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ABSTRACT
A central problem in artificial intelligence is to plan to maximize
future reward under uncertainty in a partially observable environ-
ment. Models of such environments include Partially Observable
Markov Decision Processes (POMDPs) [4] as well as their general-
izations, Predictive State Representations (PSRs) [9] and Observ-
able Operator Models (OOMs) [7]. POMDPs model the state of
the world as a latent variable; in contrast, PSRs and OOMs repre-
sent state by tracking occurrence probabilities of a set of future
events (called tests or characteristic events) conditioned on past
events (called histories or indicative events). Unfortunately, exact
planning algorithms such as value iteration [14] are intractable for
most realistic POMDPs due to the curse of history and the curse of
dimensionality [11]. However, PSRs and OOMs hold the promise
of mitigating both of these curses: first, many successful approx-
imate planning techniques designed to address these problems in
POMDPs can easily be adapted to PSRs and OOMs [8, 6]. Second,
PSRs and OOMs are often more compact than their corresponding
POMDPs (i.e., need fewer state dimensions), mitigating the curse
of dimensionality. Finally, since tests and histories are observable
quantities, it has been suggested that PSRs and OOMs should be
easier to learn than POMDPs; with a successful learning algorithm,
we can look for a model which ignores all but the most important
components of state, reducing dimensionality still further.

In this paper we take an important step toward realizing the above
hopes. In particular, we propose and demonstrate a fast and statis-
tically consistent spectral algorithm which learns the parameters
of a PSR directly from sequences of action-observation pairs. We
then close the loop from observations to actions by planning in the
learned model and recovering a policy which is near-optimal in the
original environment. Closing the loop is a much more stringent
test than simply checking short-term prediction accuracy, since the
quality of an optimized policy depends strongly on the accuracy of
the model: inaccurate models typically lead to useless plans.
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Closing the Learning-Planning Loop with PSRs
We propose a novel algorithm for learning a variant of PSRs [12]
directly from execution traces. Our algorithm is closely related to
subspace identification for linear dynamical systems (LDSs) [15]
and spectral algorithms for Hidden Markov Models (HMMs) [5]
and reduced-rank HMMs [13]. We then use the algorithm to learn a
model of a simulated high-dimensional, vision-based mobile robot
planning task, and compute a policy by approximate point-based
planning in the learned model [6]. Finally, we show that the learned
state space compactly captures the essential features of the environ-
ment, allows accurate prediction, and enables successful and effi-
cient planning.

By comparison, previous POMDP learners such as Expectation-
Maximization (EM) [1] do not avoid local minima or scale to large
state spaces; recent extensions of approximate planning techniques
for PSRs have only been applied to models constructed by hand [8,
6]; and, although many learning algorithms have been proposed for
PSRs (e.g. [16, 3]) and OOMs (e.g. [10]), none have been shown to
learn models that are accurate enough for lookahead planning. As a
result, there have been few successful attempts at closing the loop.

Our learning algorithm starts from PH, PT ,H, and PT ,ao,H, ma-
trices of probabilities of one-, two-, and three-tuples of observa-
tions conditioned on present and future actions. (For additional
details see [2].) We show that, for a PSR with true parameters
m1, m∞, and Mao (the initial state, the normalization vector, and
a transition matrix for each action-observation pair), the matrices
PT ,H and PT ,ao,H are low-rank, and can be factored using smaller
matrices of test predictions R and S:

PT ,H = RSdiag(PH) (1a)
PT ,ao,H = RMaoSdiag(PH) (1b)

Next we prove that the true PSR parameters may be recovered, up
to a linear transform, from the above matrices and an additional
matrix U that obeys the condition that UTR is invertible:

b1 ≡ UTPT ,H1k = (UTR)m1 (2a)

bT
∞ ≡ P T

H(UTPT ,H)† = mT
∞(UTR)−1 (2b)

Bao ≡ UTPT ,ao,H(UTPT ,H)† = (UTR)Mao(U
TR)−1 (2c)
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Figure 1: Experimental results. (A) Simulated robot domain and sample images from two positions. (B) Training histories embed-
ded into learned subspace. (C) Value function at training histories (lighter indicates higher value). (D) Paths executed in learned
subspace. (E) Corresponding paths in original environment. (F) Performance analysis.

Our learning algorithm works by building empirical estimates bPH,bPT ,H, and bPT ,ao,H of PH, PT ,H, and PT ,ao,H by repeatedly sam-
pling execution traces of an agent interacting with an environment.
We then pick bU by singular value decomposition of bPT ,H, and
learn the transformed PSR parameters by plugging bU , bPH, bPT ,H,
and bPT ,ao,H into Eq. 2. As we include more data in our estimatesbPH, bPT ,H, and bPT ,ao,H, the law of large numbers guarantees that
they converge to their true expectations. So, if our system is truly a
PSR of finite rank, the resulting parameters bb1, bb∞, and bBao con-
verge to the true parameters of the PSR up to a linear transform—
that is, our learning algorithm is consistent.

Fig. 1 shows our experimental domain and results. A simulated
robot uses visual sensing to traverse a square domain with multi-
colored walls and a central obstacle (1A). We collect data by run-
ning short trajectories from random starting points, and then learn
a PSR. We visualize the learned state space by plotting a projec-
tion of the learned state for each history in our training data (1B),
with color equal to the average RGB color in the first image in
the highest probability test. We give the robot high reward for ob-
serving a particular image (facing the blue wall), and plan using
point-based value iteration; (1C) shows the resulting value func-
tion. To demonstrate the corresponding greedy policy, we started
the robot at four positions (facing the red, green, magenta, and yel-
low walls); (1D) and (1E) show the resulting paths in the state space
and in the original environment (in red, green, magenta, and yellow,
respectively). Note that the robot cannot observe its position in the
original environment, yet the paths in E still appear near-optimal.
To support this intuition, we sampled 100 random start positions
and recorded statistics of the resulting greedy trajectories (1F): the
bar graph compares the mean number of actions taken by the op-
timal solution found by A* search in configuration space (left) to
the greedy policy (center; the asterisk indicates that this mean was
only computed over the 78 successful paths) and to a random pol-
icy (right). The line graph illustrates the cumulative density of the
number of actions given the optimal, learned, and random policies.

To our knowledge this is the first research to combine several
benefits which have not previously appeared together: our learner
is computationally efficient and statistically consistent; it handles
high-dimensional observations and long time horizons by work-
ing from real-valued features of observation sequences; and finally,
our close-the-loop experiments provide an end-to-end practical test.
See the long version [2] for further details.
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