
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

RMP2: A Structured Composable Policy Class
for Robot Learning

Anqi Li1*, Ching-An Cheng2*, M. Asif Rana3, Man Xie3, Karl Van Wyk4, Nathan Ratliff4, and Byron Boots1,4
1University of Washington, 2Microsoft Research, 3Georgia Institute of Technology, 4NVIDIA

*Equal contribution

Abstract—We consider the problem of learning motion poli-
cies for acceleration-based robotics systems with a structured
policy class. We leverage a multi-task control framework called
RMPflow which has been successfully applied in many robotics
problems. Using RMPflow as a structured policy class in learning
has several benefits, such as sufficient expressiveness, the flexi-
bility to inject different levels of prior knowledge as well as the
ability to transfer policies between robots. However, implement-
ing a system for end-to-end learning of RMPflow policies faces
several computational challenges. In this work, we re-examine the
RMPflow algorithm and propose a more practical alternative,
called RMP2, that uses modern automatic differentiation tools
(such as TensorFlow and PyTorch) to compute RMPflow policies.
Our new design retains the strengths of RMPflow while bringing
in advantages from automatic differentiation, including 1) simple
programming interfaces to designing complex transformations; 2)
support of general directed acyclic graph (DAG) transformation
structures; 3) end-to-end differentiability for policy learning; 4)
improved computational efficiency. Because of these features,
RMP2 can be treated as a structured policy class for efficient
robot learning that is suitable for encoding domain knowledge.
Our experiments show that using the structured policy class
given by RMP2 can improve policy performance and safety
in reinforcement learning tasks for goal reaching in cluttered
space. The video for our experimental results can be found
at https://youtu.be/dliQ-jsYhgI and the code is available at
https://github.com/UWRobotLearning/rmp2.

I. INTRODUCTION

Generating reactive motion policies is a fundamental problem
in robotics. This problem has been tackled by analytic control
techniques and machine learning tools, but they lead to
different compromises. Traditionally control techniques have
been used, offering motion policies with analytical forms and
desirable properties such as stability, safety, and performance
guarantees [4, 16, 23, 35]. However, as tasks become more
complex and the environment becomes less structured, syn-
thesizing an analytical policy with such properties becomes
difficult, and, even if one succeeds, the resulting policy may
be highly sub-optimal [7]. In contrast to hand-designed control
techniques, learning-based approaches (such as reinforcement
learning [33, 34] or imitation learning [31, 32]) make minimal
assumptions and promise to improve policy performance
through interactions with the environment. However, such
approaches often require many interactions to achieve rea-
sonable results, especially when learning policies under sparse
reward signals through reinforcement learning. Furthermore,
most learning algorithms are sensitive to distribution shifts

and have poor out-of-distribution generalization capability. For
example, a policy that is trained to go to the left of a room in
training often does not know how to go to the right, because
such examples are never presented during training.

In practice, we desire motion policy optimization algorithms
that possess both the non-statistical guarantees from the
control-based approaches and the flexibility of the learning-
based approaches. A promising direction is to use structured
policies [8, 9, 12, 21, 22]. The main idea is to apply learning
to optimize only within policy parameterizations that have
provable control-theoretic properties (such as stability and
safety guarantees). In other words, it uses data to optimize
the hyperparameters of a class of controllers with provable
guarantees. From a learning perspective, structured policies
provide a way to inject prior knowledge about a problem
domain into learning. More often than not, before running
the robot in the field, we may know (approximate) kinematic
and dynamic models, task constraints, and some notions of
desired behaviors. For example, the kinematics of the robot is
often provided by the manufacturer, and generally colliding
with obstacles and hitting joint limits are undesirable. By
using this information through a control framework to produce
structured policies, we can ensure policies generated by a
learning algorithm can always satisfy certain task specifications
(such as safety) regardless how they are learned.

In this paper, we are interested in learning structured motion
policies for acceleration-based robotics systems [35]. We adopt
the RMPflow control framework [6] as the foundation of
the structured policy class. RMPflow is a multi-task control
algorithm that generates the acceleration-based motion policy
by combining individually designed subtask reactive policies.
Examples of subtasks include goal reaching, collision avoid-
ance, maintaining balance, etc. RMPflow treats these subtask
spaces as manifolds and provides a message passing algorithm
to combine subtasks policies into a stable motion policy for
all the subtasks [6]. Because of its control-theoretic guarantees
and computational efficiency, RMPflow has been applied to a
range of robotic applications [15, 18, 19, 21, 25, 36, 38].

Learning motion policies that can be expressed by the
RMPflow framework, what we call the RMPflow policies,
has several advantages: 1) The task decomposition scheme
in RMPflow provides an interface to inject different levels
of prior knowledge. As an example, one can hand design
safety-critical subtask policies for, e.g. collision avoidance, and
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Algorithm Time Space Req. Tree Req. Auto.Diff.
RMP2 (Algorithm 3) O(Nbd3) O(Ld2 +Nd) 7 3
Naïve Implementation (Algorithm 4) O(Nbd3L) O(NLd2) 7 3

RMPflow (Algorithm 1) [6] O(Nbd3) O(Ld2 +Nd2) 3 71

TABLE I: Comparison between different implementations of the RMPflow policy for a graph/tree with N nodes of dimension
at most d, where L ≤ N nodes are leaf nodes and the maximum branching factor is b. We assume the automatic differentiation
library is based on reverse-mode automatic differentiation. Computing the task map has time complexity of O(Nbd2) and
memory complexity of O(Nd). Calling the Gradient Oracle to compute the derivative of a scalar function with respect to a
variable in O(d) requires time complexity in O(Nbd2) and space complexity O(Nd). See Appendix B for details.

learn other subtask policies to improve the overall performance;
2) Hand-designed RMPflow policies have been applied to solve
many real-world robotics applications that require complex
motions, so RMPflow policies are sufficiently expressive for
motion control problems; 3) The RMPflow policies learned
on one robot can be transferred to other robots because of
its differential geometry centered design [6]. This allows us
to easily adopt existing hand-designed subtask policies in the
literature to partially parameterize the RMPflow policy to help
warm-start the learning process.

The RMPflow message passing algorithm was originally
designed for reactive control rather than learning. Despite
above-mentioned promises, implementing a system for learn-
ing RMPflow policies faces several practical computational
challenges. First, RMPflow uses a rather complicated user
interface requiring a tree data structure, which is often non-
trivial for the user to specify. Second, perhaps more importantly,
it is hard and computationally expensive to trace the gradient
flow in the message passing algorithm of RMPflow, and
yet tracing gradient flows is commonly required for end-to-
end learning. Although recent work has looked into learning
with RMPflow [21, 22, 27], these methods either largely
simplify the learning problem so that differentiating through
RMPflow is not needed [2, 21, 27] or only allow for a very
limited parameterization of the policy [22]. For example, Meng
et al. [21] and Rana et al. [27] learn the subtask policies
independently through imitation and then use RMPflow to
combine the learned subtask policies with other hand-specified
ones; and Mukadam et al. [22] learn scalar weight functions
for pre-defined subtask polices. Recently Aljalbout et al. [2]
explored learning collision avoidance policies with RMPflow
through reinforcement learning, where differentiating through
RMPflow is not required as the gradients can be estimated
through samples and value function estimate.

In this work, we propose a simple alternative algorithm,
called RMP2 (RMPflow Reactive Motion Policy), to replace
the message passing algorithm in RMPflow for computing
RMPflow policies, so that end-to-end learning RMPflow polices
can be more easily implemented and scaled up in practice. We
emphasize that we do not propose a new structured policy
class, but a more efficient and flexible implementation of
RMPflow policies. Policies realized by either the original
message passing algorithm of RMPflow or our new RMP2

algorithm are therefore the same, and learning with them would
lead to the same results statistically. For clarity, we will refer

to the RMPflow algorithm as the message passing routine
in RMPflow (which our RMP2 algorithm replaces) and the
RMPflow policy as the effective motion policy that RMPflow
represents, which our RMP2 algorithm also represents.

RMP2 realizes the RMPflow policy by querying the Gradient
Oracle [13] in an automatic differentiation library (such as
TensorFlow [1] or PyTorch [24]) instead of using the tree
data structure and message passing steps of the RMPflow
algorithm. In comparison, RMP2 has several advantages over
the original RMPflow algorithm: 1) RMP2 allows for a simper
user interface. The user only needs to specify the task map
using an automatic differentiation library, the automatically
constructed (directed acyclic) computational graph can then be
used for computing the RMPflow policy. 2) RMP2 relaxes the
assumption on task map structure from tree structure in the
RMPflow algorithm [6] to any directed acyclic graphs (DAGs).
3) RMP2 is much easier to implement in conjunction with
learning algorithms: As RMP2 is implemented using operators
supported by automatic differentiation libraries, it is convenient
to take the gradient, or higher order derivatives, of any functions
with respect to the parameters in subtask policies and task maps.
4) RMP2 uses a smaller memory footprint than RMPflow, while
having the same time complexity (see Table I).

These computational advantages make RMP2 generally ap-
plicable to many end-to-end learning scenarios and algorithms.
In the rest of the paper, we provide the details of our new
algorithmic design. At the end of the paper, we validate
our RMP2 algorithm in applications of learning acceleration-
based motion control policies with reinforcement learning in
simulated reaching tasks with a three-link robot arm and a
Franka robot arm.

II. BACKGROUND

A. Acceleration-based Motion Control

We focus on learning policies for controlling the motion
of acceleration-based robotics systems. Typically this type of
kinematic control problems arises when one wishes to reactively
generate smooth reference trajectories for a low-level tracking
controller, or wants to control a robot that is fully actuated
and feedback linearized (e.g., by an inverse dynamics model).

Suppose the robot’s configuration space C (e.g. the joint
space of a robot with revolute joints) is a d-dimensional smooth

1Although RMPflow does not necessarily require automatic differentiation,
it is commonly used to implement to Jacobian between two nodes in RMPflow.
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manifold that can be described by generalized coordinates
q ∈ Rd. We can view the acceleration-based motion control
problem as a continuous-time deterministic Markov decision
process (MDP): the state is the position-velocity (q, q̇), the
action is the acceleration q̈, the transition is the integration
rule, and the reward is defined to encourage desired behaviors
for a task (such as smooth, collision-free motions). Our goal
is to find an acceleration-based policy π such that the system
following q̈ = π(q, q̇) would exhibit good performance for
the tasks of interest.

In these motion control problems, the desired behavior of
a task (equivalently the reward function) is often not directly
described in the generalized coordinates q ∈ Rd, but in terms
of another set of task coordinates x ∈ Rm that are related to
the generalized coordinates through a nonlinear mapping ψ,
i.e. x = ψ(q). For example, in controlling an anthropomorphic
robot, we wish to control the torso’s motion to maintain
the stability and the reachable region of the hands, whose
performance is more easily described in the coordinates of the
torso and the hand rather than directly in the joint space (i.e.
the configuration space). We call this mapping ψ the task map
and refer to the image manifold of C under ψ as the task space,
which is denoted as T . As shown in the above example, the
task here is often multi-objective in nature, requiring the robot
to satisfy various performance criteria. Mathematically, this
implies that the overall task space T is a composition of many
subtask spaces, such as T =

∏K
k=1 Tk in a K-task control

problem based on subtask manifolds {Tk}Kk=1. These subtask
coordinates are often not independent but intertwined together
as the image of the common configuration space C under the
task map ψ (in the previous example, moving the torso affects
the position of the robot hand). Therefore, generally, policies
designed for each subtask cannot be trivially combined together
(e.g., with using a convex combination) to generate a good
policy for the full task.

B. RMPflow: A Framework for Multi-task Problems

RMPflow [6] is a control-theoretic computational framework
designed to address the multi-task control problem mentioned
above. Inspired by geometric control theory [4], RMPflow
handles the trade-off between different subtasks by describing
each subtask policy as a Riemannian Motion Policy (RMP) [30].
An RMP associates a subtask (e.g. the k-th subtask) not
only with the desired acceleration adk(xk, ẋk), but also with a
positive semi-definite matrix function Mk(xk, ẋk) that depends
on the state (i.e. the position and the velocity) of the subtask.
Given RMPs for the subtasks, RMPflow generates the policy π
on the configuration space by combining these subtask RMPs
through message passing on a tree data structure of manifolds
(called the RMP-tree), where the root and leaf nodes correspond
to the configuration space C and the subtask spaces {Tk}Kk=1,
and an edge represents a smooth map from a parent node
manifold to its child node manifold.

This message passing scheme of RMPflow effectively
realizes a differential-geometric operation, called the pullback,
which propagates differential forms from the subtask manifolds

Algorithm 1 The RMPflow Algorithm (Message Passing) [6]
1: Input: root state (q, q̇), RMP-tree T, RMPs rmp_eval
2: Return: motion policy π(q, q̇)
3: nodes← T.topologically_sorted_nodes()

// forward pass
4: For node in nodes: // from root to leaves
5: For child in node.children:
6: child.state← pushforward(node.state)

// evaluate leaf RMPs
7: For node in T.leaves:
8: node.rmp← rmp_eval(node.state)

// backward pass
9: For node in reversed(nodes): // from leaves to root

10: node.rmp ← pullback (node.child.rmps)
// resolve for the motion policy

11: π(q, q̇)← resolve (T.root.rmp)

to the configuration space manifold. As a result, it can be
proved that the final policy π output by RMPflow is Lyapunov
stable, when Mk is derived appropriately from a Riemannian
metric that describes the motion induced by adk for each
policy [6, 18]. This nice control-theoretical property makes
RMPflow a promising candidate of the structured policy class
for acceleration-based motion control.

Let us provide some intuitions as to why RMPflow works.
Here we take an optimization viewpoint recently made in [5]
(rather than the geometric control viewpoint commonly used in
the literature) and show the optimization problem that RMPflow
effectively solves when generating the multi-task control policy.
This insight explains the properties of RMPflow, which is more
directly related to our proposed algorithm RMP2, without going
through its complex algorithmic steps. The message passing
procedure of RMPflow is listed in Algorithm 1 and a detailed
description can be found in Appendix A.

Consider an RMP-tree with a set of nodes V . Let L :=
{lk}Kk=1 ⊂ V be the set of leaf nodes and r be the root node.
Cheng [5, Chapter 11.7] observed that there is a connection
between the message passing algorithm of RMPflow and sparse
linear solvers: the RMPflow policy π(q, q̇) is the solution to
the following least-squares problem, and the message passing
routine of RMPflow effectively uses the duality of (1) and the
sparsity in the task map to efficiently compute its solution.

min
{av:v∈V}

K∑
k=1

1

2
‖alk − adk‖2Mk

, (1)

s.t. av = Jv;uau + J̇v;u ẋu, (2)
∀ v ∈ V \ r, u = parent(v)

where, for a leaf node lk, adk and Mk together are a leaf-
node RMP, Jv;u denotes the Jacobian of the task map from
node u to node v, and J̇v;u is the time-derivative of Jacobian
Jv;u. The objective in (1) is the sum of deviations between the
acceleration alk on each leaf space and the desired one, adk,
weighted by the importance matrix Mk. The constraints (2)
enforce the accelerations to be consistent with the maps
between spaces. In other words, the leaf-node RMPs in
RMPflow defines a trade-off between different subtask control
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schemes and the policy of RMPflow is the optimal solution
that can be realized under the geometric constraints between
the subtask spaces and the configuration space.

Implementing a system for learning RMPflow policies, how-
ever, can be challenging, because the user needs to implement
the data structure and the complex message passing algorithm,
both described in Appendix A (which we omitted here due to its
complexity). Moreover, the user may need to trace the gradient
flow through this large computational graph. This difficulty
has limited the applicability of existing work on end-to-end
learning of RMPflow policies [21, 22, 27, 29]. Improving the
efficiency and simplicity of implementing RMPflow policies
is hence the main objective of our paper.

III. RMP2 BASED ON AUTOMATIC DIFFERENTIATION

We propose an alternate algorithm to implement the
RMPflow policy. Our new algorithm, RMP2, works by calling
the basic oracles (such as evaluation and the Gradient Oracle) of
an automatic differentiation library, without using the message
passing algorithm of RMPflow in Appendix A. The result is an
easy-to-use and computationally efficient framework suitable
for learning RMPflow policies end-to-end.

A. Key Idea

We observe that the constrained optimization problem (1)–
(2) is equivalent to the following unconstrained least-squares
optimization problem if the constraints are aggregated:

min
a′
r∈Rd

K∑
k=1

1

2
‖Jlk;ra

′
r + J̇lk;rq̇− adk‖2Mk

, (3)

where Jlk;r is the Jacobian matrix of the subtask map from the
root node r to the kth leaf node lk. Note that the Jacobians
and velocities here are treated as constants in the optimization
as they are only dependent on the state (not the accelerations).

This observation implies that we can compute the RMPflow
policy by solving (3), which has a closed-form solution:

ar =

(
K∑
k=1

J>lk;rMkJlk;r

)†
︸ ︷︷ ︸

M†
r

(
K∑
k=1

J>lk;rMk(a
d
k − J̇lk;rq̇)

)
︸ ︷︷ ︸

fr

.

(4)

This means that if we can compute the solution in (4) efficiently
for a large set of sparsely-connected manifolds, then we can
realize the RMPflow Policy without the RMPflow message
passing algorithm (Algorithm 1).

B. RMP2 based on Reverse Accumulation

We propose RMP2 (Algorithm 3), an efficient technique
that computes the closed-form solution (4) using automatic
differentiable libraries, which are commonly used in modern
machine learning. As we will show in Appendix B, RMP2 has
the same time complexity of as RMPflow [6] while enjoying a
smaller memory footprint. More importantly, RMP2 provides
a simpler and more intuitive interface for learning.

Algorithm 2 Jacobian-vector product [10] jvp(v,u,w)
1: Input: u, v, w
2: Return: (∂uv)w
3: λ← 1 // dummy variable for reverse accumulation
4: g← gradient(λ>v,u) // sum of partial derivatives
5: compute Jacobian-vector product

(∂uv)w← gradient(g>v,λ)

Algorithm 3 RMP2

1: Input: root state (q, q̇), task_map, rmp_eval
2: Return: motion policy π(q, q̇)

// forward pass
3: {xk}Kk=1 ← task_map(q)

4: {ẋk}Kk=1 ← jvp({xk}Kk=1,q,q̇) // leaf node velocity
5: {ck}Kk=1 ← jvp({ẋk}Kk=1,q,q̇) // curvature terms

// evaluate leaf RMPs
6: {(Mk,a

d
k)}Kk=1 ← rmp_eval({(xk, ẋk)}Kk=1)

// backward pass
7: q′ = copy(q), q′′ = copy(q) // copies without gradient
8: {x′

k}Kk=1 ← task_map(q′), {x′′
k}Kk=1 ← task_map(q′′) //

mirrored images
9: r ←

∑K
k=1(x

′
k)

>Mkx
′′
k , s ←

∑K
k=1(x

′
k)

>Mk(a
d
k − ck) //

auxiliary variables
10: Mr ← jacobian(gradient(r,q),q′), // root matrix
11: fr ← gradient(s,q) // root force

// resolve for the motion policy
12: π(q, q̇)←M†

r fr

In automatic differentiation libraries, a computation graph is
automatically built as functions are specified, and derivatives are
computed through message passing on the computation graph.
RMP2 leverages this feature so that no additional data structure
and message passing routines are needed, whereas RMPflow
requires the user to specify an RMP-tree and implement the
message passing algorithm.

RMP2 uses the following common functionalities provided
by automatic differentiation libraries:

• gradient(s,u): the gradient operator. It computes the
gradient of a scalar graph output s ∈ R with respect to
the graph input vector u ∈ Rn through back-propagation;

• jacobian(v,u): the Jacobian operator. It computes the
Jacobian matrix ∂uv ∈ Rm×n through back-propagation;
jacobian is equivalent to multiple calls of gradient.

• jvp(v,u,w): the Jacobian-vector product. It computes
(∂uv)w ∈ Rm given the graph input vector u ∈ Rn, the
output vector v ∈ Rm, and an addition vector w ∈ Rn.
The Jacobian-vector product can be efficiently realized by
gradient (see Algorithm 2) using a technique, called
reverse accumulation [10] (also known as double back-
ward). The algorithm computes Jacobian-vector product
through 2 passes. An auxiliary all-ones vector λ is created
and the gradient with respect to λ is tracked (line 2).

By using the gradient, jacobian, jvp operators,
RMP2 in Algorithm 3 efficiently computes quantities needed for
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evaluating (4). In the forward pass of RMP2 (Algorithm 3, line
3–5), it evaluates subtask maps and compute their velocities and
curvature terms using Jacobian-vector products. Specifically,
for the k-th subtask map ψlk;r : q 7→ xk (which we may think
as the map from the joint space of a robot manipulator to
the workspace), the velocity ẋk := Jlk;rq̇ and curvature term
ck := J̇lk;rq̇ on the subtask space can be computed through
Jacobian-vector products:

ẋk = jvp(xk,q,q̇), and ck = jvp(ẋk,q,q̇). (5)

Using {(xk, ẋk)}, RMP2 then evaluates the values of the leaf
RMPs (line 6), which implicitly define the objective of the
weighted least-squares problem in (3). Next, in the backward
pass (line 7–11), RMP2 computes the pullback force fr and
importance weight matrix Mr in (4) using reverse accumulation
(i.e., the technique used in jvp in Algorithm 2). This is
accomplished by creating auxiliary variables q′ and q′′, which
have the same numerical value as q (but are different nodes
in the computational graph of automatic differentiation), and
their mirrored task images (line 7 and 8), and then querying
the gradients and Jacobians:

fr = gradient
( K∑

k=1

(x′
k)

>Mk(a
d
k − ck),q

′
)
,

Mr = jacobian
(
gradient

( K∑
k=1

(x′
k)

>Mkx
′′
k,q

′),q′′
)
,

(6)

where x′k = ψk(q
′), x′′k = ψk(q

′′), and q = q′ = q′′.

C. Complexity of RMP2

In Appendix B, we analyze the time and space complexities
of RMP2. We show that RMP2 has a time complexity of
O(Nbd3) and a memory complexity of O(Nd+ Ld2), where
N is the total number of nodes, L is the number of leaf
nodes, b is the maximum branching factor, and d is the
maximum dimension of nodes. In comparison, we prove, also in
Appendix B, that the original RMPflow algorithm (Algorithm 1)
by [6] has a time complexity of O(Nbd3) and a worse space
complexity of O(Nd2+Ld2). Please see Table I for a summary.

D. Discussion: A Naïve Alternative Algorithm

With the RMPflow policy expression in (4), one may attempt
to explicitly compute the matrices and vectors listed in (4) using
automatic differentiation and then combine them to compute
the RMPflow policy. This idea leads to a conceptually simpler
algorithm, shown in Algorithm 4, which directly computes the
Jacobians for the task maps through the jacobian operator
provided by the automatic differentiation library, and then
compute the root RMPs Mr and fr based on (4).

However, this naïve approach turns out to be not as efficient
as RMP2 and RMPflow. Because the Jacobian matrix Jk :=
Jlk;r is constructed here (line 4 in Algorithm 4), the time
complexity of the naïve algorithm is O(L) times larger than
RMP2, where L is the number of the leaf nodes. For a binary
tree with N nodes, this means the time complexity is in O(N2),
not the O(N) of RMP2 and RMPflow.

Algorithm 4 A Naïve Implementation
1: Input: root state (q, q̇), task_map, rmp_eval
2: Return: motion policy π(q, q̇)

// forward pass
3: {xk}Kk=1 ← task_map(q)

4: {Jk}Kk=1 ← jacobian({xk}Kk=1,q)

5: {ẋk}Kk=1 ← {Jkq̇k}Kk=1 // leaf space velocity
6: {ck}Kk=1 ← jvp({ẋk}Kk=1,q,q̇)// curvature terms

// evaluate leaf RMPs
7: compute leaf RMPs

{(Mk,a
d
k)}Kk=1 ← rmp_eval({(xk, ẋk)}Kk=1)

// backward pass
8: compute root RMP

Mr ←
∑K

k=1 J
>
k MkJk, fr ←

∑K
k=1 J

>
k Mk(a

d
k − ck)

// resolve for the motion policy
9: π(q, q̇)←M†

r fr

Moreover, this naïve algorithm also has a worse space
complexity of O(NLd2). This large space usage is created by
the computation of the curvature term: the curvature term here
is computed through differentiating velocities {ẋk} that are
computed by the explicit Jacobian vector product in line 5; as
a result, the intermediate graph created by the Jacobian needs
to be stored, which is the source of high memory usage. A
simple fix to this memory usage is to compute the curvature
term instead by two calls of Jacobian-vector-product (as in
RMP2). This modified algorithm has the time complexity of
O(Nbd3L) (still O(L) times larger than RMP2 and RMPflow)
but a space complexity of O(Nd+ Ld2) (same as RMP2).

E. Key Benefits of RMP2

Simpler User Interface: The major benefit of RMP2 is
that it is much easier to implement and apply than RMPflow,
while producing the same policy and having the same time
complexity. For RMP2, the user no longer needs to construct
the RMP-tree data structure (just like implementing a neural
network architecture from scratch) or implement the message
passing algorithm. Instead, the user only needs to specify
the task maps with automatic differentiation libraries, and the
policy can be computed through standard operators in automatic
differentiation libraries. See Appendix D for a case study.

More General Taskmaps: Another benefit of RMP2 is that
it supports task maps described by arbitrary directed acyclic
graphs (DAGs), whereas RMPflow is limited to tree-structured
task maps. While Cheng et al. [6] show that every task map
has a tree representation, not all motion control problems
have an intuitive RMP-tree representation (e.g. multi-robot
control [19]). If they are implemented using a tree structure,
extra high-dimensional nodes would be induced and the user
interface becomes tedious.

Differentiable Policies: Since RMP2 is implemented using
automatic differentiation libraries, computational graphs can
be automatically constructed while calculating the policy. This
allows for convenient gradient calculation of any functions with
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respect to any parameters in, e.g., parameters used to describe
task maps and RMPs. This fully differentiable structure is
useful to end-to-end learning in many scenarios.

Smaller Memory Footprint: As is analyzed in Appendix B,
RMP2 has a memory footprint of O(Nd + Ld2), which is
smaller than RMPflow (see Table I).

In summary, RMP2 is an efficient algorithm that is easier
to implement and apply, while providing a more convenient
interface for learning applications.

IV. RMP2 FOR LEARNING

In this section, we discuss various options of using RMP2

to parameterize structured policies for learning. We note that
some examples below have already been explored by existing
work using the RMPflow algorithm. However, in most cases,
realizing these ideas with the new RMP2 algorithm instead
of the message passing algorithm of RMPflow would largely
simplify the setup and implementation, as RMP2 provides a
more natural interface for learning. Moreover, RMP2 enables
graph-structured task maps, whereas the RMPflow algorithm
works only with tree-structured task maps.

A. Parameterizing RMP2 Policies

RMP2 policies are alternate parameterizations of RMPflow
policies. They differ only in the way how (4) is computed
(RMP2 uses automatic differentiation whereas RMPflow uses a
message passing routine). These two paramertizations therefore
have the same representation power, but potentially the RMP2

policies are more computationally efficient, because the tree
structure used in RMPflow may not be the most natural way
to describe the task map.

Learnable leaf RMPs: One way to parameterize RMP2

policies is through parameterizing leaf RMPs in RMP2. There
have been existing work exploring various ways to represent
RMPs with neural networks so that the resulting policy can
have certain theoretical properties, e.g. positive-definiteness
of importance weight matrices [27], Lyapunov-type stability
guarantees [22, 27], etc.

Learnable task maps: Perhaps less obviously, one can also
learn the task maps. For example, existing work has developed
task map learning techniques such that the latent space policies
take in simple forms or are easier to be learned [28, 37]. These
task map learning techniques can be easily realized when
learning RMP2 polices.

B. Learning Setups

Because RMP2 is based on automatic differentiation, it can
be implemented naturally within the typical machine learning
pipelines. Below we discuss common scenarios.

Supervised Learning: When there is an expert policy, one
common scenario for robot learning is behavior cloning [26],
which minimizes the empirical difference between the learner
and expert policies on a dataset collected by the expert policy.
Gradient-based algorithms are often used to minimize the error,
which requires computing the derivative of the acceleration-
based policy with respect to the parameters. Due to the difficulty

in differentiating through the RMPflow algorithm, most existing
work on learning the RMPs with supervised learning either
differentiates through an approximate algorithm (e.g. without
the curvature terms) [21], or learn with a trivial task map [27].
By contrast, using our proposed RMP2 algorithm, we can easily
combine gradient-based learning algorithm with arbitrary task
map or RMP parameterizations.

Reinforcement Learning: In reinforcement learning (RL)
applications, one can choose whether to differentiate through
the RMP2 algorithm: One can either choose RMP2 as part of
the policy, or as a component of the environment dynamics.
This choice can be made in consideration of the policy
parameterization. For example, if a large number of leaf RMPs
is parameterized, it could be beneficial to consider RMP2 as
part of the policy and differentiate through it, because otherwise
it will result in a high-dimensional action space for RL. On the
other hand, if RMP2 is considered as part of the environment,
the output of the parameterized RMPs or parameterized task
maps are treated as the action in RL, and there is no need to
differentiate through RMP2. When there is only a single low-
dimensional leaf RMP to be learned, it might be convenient
to consider RMP2 as part of the environment so that policy
update is faster.2 Recently Aljalbout et al. [2] explored learning
collision avoidance RMPs with the RMPflow algorithm as a
component of the environment.

C. Learning with Residuals

For many robotics tasks, hand-crafted RMPs [6] can provide
a possibly sub-optimal but informative prior solution to the
task or some subtasks (e.g. avoiding collision, respecting joint
limits, etc.). In many cases, making use of these hand-crafted
RMPs within RMP2 policies can benefit learning, as it could
provide a reasonable initialization for the learner and, for RL,
an initial state visitation distribution with higher rewards.

Residual Acceleration Learning: Perhaps the most
straightforward solution is to learn the residual policy of the
RMP2 policy using universal functional approximators, e.g.
neural networks [14]. As we show in the experiments, this can
often provide a significant improvement to the performance
compared to randomly initialized policies, especially when the
tasks are more challenging.

Residual RMP learning: Another option is to learn a
residual leaf RMP with a universal functional approximator
(i.e. the leaf RMP is initialized as the hand-crafted RMP).
In this way, the structure of the RMP2 policy is preserved.
As is shown in the experiments, residual RMP learning can
perform significantly better than randomly initialized neural
network policies, and can sometimes learn faster than the
residual acceleration learning approach.

V. EXPERIMENTS

A. Three-Link Robot Reaching

We first consider a three-link robot simulated by the PyBullet
physics engine [11]. The robot has 3 links, each of length 0.25

2The time for differentiating through RMP2 is a constant factor more than
the time required for computing RMP2, which is still reasonably fast.
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Fig. 1: Mean episode reward over training iterations for the three-link robot reaching task. See text for details.
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Fig. 2: Percentage of safe episodes over training iterations for the Franka robot reaching task. See text for details.
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Fig. 3: (a)–(b) PyBullet simulation for the three-link robot reaching task (a) and the Franka robot reaching task (b). (c)–(d)
Mean episode reward (c) and safe episode percentage (d) over training iterations for the Franka reaching task.

m. The workspace of the robot is a 2-dimensional disk of radius
0.75 m. The z-coordinates of all links are different so that the
links cannot collide into one another. The objective here is for
the robot to move the tip of the last link (i.e., the end-effector
of the robot) to a randomly generated goal location while
avoiding randomly generated cylinders, as shown in Fig. 3 (a).
Acceleration-based control is realized through a low-level PD
tracking controller, where the acceleration motion policy π
generates the desired reference state for the PD controller. The
robot does not have joint limits but have joint velocity limit
of 1.0 rad/s for all joints.

Environment Setups: The robot is initialized at a random
configuration within a small range (±0.1rad) around the zero-
configuration (all links pointing right) and at a random low
joint velocity within [−0.005, 0.005] rad/s.

The (2-dimensional) center of the base of each obstacle is
sampled from an annulus centered at the origin with outer
radius 0.9 m and inner radius 0.4 m, and the radius is sampled
uniformly from [0.05, 0.1] m. The height of the cylinder is
fixed at 0.5 m, which would result in collision if the x, y-

coordinates of any points on the robot intersect with the cylinder.
The consideration behind this obstacle configuration is that
their intersection with the workspace is usually non-zero, and
they would not result in a configuration where the goal is
not achievable. The initial configurations of the environment
also ensures a minimum of 0.1 m between the goal and any
obstacles as well as that between the initial configuration of
the robot and any obstacles (otherwise, the initialization is
rejected, and the goal and obstacle(s) are re-sampled).

We consider three environment setups for the three-link robot
with increasing difficulty:

• Env 1 (small goal range; 1 obstacle): the goal is sampled
from the intersection of an octants (sector with central
angle π/2) at the origin and an annulus with outer radius
0.275 m and inner radius 0.475 m. One obstacle is
sampled from the procedure described above;

• Env 2 (small goal range; 3 obstacles): the goal is sampled
from the same region as Env 1. Three obstacles are
sampled through the same procedure;
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• Env 3 (large goal range; 3 obstacles): the goal is sampled
from the intersection of the left half-disk and an annulus
with outer radius 0.125 m and inner radius 0.625 m.

Env 2 is more difficult than Env 1 as there are more
obstacles. Env 3 is the most complicated scenario as it has a
larger range of random goals, which is known to be challenging
for RL algorithms [3]. Moreover, although the goals here are
generally closer than the previous 2 environment setups, this
also increase the frequency of the scenarios where the obstacles
are directly obstructing the way to the goal, requiring a more
sophisticated policy.

Inspired by [17], we define the reward function as, r =

exp
(
‖x−g‖22

2σ2

)
+
∑N
i=1 max

(
0, 1− di

δ

)
− λ‖τ‖2, where x is

the position of the end-effector of the robot, g is the goal
position, di is the distance between the robot and the ith
obstacle, and τ is the torque applied to the robot by the low-
level PD controller. The scalars σ, δ, and λ are the characteristic
length scale of the goal reward, characteristic length scale of
the obstacle cost, and the multiplier for the actuation cost. We
choose σ = 0.1, δ = 0.05, and λ = 1× 10−5. Further, we clip
the reward if it is smaller than −5 so that the reward is in the
range of [−5, 1] for each step.

The horizon of each episode is 600 steps, giving the episode
reward a range of [−3000, 600]. For each step, the acceleration
command is applied to the low-level PD-controller, and the
simulation proceeds for 0.0125s (simulation time). Therefore,
each episode is 7.5s (simulation time) of policy rollout. The
episode can end early if the robot collides with an obstacle.

Policies: We compare the results for learning with the fol-
lowing 3 types of policies, all implemented in TensorFlow [1].

NN: A randomly initialized 3-layer neural network policy
with relu activation function and hidden layers of sizes 256
and 128, respectively. The input to the neural network policy
consists of [sin(q), cos(q), q̇, g−x, {vi}i, {oi}i], where vi
is the vector pointing from the i-th obstacle and its closest
point on the robot, and oi denotes the center position and
radius of the i-th obstacle. The output of the policy is the
3-dimensional joint acceleration.

NN-RESIDUAL: A residual neural network policy to a
hand-designed RMP2 policy. The input and neural network
architecture here are the same as the randomly-initialized case
above. However, the joint acceleration now is the sum of the
output of the residual policy and the hand-designed RMP2

policy. The hand-designed RMP2 policy consists of a joint
damping RMP, a joint velocity limit RMP, collision avoidance
RMPs, and a goal attractor RMP [6].

RMP-RESIDUAL: A residual RMP policy on the 2-
dimensional end-effector space, which is the residual to a
hand-designed goal attractor RMP (same as the one used for
NN-RESIDUAL). The residual RMP policy is parameterized
as a 3-layer neural network with hidden layer sizes 128 and 64.
We use elu activation function for the neural network. The input
to the residual RMP policy consists of [x, ẋ,g, {oi}i], which
are the end effector position, velocity, and the information
of goal and obstacle(s). The output of the neural network

is (the concatenation of) a matrix Ar ∈ R2×2 and a residual
acceleration vector ar ∈ R2. Let (Ma,aa) be the output for the
hand-designed attractor, the output of the residual RMP policy
is then, M = (Ar + chol(Ma))(Ar + chol(Ma))

> and
a = ar + aa, where chol(·) is the lower-triangular Cholesky
decomposition of the matrix. This parameterization ensures that
the importance weight M is always positive-semidefinite, and
the output is close to the hand-designed RMP when the neural
network is initialized with weights close to zero. The output of
the residual RMP policy, is combined with other hand-designed
RMPs (the same set of RMPs with NN-RESIDUAL) with
RMP2 to produce the joint acceleration. Since we are learning
a low-dimensional RMP, as is discussed in Section IV, it is
more convenient to consider RMP2 as part of the environment
so that the policy update is faster.

Training Details: We train the three policies under the
three environment setups by Proximal Policy Optimization
(PPO) [34], implemented by RLlib [20], for 500 training
iterations. For each iteration, we collect a batch of 67312
interactions with the environment (112 episodes if there is
not collision). We use a learning rate of 5× 10−5, PPO clip
parameter of 0.2. To compute the policy gradient, we use
Generalized Advantage Estimation (GAE) [33] with λ = 0.99.
The value function is parameterized by a neural network with
2 hidden layers (of sizes 256 and 128, respectively) and tanh
activation function.

Results: The mean episode reward and percentage of safe
episodes over training iterations for the three environment
setups are shown in Fig. 1 and Fig. 2, respectively. The curve
and the shaded region show the average, and the region within
1 standard deviation from the mean over 4 random seeds.

For env 1 with small goal range and 1 obstacle, all three
policies manage to achieve high reward of around 400 (meaning
that, on average, the robot stays very close to the goal for at
least 400 steps out of the 600 steps) with a similar number
of iterations. The random-initialized neural network (NN)
conducts a large number of unsafe exploration, especially
during the first 200 iterations, as shown in Fig. 2 (a). The
other two policies manage to learn a good policy without
many collisions as the red and blue curves stay close to 100%
throughout training.

For env 2 with 3 obstacles, the randomly-initialized neural
network policy (NN) learns slightly faster than the other two
polices, though it has a higher variance (shown by the large gray
shaded region in Fig. 1 (b)). Notably, although the reward seems
high, the resulting policies are not safe, as shown in Fig. 2 (b).
This reflects the difficulty of reward design: as high reward
policies do not necessarily have desirable behaviors. On the
contrary, the residual RMP policy (RMP-RESIDUAL) achieves
similar reward but is able to keep the number of collisions low.
The residual neural network policy (NN-RESIDUAL) improves
rather slowly, possibly due to the lack of knowledge about the
internal structure of RMP2.

For env 3 with large goal range and 3 obstacles, the
neural netowrk policy (NN) struggles to achieve reasonable
performance under 500 training iterations, and the collision rate
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remains high. The performance improvement for the reisual
neural network policy (NN-RESIDUAL) is also slow, with
a slope similar to the neural network policy, though it starts
with a higher rewards. The residual RMP policy manages to
improve the performance by more than one-fold.

Remark: One may notice that the initial reward for the
residual policies is different for each experiment setup. For
example, the initial rewards for env 3 is significantly higher
than env 2. This is because we used the same hand-designed
RMP policy for all three setups, and in env 3, the goals are
generally initialized closer to the robot than the other two steps
(as discussed, this does not make env 3 easier however).

B. Franka Robot Reaching

We additionally train the three aforementioned policies on a
simulated 7-degree-of-freedom Franka manipulator on PyBullet.
The environment setup is similar to the three-link robot reaching
task, although the initial configuration is a centered position,
as shown in Fig. 3 (b). We randomly sample 3 ball obstacles,
where the center is sampled a half-torus of major radius 0.5
m, minor radius 0.3 m, and height 0.5 m; and the radius is
uniformly sampled from [0.05, 0.1] m. The goal is sampled
from the same half-torus, but the distance between the goal
and initial end-effector position needs to be at least 0.5 m.
The Franka reaching task is more challenging than the three-
link robot reaching task as the states are of higher-dimension;
however, it is easier in the sense that it has higher degrees of
freedom to avoid collision with obstacles.

Results The mean episode reward and safe percentage of the
three polices for the Franka reaching task is shown in Fig. 3
(right 2). Again, the neural network policy (NN) struggles
to learn a good policy and avoid collision with obstacles.
The residual neural network policy (NN-RESIDUAL) achieves
slightly higher reward than the residual RMP policy (RMP-
RESIDUAL), possibly because it has higher degree-of-freedoms
to control the robot and the learning of the residual RMP
policy (RMP-RESIDUAL) has not fully converged. Notably,
the residual RMP policy (RMP-RESIDUAL) maintain zero
collisions throughout the training process.
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APPENDIX A
THE RMPFLOW ALGORITHM

Here we describe the message passing steps of RMPflow [6].
As is noted in [5], this message passing routine effectively uses
the duality of (1) and the sparsity in the task map to efficiently
compute ar.

The RMPflow algorithm (Algorithm 1) is based on two
components: 1) the RMP-tree: a directed tree encoding the
structure of the task map; and 2) the RMP-algebra: a set of
operations to propagate information across the RMP-tree.

In the RMP-tree, a node u stores the state (xu, ẋu) on a
manifold Mu and the associated RMP (au,Mu). We define
the natural form of an RMP as [fu,Mu], where fu = Muau is
the force. An edge e represents a smooth map ψe from the
parent node manifold to a child node manifold. The root node
of the RMP-tree (denoted as r) and the leaf nodes correspond
to the configuration space C and the subtask spaces {Tk}Kk=1

on which the subtask RMPs are hosted.
The RMP-algebra comprises of three operators, which are

for propagating information on the RMP-tree. For illustration,
we consider the node u on a manifold M with coordinates x
and its M child nodes {vm}Mm=1 with coordinates {ym}Mm=1

on the RMP-tree.

(i) pushforward propagates the state of a node (x, ẋ)
in the RMP-tree to update the states of its M child
nodes {(ym, ẏm)}Mm=1. The state of its mth child node is
computed as (ym, ẏm) = (ψvm;u(x),Jvm;u(x) ẋ), where
ψm is the smooth map of the edge connecting the two
nodes and Jvm;u = ∂xψvm;u is the Jacobian matrix.

(ii) pullback propagates the RMPs of the child nodes in
the natural form, {[fvm ,Mvm ]}Mm=1, to the parent node
as [fu,Mu]:

fu =

M∑
m=1

J>vm;u(fvm −Mvm J̇vm;uẋ),

Mu =

M∑
m=1

J>vm;uMvmJvm;u.

(7)

The natural form of RMPs are used here since they can
be combined more efficiently.

(iii) resolve maps an RMP from its natural form [fu,Mu]
to its canonical form (au,Mu) by au = M†u fu, where †
denotes Moore-Penrose inverse.

RMPflow in Algorithm 1 computes the policy π(q, q̇) = ar on
the configuration space C through the following procedure.
Given the state (q, q̇) of the configuration space C, the
pushforward operator is first recursively applied to the
RMP-tree to propagate the states up to the leaf nodes. Then,
the subtask RMPs are evaluated on the leaf nodes and combined
recursively backward along the RMP-tree by the pullback
operator. The resolve operator is finally applied on the root
node r to compute the desired acceleration π(q, q̇) = ar.

APPENDIX B
COMPLEXITY ANALYSIS

A. Complexity Analysis of RMP2

We analyze the time and space complexities of RMP2. We
show that RMP2 has a time complexity of O(Nbd3) and a
memory complexity of O(Nd + Ld2), where N is the total
number of nodes, L is the number of leaf nodes, b is the
maximum branching factor, and d is the maximum dimension
of nodes. In comparison, we prove in Appendix B-B that the
original RMPflow algorithm (Algorithm 1) by [6] has a time
complexity of O(Nbd3) and a worse space complexity of
O(Nd2 + Ld2). Please see Table I for a summary.

Specifically, consider a directed-acyclic-graph-structured task
map with N nodes, where each node has dimension in O(d)
and has at most b parents. We suppose that L ≤ N nodes are
leaf nodes, and that the automatic differentiation library is based
on reverse-mode automatic differentiation. We first analyze the
complexity of task map evaluation and Jacobian-vector-product
subroutine (Algorithm 2) based on reverse accumulation in
preparation for the complexity analysis for RMP2.

Task map evaluation: For each node in the graph, the
input and output dimensions are bounded by O(bd) and O(d),
respectively. Hence, evaluating each node has a time complexity
in O(bd2). Because each node is evaluated exactly once in in
computing the full task map, the total time complexity of task
map evaluation is O(Nbd2). If the Gradient Oracle gradient
will be called (as in RMP2), the value of each node needs to
be stored in preparation for the gradient computation. Overall
this would require a space complexity in O(Nd) to store the
values in the entire graph.

Jacobian-vector product with L output nodes: Suppose
that the output of the graph in Algorithm 2 is a collection of
L nodes in the graph. During reverse accumulation, the task
map is first computed, which, based on the previous analysis,
has time and space complexity of O(Nbd2) and O(Nd),
respectively. The dummy variable λ is of size O(Ld) and
computing the inner product λ>v requires O(Ld) computation
(i.e. it creats a new node of dimension 1 with 2L parent
nodes of dimension in O(d)). By the reverse-mode automatic
differentiation assumption, the first backward pass on the graph
(line 4) has time complexity of O(Nbd2 + Ld) = O(Nbd2)
and space complexity of O(Nd + Ld) = O(Nd) [13]. The
final backward pass (line 5) is on a graph of size O(N),
as the first backward pass creates additional O(N) nodes.
With a similar analysis, the second backward pass have
time complexity of O(Nbd2 + Ld) = O(Nbd2) and space
complexity of O(Nd+Ld) = O(Nd). Therefore, the time and
space complexity of Algorithm 2 is O(Nbd2) and O(Nd).

Forward pass: The complexity of line 3–5 in Algorithm 3
follows the analyses above. Here the computation graph is
always of size O(N) (the original task map is in O(N) and
each call of Gradient Oracle gradient in the Jacobian-vector-
product subroutine jvp creates additional O(N) nodes in the
computation graph). By previous analysis, the time and space
complexity of the forward pass are O(Nbd2) and O(Nd).
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(a) task map structure

Reshape

(b) Policy structure (c) Computation time

Fig. 4: (a) task map and (b) policy structure for benchmarking the complexity of the algorithms. (c) The computation time of
RMP2 and the naïve implementation (direct) on chain-structured graphs with varying lengths. The results show that RMP2 has
a linear time complexity whereas the naïve implementation (direct) has a super-linearly time complexity.

Leaf evaluation: Assume, for each leaf node, O(d3)
computation is needed for evaluating the importance weight
matrix and O(d2) for acceleration in an RMP. The leaf
evaluation step then has time complexity of O(Ld3) and space
complexity of O(Ld2 + Ld) = O(Ld2).

Backward pass: By previous analyses, task map evaluation
requires O(Nbd2) computation and O(Nd) space. The vector-
matrix-vector product for computing auxiliary variables r and
s has time complexity of O(Ld2). To compute the importance
weight matrix at the root, Mr, the first backward pass,
gradient(r,q), needs O(Nbd2) time and O(Nd) space
as it operates on a graph of size O(N) where the number of
parents of each node is in O(b)3. The jacobian operator in
line 10 is done by O(d) sequential calls of the Gradient Oracle
gradient. Hence, it has a time complexity of O(Nbd3) and
a space complexity of O(Nd). (If we are not taking further
derivatives, the values of the new graphs created in calling
the jacobian operator do not need to be stored.) With a
similar analysis, computing fr requires O(Nbd3) computation
and O(Nd) space.

Resolve: The matrix inversion has time complexity of O(d3)
and space complexity of O(d2).

In summary, the time complexity of RMP2 is O(Nbd2 +
Ld3 +Nbd3 + d3) = O(Nbd3) and the space complexity is
O(Nd+ Ld2).

B. Complexity of RMPflow

First we need to convert a graph with O(b) parent nodes into
a tree. This can be done by creating meta nodes that merge
all the parents of a node into a single parent node; inside
the mega node, each component is computed independently.
Therefore, for a fair comparison, in the following analysis,
we shall assume that in the tree version evaluating each node
would need a time complexity in O(bd2). We suppose the space
complexity to store all the nodes is still in O(Nd) because the
duplicated information resulting from the creation of the meta
nodes can be handled by sharing the same memory reference
in a proper implementation [6].

3Except the final node aggregating L outputs. However, it does not change
the complexity as it adds a complexity in O(Ld2) < O(Nbd2).

Forward pass: During the forward pass, similar to the
reverse accumulation analysis, O(bd2) per node is needed
for pushforward, i.e. computing the pushforward velocity
through reverse accumulation, yielding a time complexity of
O(Nbd2). The space complexity is O(Nd) for storing the state
at every node.

Leaf evaluation: Same as RMP2.
Backward pass: Computing the metric in (7) requires

O(bd3) computation per node, yielding time complexity of
O(Nbd3) and space complexity of O(Nd2). The curvature
term J̇vm;uẋ can be computed through reverse accumulation
similar to RMP2, which has time complexity of O(bd2) per
node. The matrix-vector products to compute the force requires
O(bd2) space and computation for each node.

Resolve: Same as RMP2.
Thus, the time complexity of RMPflow is O(Nbd2 +Ld3 +

Nbd3 +Nbd2 + d3) = O(Nbd3) and the space complexity is
O(Nd+ Ld2 +Nd2 + bd2 + d2) = O(Nd2 + Ld2).

APPENDIX C
EXPERIMENTAL VALIDATION OF TIME COMPLEXITY

We validate the time complexity analysis for RMP2 and the
naïve implementation (Algorithms 3 and 4, respectively). In
particular, we are interested in how the two algorithms scale
with respect to the number of nodes in the graph.

We consider a directed chain-like graph of length l: Each
node on the chain is connected to b leaf nodes; every node in the
graph is of dimension d. Overall such a graph has 1+ (b+1)l
nodes, where bl nodes are leaf nodes. The task map structure
for the time complexity experiment is shown in Fig. 4. In the
experiment, we vary the length of the chain while fixing the
branching factor4 and the dimension of the nodes (b = d = 3).
The map associated with each edge is implemented as a single-
layer neural network with tanh activation function. Both
algorithms as well as the graph structure are implemented in
TensorFlow [1]. We consider chain length in [4, 8, 12, . . . , 36].

Fig. 4(c) shows the computation time of the two algorithms.
The computation time of RMP2 increases linearly with respect

4The branching factor and the chain length have similar effect to the size
of the graph and hence only the effect of chain length is evaluated.
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(a) The computational graph used by RMP2 (b) An example RMP-tree which can be used by RMPflow

Fig. 5: (a) The computation graph automatically built by automatic differentiation libraries when computing control point
positions. RMP2 directly operates on this graph. (b) An example RMP-tree constructed for the same problem under similar
strategy as [6, Appendix D]. It introduces intermediate high-dimensional nodes as well as redundant computation. In both
figures, qi is the joint angle of the i-th joint, xi is the pose (position and orientation) of the i-th link, and x0 is the base pose.

to the size of the graph whereas the naïve implementation
(direct) suffers from a super-linear growth. The computation
time reported in Fig. 4(c) is the average over 1000 runs of
the algorithms with random input on a static computational
graph in TensorFlow [1]. The constant time required to compile
the static computational graph is not included in the reported
average computation time.

APPENDIX D
RMP2 VERSUS RMPFLOW: A CASE STUDY

In this appendix, we demonstrate how RMP2 provides a more
convenient interface for the user. Consider the planar three-link
robot from the experiment section (Fig. 3 (a)). Assume that the
subtask spaces are with the positions of control points along
the robot arm. In Fig. 5, for example, there are 9 spaces, each
corresponding to the position of one control point on the robot.
This type of subtask space is useful for specifying behaviors
such as collision avoidance, where we need each control point
to avoid collision with obstacles in the environment.

Intuitively, to compute control point positions along the
robot, we can first compute the pose of each link, {xi}3i=1,
through the kinematic chain of the robot, where xi ∈ SE(2)
denotes the position and orientation of the i-th link. Then,
control point positions can be obtained through interpolating
the positions of any two adjacent links. Fig. 5(a) shows the
computational graph that is automatically built through the
above computation, where green nodes denote joint angles,
yellow nodes denote link poses, and orange nodes denote
control point positions. As is introduced in Section III, RMP2

directly uses the computational graph as the core data structure
and compute the policy through calling the Gradient Oracles
provided by automatic differentiation libraries.

In contrast, RMPflow (see Appendix A) requires the user
to specify a tree data structure called the RMP-tree. In the

RMP-tree structure, it is required that the states in the parent
node contain sufficient information for computing the child
node states (see the pushforward operator in Appendix A).
Here we use an RMP-tree structure (Fig. 5(b)) similar to what
is introduced in [6, Appendix D]. The root node includes x0,
the pose of the base, as well as all joint angles {qi}3i=1 as we
need all these quantities to compute control point positions.
Then, the RMP-tree branches out to compute the control points
on each link. To compute the control point positions for the
first link, we need the poses5 of the base link and link 1,
(x0, x1) ∈ (SE(2))2, similarly for the other two links. This
gives us an RMP-tree structure shown in Fig. 5(b). Note that
computationally, to compute the poses of link 3, for example,
we need to compute the poses for all previous links, as is
shown in the light yellow nodes on the path for the second
and third links. Therefore, not only does the construction of
RMP-tree cost additional effort, it also introduces nodes with
high dimensions (e.g. SE(2)×R2) and redundant computation
(the forward mapping for the first link is computed by all three
branches) under less careful design choices. These, in turn,
impair the computational efficiency of RMPflow as the time
complexity is a function of node dimension and node number.

Moreover, RMP2 allows us to specify complicated task maps
more easily. For example, if one would like to additionally
consider self-collision avoidance (even though it is not relevant
to the planar three-link robot). For RMP2, one can directly
compute the distance between any two control points from
different links, creating child nodes to pairs of control point
position nodes. However, RMPflow requires the user to redesign
the RMP-tree structure entirely, creating even more intermediate
nodes due to the limitation of the tree structure.

5Only the positions are sufficient. However, we use poses here to make the
notation more compact.
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