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Abstract

Data-driven approaches for learning dynamic mod-
els for Bayesian filtering often try to maximize the
data likelihood given parametric forms for the tran-
sition and observation models. However, this ob-
jective is usually nonconvex in the parametrization
and can only be locally optimized. Furthermore,
learning algorithms typically do not provide per-
formance guarantees on the desired Bayesian fil-
tering task. In this work, we propose using in-
ference machines to directly optimize the filtering
performance. Our procedure is capable of learning
partially-observable systems when the state space
is either unknown or known in advance. To ac-
complish this, we adapt PREDICTIVE STATE IN-
FERENCE MACHINES (PSIMS) by introducing the
concept of hints, which incorporate prior knowl-
edge of the state space to accompany the predictive
state representation. This allows PSIM to be ap-
plied to the larger class of filtering problems which
require prediction of a specific parameter or partial
component of state. Our PSIM+HINTS adaptation
enjoys theoretical advantages similar to the original
PSIM algorithm, and we showcase its performance
on a variety of robotics filtering problems.

1 Introduction
Bayesian filtering plays a vital role in applications ranging
from robotic state estimation to visual tracking in images to
real-time natural language processing. Filtering allows the
system to reason about the current state given a sequence of
observations. The traditional filtering setup utilizes a process
and sensor model to progress the filter over time (Fig. 1a).
The process (dynamics) model describes the transition of the
system from state st to state st+1 by specifying P (st+1|st),
and the sensor (observation) model generates a distribution
over observations P (xt|st) given state. Using these models
in conjunction with a new observation xt, the filter conditions
on observations to compute the posterior P (st|xt). As a re-
sult, the performance of the filter, its ability to estimate the
state or predict future observations, is limited by the fidelity
of dynamics and observation models [Aguirre et al., 2005].

LEARNER #1
st = f̂(st�1)

st�1 ŝt
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Figure 1: (a) Traditional learning-based methods decouple
the filter-learning problem to that of learning separate mod-
els for the transition and observation functions that can be
be later used for the inference procedure (Bayesian filtering).
(b) Inference Machines optimize for inference performance
by directly learning a filter function that predicts the next be-
lief state mt given the previous belief state mt−1 and the cur-
rent observation xt. Our discriminative approach combines
the predict and update steps and allows us to utilize powerful
learning algorithms to learn more accurate filters.

In many domains, such as robotics, it becomes difficult to
robustly characterize the dynamics and sensor (observation)
physics a priori with simple analytic models. As a result,
data driven approaches provide an important tool: they allow
models of noisy, complicated dynamics to be learned directly
from a robot’s interaction with its environment. Learned
models can be used for filtering, e.g., the Kalman Filter for
linear dynamics and observation models with additive Gaus-
sian noise [Roweis and Ghahramani, 1999], the Unscented
Kalman Filter for nonlinear models with Gaussian noise [Wan
and Van Der Merwe, 2000], or particle filters for nonlinear
models from other distributions [Thrun et al., 2005]. The
benefits and limitations of each of these approaches is well-
known. For example, although the particle filter is capable of
representing complex distributions, it has trouble scaling with
the dimensionality of the state space. Additionally, errors in
the dynamics, sensor, and noise models can compound. The
cascading of modeling errors during the predict and update
steps can result in poor filtering performance.
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Figure 2: Many real-world systems rely on the ability to utilize observations from noisy sensors in order to update a belief over
some component of state. For example, the attitude of a quadrotor from linear accelerations and angular velocities (left) or the
mass of a grasped object from the robot’s joint positions and applied torques (right).

Likelihood maximization is the natural optimization tar-
get for the filtering problem: we wish to determine the most
likely sequence of states from a sequence of observations,
often on the graphical model structure of a Hidden Markov
Model (Fig. 4). Traditional Maximum Likelihood methods
attempt to maximize the likelihood of the observations with
respect to a specific parametrization describing the graphical
model. However, optimizing for the dynamics’ model param-
eters is generally a nonconvex objective due to the cascading
structure of time series problems [Abbeel and Ng, 2005]. In
this work, we introduce an approach that jointly couples both
the process and sensor models by directly optimizing for a
filter function that predicts the next belief (Fig. 1b).

We learn the filter function by leveraging ideas from infer-
ence machines [Langford et al., 2009; Bagnell et al., 2010;
Ross et al., 2011b]. An inference machine is a supervised
learning approach developed for learning message passing
procedures in probabilistic graphical models. Instead of sep-
arating the inference problem (e.g. filtering) from the model
learning, inference machines directly reduce the problem of
learning graphical models to solving a set of supervised learn-
ing problems. We specialize inference machines for two set-
tings: the supervised-state setting and the latent-state setting.

In the supervised-state setting, we wish to learn a filter
model for a system with a known state representation for
which we are able to obtain ground truth at training time. For
example, filtering for a simple pendulum (mass on string) dy-
namical system in this formulation may use a sufficient-state
representation of the angle and velocity (θ, θ̇) with observa-
tions of the pendulum’s Cartesian x position. Note that at test
time, we do not assume access to the state values and instead
infer them by filtering on observations.

The supervised-state setting contrasts with the latent-state
setting in that the sufficient underlying state representation is
at least partially unobserved at training time. In the pendu-
lum example, if the system state is parametrized by only θ,
then the representation would be insufficient to predict future
states and observations. This partial-parametrization may be
a result of any inability to collect training data of the full state
at training time or we may not know the full representation
of the underlying state. To address this setting, we extend
PREDICTIVE STATE INFERENCE MACHINES (PSIMS) [Sun
et al., 2015] to exploit any partial-parametrization or side-

information of state, which we denote as “Hints” about the
state.

Concretely, the original PSIMS address prediction over the
space of future observations. Many real world applications,
however, require the estimation or prediction of useful physi-
cal quantities, which traditional filtering algorithms are capa-
ble of but PSIMS were not. Our extension, PSIM+HINTS,
adds this vital capability, allowing PSIMS to be used in a
wide range of filtering application domains including neural
signal decoding for prosthetic control, visual tracking where a
bounding-box must be predicted, and robot localization. The
estimated physical quantities in each domain are the Hints we
aim to predict in our framework.

In contrast with the learning literature for system identi-
fication, which focuses on learning state representations and
corresponding transition and observation models, this work
focuses on the filtering or inference task where the observer is
maintaining a belief about the current state of the system. We
present PREDICTIVE STATE INFERENCE MACHINES WITH
HINTS (PSIMS+HINTS) to directly target the inference task
of filtering on latent-state space models. As a special case of
PSIM+HINTS, we develop the INFERENCE MACHINE FIL-
TER (IMF) for the supervised-state graphical model. Both
procedures learn a filter function that uses the current belief
state and latest observation to predict the next belief state.
The algorithms that we present for learning these inference
machines are easy to implement, data-efficient, make no as-
sumptions on the differentiability of the underlying learners,
and give theoretical guarantees on the inference task.

2 Inference Machines for Latent-State Models

First, we consider the latent-state setting and introduce PRE-
DICTIVE STATE INFERENCE MACHINES (PSIMS). We then
describe and analyze our novel addition to this underlying
framework, which we call PREDICTIVE STATE INFERENCE
MACHINE WITH HINTS (PSIM+HINTS). This allows us to
consider a partially-observed state setting and use inference
machines for filtering. We then show that PSIM+HINTS can
be easily adapted to learn INFERENCE MACHINE FILTERS
(IMFS) for the supervised-state setting in Section 3.



2.1 PREDICTIVE STATE INFERENCE MACHINES
The inference machine approach of [Ross et al., 2011b] can-
not be applied to learning latent-sate space models since we
do not have access to the hidden states’ information at train-
ing time (versus the supervised-state setting). This difficulty
can be overcome by leveraging ideas from Predictive State
Representations (PSRs) [Littman et al., 2001; Singh et al.,
2004; Boots et al., 2011; Hefny et al., 2015]. In contrast to la-
tent variable representations like HMMs [Siddiqi et al., 2010;
Hsu et al., 2012; Song et al., 2010] or linear state space mod-
els [Van Overschee and De Moor, 2012], which represent the
belief state as a distribution over the latent-state space of the
model, PSRs instead maintain an equivalent belief over suffi-
cient features of future observations. Specifically, we assume
that there exists a bijective function such that:

mt = P (st|pt)⇔ P (ft|pt), (1)

where ft = [xt+kf , . . . , xt+1] is the sequence of future ob-
servations and pt = [xt, . . . , x0] is the full history of past
observations. We further assume that there exists a bijec-
tive mapping from P (ft|pt) to the conditional expectation
E [φ(ft)|pt] for feature function φ. For example under a
Gaussian distribution E [φ(ft)|pt] = E

[
f, ffT |pt

]
, the suf-

ficient statistics for the distribution.
With this representation, the PREDICTIVE STATE INFER-

ENCE MACHINE (PSIM) [Sun et al., 2015] uses the pre-
dictive state for supervised training in the inference machine
framework. More formally, the goal is to learn an operator F
that can deterministically pass the predictive states forward in
time conditioned on the latest observation,

E [φ(ft+1)|pt+1] = F
(
E [φ(ft)|pt] , xt

)
, (2)

such that the likelihood of the observations {ft}t generated
from the sequence of predictive states {E[φ(ft)|pt]}t is max-
imized. As this is is a sequential prediction problem over the
predictive states, DAgger [Ross et al., 2011a] is used to opti-
mize the inference machine. The choice of learner for F can
be any no-regret regression or classification algorithm.

2.2 PREDICTIVE STATE INFERENCE MACHINE
WITH HINTS

In this section, we extend PSIMS to models with partially
observable states or side-information (Fig. 3a). This structure
shows up in many practical problems. The “Hints” h may
be a bounding-box in visual tracking, the decoded command
from a brain-computer interface, or the pose of a robot. In
this semi-supervised setup, the hints h and observations x are
at training time though the true sufficient-state s is either un-
known or unobserved. Although PSIM is well defined on a
simple chain-structured model (e.g. Fig. 4), it is not straight-
forward to extend PSIM to a model with the complicated la-
tent structure in Fig. 3a.

To handle this type of graph structure, we collapse the hints
h and the latent states s into a single unit-configuration as
shown in the abstracted factor graph, Fig. 3b, and only fo-
cus on the net message passed into the configuration and the
net message passed out from the configuration. Ideally, we
would like to design an inference machine that mimics this
net message passing procedure.
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Figure 3: (a): Adding hints, ht, allow us to extend the HMM
model with partially observed states (labels). The true latent-
states st of an unknown representation generate observations
xt and labels ht of which both are observed at training time
but only the former at inference time. The state st and hint
ht together generate the next label ht+1. (b): If we do not
need the messages passed between the states and hints, we
can abstract them away and consider the net message output
by the hint and state before the process model, drawn as the
black square factor, but after the observation update.

In Fig. 3b, mt represents the joint belief of ht and st,

mt = P (ht, st|pt). (3)

Directly tracking these messages is difficult due to the exis-
tence of latent state st. Following the approach of PSRs and
PSIMS, we use observable quantities to represent the belief
of ht and st. Since the latent state st affects the future ob-
servations starting from xt, and also the future partial states
starting from ht, we use sufficient features of the joint distri-
bution of future observations and hints to encode the infor-
mation of st in message mt−1. Similar to PSIM, we assume
that there exists an underlying mapping between the follow-
ing two representations:

P (ht, st|pt)⇔ P (ht, xt+1:t+kf |pt). (4)

Assuming that φ computes the sufficient features (e.g., first
and second moments), we can represent P (ht, xt+1:t+kf |pt)
by the following conditional expectation:

E
[
φ(ht, xt+1:t+kf )|pt

]
. (5)

When φ is rich enough, E
[
φ(ht, xt+1:t+kf )|pt

]
is equiva-

lent to the distribution P (ht, xt+1:t+kf |pt). For example, if
φ is a kernel mapping, E

[
φ(ht, xt+1:t+kf )|pt

]
essentially be-

comes the kernel embedding of P (ht, xt+1:t+kf |pt). We call
E
[
φ(ht, xt+1:t+kf )|pt

]
as the predictive state. For notational

simplicity, define mt = E
[
φ(ht, xt+1:t+kf )|pt

]
.



Algorithm 1 PSIM+HINTS with DAgger Training

1: Input: M independent trajectories τi, 1 ≤ i ≤M ;
2: Initialize D ← D0 ← ∅
3: Initialize F0 to be any hypothesis in F ;
4: Initialize m̂1 = 1

M

∑M
i=1 φ(h

i
t, f

i
1 = xi1:k)

5: for n = 0 to N do
6: Roll out Fn to perform belief propagation on trajectory

τi, 1 ≤ i ≤M
7: Create dataset Dn: ∀τi, add predicted message with

observation zit = (m̂i,Fn

t , xit) encountered by Fn to
Dn as feature variables (inputs) and the corresponding
φ(hit+1, f

i
t+1) to Dn as the learning targets ;

8: DAgger Step: aggregate dataset, D = D ∪Dn;
9: Train a new hypothesis Fn+1 on Dn to minimize the

loss d(F (m,x), φ(h, f));
10: end for
11: Return: Best hypothesis F̂ ∈ {Fi}Ni=0 on validation tra-

jectories.

We are then capable of training an inference machine that
mimics the following predictive state flow:

mt = F (mt−1, xt), (6)

which takes the previous predictive state mt−1 and current
observation xt and outputs the next predictive state mt.

Define τ ∼ D as a trajectory {x1, h1, ..., xT , ht} of ob-
servations and hints sampled from an unknown distribution
D. Given a function F ∈ F , let us define mτ,F

t as the cor-
responding predictive state generated by F when rolling out
using the observations in τ described by Eq. 6.

Similar to PSIM, we aim to find a good hypothesis F from
hypothesis class F , that can approximate the true messages
well. Hence, we define the following objective function:

min
F∈F

1

T
Eτ∼D

[
T∑
t=1

d
(
F (m̂t−1, xt), (h

τ
t , x

τ
t+1:t+kf

)
)]
,

s.t., m̂t = F (m̂t−1, xt),∀t, (7)

where d is the loss function that measures how good the pre-
dictive states are (e.g., the likelihood of (hτt , x

τ
t+1:t+kf

) being
generated from m̂τ

t or the squared loss).
The optimization objective presented in Eq. 7 is generally

nonconvex in F due to the objective involving sequential pre-
diction terms where the output of F from time-step t − 1
is used as the input in the loss for the next timestep t. Of-
ten, a simpler surrogate objective function is considered that
only optimizes over single-step predictions. However, opti-
mizing the one-step error alone can resulting in cascading er-
rors of O(exp(T )) [Venkatraman et al., 2015]. As optimiz-
ing Eq. 7 directly is impractical, we utilize Dataset Aggre-
gation (DAgger) [Ross et al., 2011a] to find a filter function
(model) F with bounded error. The training procedure for
PSIM+HINTS is detailed in Algorithm 1. By rolling out the
learned filter and collecting new training points (lines 6, 7),
subsequent models are trained (line 9) to be robust to the in-
duced message distribution caused by sequential prediction.

Specifically, let us define zτt = (hτt , x
τ
t+1:t+kf

) for any
trajectory τ at time step t and define dF as the joint distri-
bution of (m̂τ,F

t−1, x
τ
t , z

τ
t ),∀t when rolling out F on trajectory

τ sampled from D. Then our objective function can be rep-
resented alternatively as E(m,x,z)∼dF d(F (m,x), z). Alg. 1
guarantees to output a hypothesis F̂ such that:

Eτ∼D
1

T

T∑
t=1

d
(
F̂ (m̂τ,F̂

t−1, x
τ
t ), z

τ
t

)
≤ ε, (8)

where

ε = min
F∈F

1

N

N∑
n=1

E(m,x,z)∼dFn
d(F (m,x), z), (9)

which is the minimum batch minimization error from the
entire aggregated dataset in hindsight after N iterations of
Alg. 1. This result follows by a reduction to DAgger opti-
mization [Ross et al., 2011a] (similar to that in [Venkatraman
et al., 2015; Sun et al., 2015]). Note that this bound applies
to Eq. 7 for the F found by Alg. 1. Despite the learner’s loss
ε in Eq. 9 being over the aggregated dataset, it can be driven
low (e.g. with a powerful learner), making the bound useful
in practice. For long-horizons, the possible exponential roll-
out error from optimizing only the one-step error dominates
the error over the aggregated dataset.

We conclude with a few final notes. First, even though
F0 would ideally be initialized (line 3) by optimizing for the
transition between the true messages, in practice F0 is of-
ten initialized from the empirical estimates. Second, though
the sufficient-feature assumption is common in the PSR lit-
erature [Hefny et al., 2015], an approximate feature trans-
form φ balances computational complexity with prediction
accuracy: simple feature design (e.g., first moment) makes
for faster training of F while Hilbert Space embeddings are
harder to optimize but may improve accuracy [Boots, 2012;
Boots et al., 2013]. Additionally, the bound in Eqns. 8, 9
holds for the approximate message statistics. Finally, though
the learning procedure is shown in a follow-the-leader fash-
ion on the batch data (line 9), we can use any online no-regret
learning algorithm (e.g. OGD [Zinkevich, 2003]), alleviating
computational and memory concerns.

Hint Pre-image Computation
Since the ultimate goal is to predict the hint, we need an ex-
tra step to extract the information of ht from the computed
predictive state m̂t, which is an approximation of the true
conditional distribution P (ht, xt+1:t+kf |pt). Exactly com-
puting the MLE or mean of ht from m̂t might be difficult
(e.g., sampling points from a Hilbert space embedding is not
trivial [Chen et al., 2012]). Instead, we formulate the step of
extracting ht from m̂t as an additional regression step:

min
g∈G

Eτ∼D
1

T

T∑
t=1

‖g(m̂τ
t )− hτt ‖22 (10)

To find g, we roll out F̂ on each trajectory from the training
data and collect all the pairs of m̂τ

t , h
τ
t . Then we can use any

powerful learning algorithm to learn this pre-image mapping



. . .s0 . . .s1 s2 st

xtx0 x1 x2

m0 m1 m2 mt

Figure 4: Message Passing on a Hidden Markov Model
(HMM). The state of the system st generates an observation
xt. In the supervised-state setting, the sufficient-states s and
observations x are given at training time though only obser-
vations are seen at test time. In the latent-state problem set-
ting, we additionally do not have access to the sufficient state
at training time – it may be unobserved or have an unknown
representation.

g (e.g., random forests, kernel regression). Note that this is
a standard supervised learning problem and not a sequential
prediction problem — the output from g is not used for future
predictions using g or the filter function F̂ .

3 The INFERENCE MACHINE FILTER for
Supervised-State Models

In contrast to filter learning in the latent-state problem,
the supervised-state setting affords us access to both the
sufficient-state s and observations x during training time.
We specifically look at learning a filter function on Hid-
den Markov Models (HMMs) as shown in Fig. 4. This
problem setting similar to those considered in the learning-
based system identification literature (e.g. [Ko and Fox, 2009;
Nishiyama et al., 2016]). However, these previous methods
use supervised learning to learn independent dynamics and
observation models and then use these learned models for in-
ference. This approach may result in unstable dynamics mod-
els and poor performance when used for filtering and cascad-
ing prediction. Instead, we directly optimize filtering perfor-
mance by adapting PSIM+HINTS to learn message passing
in this supervised setting. We term this simpler algorithm as
the INFERENCE MACHINE FILTER (IMF).

Referencing Algorithm 1, the IMF simply sets the hints
ht in PSIM+HINTS to be the observed states st and sets
the number of future observations kf = 0; in other words,
st is assumed to be a sufficient-state representation. The
IMF learns a deterministic filter function F that combines
the predict-and-update steps of a Bayesian filter to recursively
compute:

P (st|pt)⇔ E [φ(st)|pt] = mt = F (mt−1, xt) (11)

The INFERENCE MACHINE FILTER (IMF) can be viewed as
a specialization of both the theory and application of infer-
ence machines to the domain of time-series hidden Markov
models. Our guarantee in Eq. 8 shows that the prediction er-
ror on the messages optimized by DAgger is bounded linearly
in the filtering problem’s time horizon. Additionally, the suf-
ficient feature representation of PSIM+HINTS allows IMFS
to represent distributions over continuous variables, com-
pared to the discrete tabular setting of [Ross et al., 2011b].

The IMF approach differs from [Langford et al., 2009] in
several important ways. Langford et al. learn four operators:

one to map the first observation to initial state, one for the
belief update with an observation, one for state-to-state tran-
sition, and one for state to observation. This results in a more
complex learning procedure as well as a special initialization
procedure at test time for the filter. Our algorithm only learns
a single filter function instead of four. It also operates like a
traditional filter; it is initialized from a prior over belief state
instead of mapping from the first observation to the first state.
Finally, Alg. 1 does not assume differentiability of the learn-
ing procedure as required for the backpropagation-through-
time learning used in [Langford et al., 2009].

4 Experiments
We focus on robotics-inspired filtering experiments. In the
supervised-state representation, we are given the state (e.g.
robot’s pose) and observations (e.g. IMU readings) at train-
ing time. In the latent-state setting, we only gain access to the
observations and instead of observing the full state at train-
ing time, we see only a hint (e.g. only the x-position of the
pose). In both scenarios, the hint or state could be collected
by instrumenting the system at training time (e.g. having the
robot in a motion capture arena), which we then do not have
access to at test time (e.g. robot moves in an outdoor area).
The latent-state setting with hints is additionally relevant in
domains where it is difficult to observe the full state but easy
to observe quantities that are heavily correlated with it.

4.1 Baselines
We compare our approach against both learning-based algo-
rithms as well as physics based, hand-tuned filters when rel-
evant. For the first baseline, we compare against a learned
linear Kalman filter (Linear KF). Here, the hints h are the
statesX for the Kalman filter and Y are the observations. We
learn the Kalman filter using the MAP estimate:

A = argminA ‖AXt −Xt+1‖22 + β1 ‖A‖2F
C = argminC ‖CXt − Yt‖22 + β2 ‖C‖2F
Q = cov(AXt −Xt+0), R = cov(CXt − Yt)

We select the regularization (Gaussian prior) terms β1, β2 by
cross-validation.

We also compare against a model that uses a fixed-sized
history kp of observations to predict the hint at the next time
step. We find this model by optimizing the objective,

AR = argminAR

∑T−1
t=kp

∥∥AR([yt−kp , . . . , yt])− ht
∥∥2
2
,

where ht is the hint we wish to predict at timestep t,
yt−kp , . . . , yt are past observations, and AR is the learned
function. This baseline is similar to Autoregressive (AR)
Models [Wei, 1994]. It is important to note that using a past
sequence of observations is different than tracking a belief
over the future observations (the predictive state) as PSIM
does. The AR model does not marginalize over the whole
history as a Bayesian filter would. In our experiments, we set
the history (past) length kp = 5. Choosing higher kp reduces
the comparability of the results as the AR model has to wait
kp timesteps before giving a prediction while the other filter



Algorithm
Observation Full State Est. Partial State Est.
Length s = h ≡ (θ, θ̇) s = h ≡ (θ)

Physics UKF – 1.22± 1.2 N/A
AR kp = 5 2.96± 1.5 1.60± 1.5

Linear KF – 4.67± 0.98 1.81± 1.6

IMF – 0.577± 0.33 1.43± 1.3

PSIM+HINTS

{ kf = 5 0.554± 0.33 1.27± 1.0

kf = 10 0.549± 0.32 0.888± 0.78

kf = 20 0.544± 0.31 0.758± 0.68

Table 1: Mean L2 Error±1σ for Pendulum Full State (θ, θ̇) and Partial State (θ) Estimation from observations of the Cartesian x
position of the pendulum. Notice that when the full-state is given, the performance of PSIM and IMF are similar; increasing kf
for PSIM+HINTS does not significantly improve its performance. However, when the hint defines only a partial representation
(s = h ≡ θ), we achieve significantly better results using PSIM+HINTS.

algorithms predict from the first timestep. To get good perfor-
mance, we chose the AR model to be Random Fourier Fea-
tures (RFF) regression [Rahimi and Recht, 2007] with hyper-
parameters tuned via cross-validation.

Finally, on several of the applicable dynamics benchmarks
below, we also compare against a hand-tuned filter for the
problem. The overall error is reported as the mean L2 norm
error 1

T

∑T
t=1‖ĥt − ht‖2.

4.2 Dynamical Systems
We describe the experimental setup below for each of the
dynamical system benchmarks we use. A simulated pendu-
lum is used to show that the inference machine is compet-
itive with, and even outperforms, a physics-knowledgeable
baseline on a sufficient-state representation. This simulated
dataset additionally illustrates the power of using predictive
state when we only access a partial-state to use as a hint. Two
real-world datasets show the applicability of our algorithms
on robotic tasks. The numerical results are computed across
a k-fold validation (k = 10) over the trajectories in each
dataset. We use linear regression or Random Fourier Feature
(RFF) regression to learn the message passing function F for
PSIM+HINTS and IMF and report the better performing re-
sult. Random forests [Breiman, 2001] or RFF regression are
used to learn the pre-image map g, chosen by cross-validation
over that k-fold’s training trajectories.

Pendulum State Estimation
In this problem, the goal is to estimate the sufficient state
st = ht = (θ, θ̇)t from observations xt of the Cartesian coor-
dinate of the mass at the end of pendulum. For PSIM+HINTS
and IMF we use a message that approximates the first two
moments. This is accomplished by stacking the state with
its element-wise squared value, with the latter approximat-
ing the covariance by its diagonal elements. IMF does this
for only the state while PSIM+HINTS does this for the hint
(state) and the future observations. Since we know the dy-
namics and observation models explicitly for this dynami-
cal system, we also compare against a baseline that can ex-
ploit this domain knowledge, the Unscented Kalman Filter

Algorithm Mean L2 Error ±1σ
Complementary Filter 0.0167± 0.011

AR (kp = 5) 0.0884± 0.063

Linear KF 0.0853± 0.066

IMF 0.037± 0.0305

PSIM+HINTS (kf = 5) 0.0136± 0.017

Table 2: Quadrotor Attitude Estimation Performance

(Physics UKF) [Wan and Van Der Merwe, 2000]. The pro-
cess and sensor models given to the UKF were the exact func-
tions used to generate the training and test trajectories.

Pendulum Partial State Estimation

To illustrate the utility of tracking a predictive state, consider
the same simulated pendulum where we take the partial state,
θt as the hint ht for PSIM+HINTS and use as the (insufficent)
state st for the IMF. We use the first and approximate second
moment features to generate the messages. On this bench-
mark, we do not compare against a UKF physics-model since
the partial state is not sufficient to define a full process model
of the system’s evolution.

Quadrotor Attitude Estimation

In this real-world state-estimation problem, we look to es-
timate the attitude of a quadrotor in hover under external
wind disturbance. The quadrotor runs a hover controller in
a Vicon capture environment, shown in Fig. 2a. We use the
Vicon’s output as the ground truth for the roll and pitch of
the quadrotor and use the angular velocities and acceleration
measurements from an on-board IMU as the observations. As
an application specific baseline, we compare against a Com-
plementary Filter [Hamel and Mahony, 2006] hand-tuned by
domain experts. We use only first moment features for the
messages in PSIM+HINTS and first and approximate second
moment features for IMF messages.
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(c) Quadrotor Attitude Estimation

0 100 200 300 400 500 600

Timestep

0

20

40

60

80

100

120

M
e
a
n
 L

2
 E

rr
o
r 

(g
ra

m
s)

Error:8.63g
Error:15.8g

Error:80.8g

Robot Held Mass Estimation 

(d) Robot Held Mass Estimation

Figure 5: Mean L2 Error ± 1 Standard Error versus filtering time. The AR model in each was set with kp = 5. See results
tables for kf parameter values for PSIM+HINTS.

Algorithm Mean L2 Error ±1σ
AR (kp = 5) 42.82± 19.62

Linear KF 89.13± 52.22

PSIM+HINTS (kf = 40) 32.77± 14.09

Table 3: Performance on mass estimation task

Mass Estimation from Robot Manipulator
This dataset tests the filter performance at a parameter estima-
tion task where the goal is to estimate the mass carried by the
robot manipulator shown in Fig. 2b. Each trajectory has the
robot arm lift an object with mass 45g-355g. The robot starts
moving at approximately the halfway point of the recorded
trajectories. We use as observations the joint angles and joint
motor torques of the manipulator. Only first moment features
are used for the messages for PSIM+HINTS. With this exper-
iment, we show that that filtering helps reduce error compared
to using simply a sequence of past observations (AR baseline)
even on a problem of estimating a parameter held static per
test trajectory.

5 Discussion & Conclusion
In all of the experiments, IMF and PSIM+HINTS outper-
form the baselines. Table 1 (left column) shows that the
IMF and PSIM+HINTS both outperform the baseline Un-
scented Kalman Filter which uses knowledge of the underly-
ing physics and noise models. We do not compare against a
learned-model UKF, such as the Gaussian Process-UKF [Ko
and Fox, 2009], because any learned dynamics and observa-
tion models would be less accurate than the exact ones in
our Physics UKF baseline. For fair comparison, the UKF,
Linear KF, IMF, and PSIM+HINTS all start with empiri-
cal estimates of the initial belief state (note the similar er-
ror at the beginning of Fig. 5a). We believe that the IMF and
PSIM+HINTS outperforms the Physics UKF for two reasons:
(1) Inference machines do not make Gaussian assumptions
on the belief updates as the UKF does, (2) The large variance
for the UKF (Table 1) shows that it performs well on some
trajectories. We qualitatively observed this variance is heav-

ily correlated with the difference between the UKFs initial
belief-state evolution and the true states. Our proposed in-
ference machine filter methods instead directly optimize the
filter’s performance over all of the time-horizon are are thus
more robust to the initialization of the filter .

The simulated pendulum example also demonstrates the
usefulness of predictive representations. When a sufficient
state is used (i.e. (θ, θ̇) for the pendulum) for the filter’s
belief, similar performance is achieved using either IMF or
PSIM+HINTS. Table 1’s right column (or Fig. 5b) shows that
when a partial-state representation is used instead (i.e. (θ)),
PSIM+HINTS vastly outperforms IMF. Specifically, we re-
quire a larger predictive state representation (larger kf ) over
the observation space in order to better capture the evolution
of the system. This ablation-style experiment demonstrates
the ability of PSIM+HINTS to produce more accurate filters.

Finally, our real-world dataset experiments provide addi-
tional experimental validation of inference machines for fil-
tering. Both the IMF and PSIM+HINTS outperform base-
lines in Table 2. In Fig. 5d, PSIM+HINTS is on average 50%
more accurate at the end of the trajectory than the AR base-
line; the average error over the whole trajectory is given in
Table 3. For this problem, the largest information gain is
when the robot starts moving halfway along the trajectory.
We see less performance gain from using a filter compared to
the AR baseline in this problem as the hint (mass) does not
change over time as the state does in pendulum or quadro-
tor problems. The the error versus time plots in Fig. 5 show
the relative stability of the inference machine filters even over
large time horizons.

In this work, we presented a novel class of inference ma-
chines, PSIM+HINTS, which can leverage powerful discrim-
inative supervised learning algorithms to directly approxi-
mate belief propagation for filtering on time-series and dy-
namical systems. The proposed algorithms show promise
in many robotic applications where ground-truth information
about state is available during training, for example by over-
instrumenting to get the hints or state values during prototyp-
ing or calibration. We empirically validated our approaches
on several simulated and real world tasks, illustrating the ad-
vantage of PSIMS+HINTS and IMFS over previous methods.



Acknowledgments
This material is based upon work supported by: NSF Gradu-
ate Research Fellowship Grant No. DGE1252522, NSF CRII
Award No. 1464219, NSF NRI Purpose Prediction Award
No. 1227234, and DARPA ALIAS contract number HR0011-
15-C-0027. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National
Science Foundation. The authors thank Shervin Javdani &
John Yao for assistance in collecting robot data.

References
[Abbeel and Ng, 2005] Pieter Abbeel and Andrew Y Ng.

Learning first-order markov models for control. In NIPS,
pages 1–8, 2005.

[Aguirre et al., 2005] Luis Antonio Aguirre, Bruno Otávio S
Teixeira, and Leonardo Antônio B Tôrres. Using data-
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