620
wall-following 5456 25 4 -0.2032 -0.1674 -0.1514 -0.1537 -0.3191 -0.4102
waveform 5000 22 3 -0.6207 -0.5572 -0.5640 -0.5038 -0.5160 -0.5469
waveform-noise 5000 41 3 -0.7650 -0.7416 -0.7096 -0.6778 -0.6893 -0.7673
wine-quality-white 4898 12 7 -2.8884 -2.5400 -2.5681 -2.5069 -2.7557 -2.7921

Mean -0.4653 -0.5100 -0.4378 -0.4974 -0.5033 -0.5660
Median -0.223 -0.223 -0.222 -0.223 -0.270 -0.286
Avg Rank 3.553 3.026 2.868 2.737 3.605 5.211
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