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Abstract. We develop a novel policy synthesis algorithm, RMPflow,
based on geometrically consistent transformations of Riemannian Mo-
tion Policies (RMPs). RMPs are a class of reactive motion policies de-
signed to parameterize non-Euclidean behaviors as dynamical systems
in intrinsically nonlinear task spaces. Given a set of RMPs designed for
individual tasks, RMPflow can consistently combine these local policies
to generate an expressive global policy, while simultaneously exploiting
sparse structure for computational e�ciency. We study the geometric
properties of RMPflow and provide su�cient conditions for stability. Fi-
nally, we experimentally demonstrate that accounting for the geometry of
task policies can simplify classically di�cult problems, such as planning
through clutter on high-DOF manipulation systems.
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1 Introduction

In this work, we develop a new motion generation and control framework that en-
ables globally stable controller design within intrinsically

4 non-Euclidean spaces.
Non-Euclidean geometries are not often modeled explicitly in robotics, but are
nonetheless common in the natural world. One important example is the ap-
parent non-Euclidean behavior of obstacle avoidance. Obstacles become holes in
this setting. As a result, straight lines are no longer a reasonable definition of
shortest distance—geodesics must, therefore, naturally flow around them. This
behavior implies a form of non-Euclidean geometry: the space is naturally curved
by the presence of obstacles.

The planning literature has made substantial progress in modeling non-
Euclidean task-space behaviors, but at the expense of e�ciency and reactivity.
Starting with early di↵erential geometric models of obstacle avoidance [1] and
building toward modern planning algorithms and optimization techniques [2–
9], these techniques can calculate highly nonlinear trajectories. However, they
are often computationally intensive, sensitive to noise, and unresponsive to per-
turbation. In addition, the internal nonlinearities of robots due to kinematic
constraints are sometimes simplified in the optimization.

4 An intrinsically non-Euclidean space is one which is defined by a non-constant Rie-
mannian metric with non-trivial curvature.
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At the same time, a separate thread of literature, emphasizing fast reactive
control over computationally expensive planning, developed e�cient closed-loop
control techniques such as Operational Space Control (OSC) [10]. But while these
techniques account for internal geometries from the robot’s kinematic structure,
they assume simple Euclidean geometry in task spaces [11, 12], failing to provide
a complete treatment of the external geometries. As a result, obstacle avoidance,
e.g., has to rely on extrinsic potential functions, leading to undesirable deacce-
leartion behavior when the robot is close to the obstacle. If the non-Euclidean
geometry can be intrinsically considered, then fast obstacle avoidance motion
would naturally arise as traveling along the induced geodesic. The need for a
holistic solution to motion generation and control has motivated a number of
recent system architectures tightly integrating planning and control [13, 14].

We develop a new approach to synthesizing control policies that can ac-
commodate and leverage the modeling capacity of intrinsically non-Euclidean
robotics tasks. Taking inspiration from Geometric Control Theory [15],5 we de-
sign a novel recursive algorithm, RMPflow, based on a recently proposed math-
ematical object for representing nonlinear policies known as the Riemannian
Motion Policy (RMP) [16]. This algorithm enables the geometrically consistent
fusion of many component policies defined across non-Euclidean task spaces that
are related through a tree structure. We show that RMPflow, which generates
behavior by calculating how the robot should accelerate, mimics the Recursive
Newton-Euler algorithm [17] in structure, but generalizes it beyond rigid-body
systems to a broader class of highly-nonlinear transformations and spaces.

In contrast to existing frameworks, our framework naturally models non-
Euclidean task spaces with Riemannian metrics that are not only configuration
dependent, but also velocity dependent. This allows RMPflow to consider, e.g.,
the direction a robot travels to define the importance weights in combing policies.
For example, an obstacle, despite being close to the robot, can usually be ignored
if robot is heading away from it. This new class of policies leads to an extension
of Geometric Control Theory, building on a new class of non-physical mechanical
systems we call Geometric Dynamical Systems (GDS).

We also show that RMPflow is Lyapunov-stable and coordinate-free. In par-
ticular, when using RMPflow, robots can be viewed each as di↵erent parameteri-
zations of the same task space, defining a precise notion of behavioral consistency
between robots. Additionally, under this framework, the implicit curvature aris-
ing from non-constant Riemannian metrics (which may be roughly viewed as
position-velocity dependent inertia matrices in OSC) produces nontrivial and
intuitive policy contributions that are critical to guaranteeing stability and gen-
eralization across embodiments. Our experimental results illustrate how these
curvature terms can be impactful in practice, generating nonlinear geodesics
that result in curving or orbiting around obstacles. Finally, we demonstrate the
utility of our framework with a fully reactive real-world system on multiple dual-
arm manipulation problems.

5 See Appendix A.1 for a discussion of why geometric mechanics and geometric control
theory constitute a good starting point.
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2 Motion Generation and Control

Motion generation and control can be formulated as the problem of transforming
curves from the configuration space C to the task space T . Specifically, let C be
a d-dimensional smooth manifold. A robot’s motion can be described as a curve
q : [0,1) ! C such that the robot’s configuration at time t is a point q(t) 2 C.
Without loss of generality, suppose C has a global coordinate q : C ! Rd, called
the generalized coordinate; for short, we would identify the curve q with its co-
ordinate and write q(q(t)) as q(t) 2 Rd. A typical example of the generalized
coordinate is the joint angles of a d-DOF (degrees-of-freedom) robot: we de-
note q(t) as the joint angles at time t and q̇(t), q̈(t) as the joint velocities and
accelerations. To describe the tasks, we consider another manifold T , the task
space, which is related to the configuration space C through a smooth task map

 : C ! T . The task space T can be the end-e↵ector position/orientation [10,
18], or more generally can be a space that describes whole-body robot motion,
e.g., in simultaneous tracking and collision avoidance [19, 20]. The goal of motion
generation and control is to design the curve q so that the transformed curve
 � q exhibits desired behaviors on the task space T .

Notation For clarity, we use boldface to distinguish the coordinate-dependent
representations from abstract objects; e.g. we write q(t) 2 C and q(t) 2 Rd. In
addition, we will often omit the time- and input-dependency of objects unless
necessary; e.g. we may write q 2 C and (q, q̇, q̈). For derivatives, we use both
symbols r and @, with a transpose relationship: for x 2 Rm and a di↵erential
map y : Rm ! Rn, we write rxy(x) = @xy(x)> 2 Rm⇥n. For a matrix M 2
Rm⇥m, we denote m

i

= (M)
i

as its ith column and M
ij

= (M)
ij

as its (i, j)
element. To compose a matrix, we use (·)·· for vertical (or matrix) concatenation
and [·]·· for horizontal concatenation. For example, we write M = [m

i

]m
i=1

=
(M

ij

)m
i,j=1

and M> = (m>
i

)m
i=1

= (M
ji

)m
i,j=1

. We use Rm⇥m

+

and Rm⇥m

++

to
denote the symmetric, positive semi-definite/definite matrices, respectively.

2.1 Motion Policies and the Geometry of Motion

We model motion as a second-order di↵erential equation6 of q̈ = ⇡(q, q̇), where
we call ⇡ a motion policy and (q, q̇) the state. In contrast to an open-loop
trajectory, which forms the basis of many motion planners, a motion policy
expresses the entire continuous collection of its integral trajectories and therefore
is robust to perturbations. Motion policies can model many adaptive behaviors,
such as reactive obstacle avoidance [21, 13] or responses driven by planned Q-
functions [22], and their second-order formulation enables rich behavior that
cannot be realized by the velocity-based approach [23].

The geometry of motion has been considered by many planning and control
algorithms. Geometrical modeling of task spaces is used in topological motion
planning [3], and motion optimization has leveraged Hessian to exploit the nat-
ural geometry of costs [24, 5, 25, 26]. Ratli↵ et al. [2], e.g., use the workspace ge-

6 We assume the system has been feedback linearized. A torque-based setup can be
similarly derived by setting the robot inertia matrix as the intrinsic metric on C [11].
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Fig. 1: Tree-structured task maps

ometry inside a Gauss-Newton optimizer and generate natural obstacle-avoiding
reaching motion through traveling along geodesics of curved spaces.

Geometry-aware motion policies were also developed in parallel in controls.
OSC is the best example [10]. Unlike the planning approaches, OSC focuses on
the internal geometry of the robot and considers only simple task-space geometry.
It reshapes the workspace dynamics into a simple spring-mass-damper system
with a constant inertia matrix, enforcing a form of Euclidean geometry in the
task space. Variants of OSC have been proposed to consider di↵erent metrics [27,
11, 20], task hierarchies [19, 28], and non-stationary inputs [29].

While these algorithms have led to many advances, we argue that their iso-
lated focus on either the internal or the external geometry limits the perfor-
mance. The planning approach fails to consider reactive dynamic behavior; the
control approach cannot model the e↵ects of velocity dependent metrics, which
are critical to generating sensible obstacle avoidance motions, as discussed in
the introduction. While the benefits of velocity dependent metrics was recently
explored using RMPs [16], a systematic understanding is still an open question.

3 Automatic Motion Policy Generation with RMPflow

RMPflow is an e�cient manifold-oriented computational graph for automatic
generation of motion policies. It is aimed for problems with a task space T =
{T

li} that is related to the configuration space C through a tree-structured task
map  , where T

li is the ith subtask. Given user-specified motion policies {⇡
li}

on {T
li} as RMPs, RMPflow is designed to consistently combine these subtask

policies into a global policy ⇡ on C. To this end, RMPflow introduces 1) a data
structure, called the RMP-tree, to describe the tree-structured task map  and
the policies, and 2) a set of operators, called the RMP-algebra, to propagate
information across the RMP-tree. To compute ⇡(q(t), q̇(t)) at time t, RMPflow
operates in two steps: it first performs a forward pass to propagate the state
from the root node (i.e. C) to the leaf nodes (i.e. {T

li}); then it performs a
backward pass to propagate the RMPs from the leaf nodes to the root node.
These two steps are realized by recursive use of RMP-algebra, exploiting shared
computation paths arising the tree structure to maximize e�ciency.

3.1 Structured Task Maps

In most cases, the task-space manifold T is structured. In this paper, we con-
sider the case where the task map  can be expressed through a tree-structured
composition of transformations { 

ei}, where  ei is the ith transformation. Fig. 1
illustrates some common examples. Each node denotes a manifold and each edge
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denotes a transformation. This family trivially includes the unstructured task
space T (Fig. 1a) and the product manifold T = T

l1 ⇥ · · ·⇥T
lK (Fig. 1b), where

K is the number of subtasks. A more interesting example is the kinematic tree
(Fig. 1c), where, e.g., the subtask spaces on the leaf nodes can describe the
tracking and obstacle avoidance tasks along a multi-DOF robot.

The main motivation of explicitly handling the structure in the task map  is
two-fold. First, it allows RMPflow to exploit computation shared across di↵erent
subtask maps. Second, it allows the user to focus on designing motion policies
for each subtask individually, which is easier than directly designing a global
policy for the entire task space T . For example, T may describe the problem
of humanoid walking, which includes staying balanced, scheduling contacts, and
avoiding collisions. Directly parameterizing a policy to satisfy all these objectives
can be daunting, whereas designing a policy for each subtask is more feasible.

3.2 Riemannian Motion Policies (RMPs)

Knowing the structure of the task map is not su�cient for consistently combin-
ing subtask policies: we require some geometric information about the motion
policies’ behaviors [16]. Toward this end, we adopt an abstract description of
motion policies, called RMPs [16], for the nodes of the RMP-tree. Specifically,
let M be an m-dimensional manifold with coordinate x 2 Rm. The canonical

form of an RMP on M is a pair (a,M)M, where a : Rm ⇥ Rm ! Rm is a
continuous motion policy and M : Rm ⇥ Rm ! Rm⇥m

+

is a di↵erentiable map.
Borrowing terminology from mechanics, we call a(x, ẋ) the desired acceleration

and M(x, ẋ) the inertia matrix at (x, ẋ), respectively.7 M defines the direc-
tional importance of a when it is combined with other motion policies. Later in
Section 4, we will show that M is closely related to Riemannian metric, which
describes how the space is stretched along the curve generated by a; when M
depends on the state, the space becomes non-Euclidean. We additionally intro-
duce a new RMP form, called the natural form. Given an RMP in its canonical
form (a,M)M, the natural form is a pair [f ,M]M, where f = Ma is the desired

force map. While the transformation between these two forms may look trivial,
their distinction will be useful later when we introduce the RMP-algebra.

3.3 RMP-tree

The RMP-tree is the core data structure used by RMPflow. An RMP-tree is a
directed tree, in which each node represents an RMP and its state, and each
edge corresponds to a transformation between manifolds. The root node of the
RMP-tree describes the global policy ⇡ on C, and the leaf nodes describe the
local policies {⇡

li} on {T
li}. To illustrate, let us consider a node u and its K child

nodes {v
i

}K
i=1

. Suppose u describes an RMP [f ,M]M and v
i

describes an RMP
[f
i

,M
i

]Ni , whereN
i

=  
ei(M) for some  

ei . Then we write u = ((x, ẋ), [f ,M]M)
and v

i

= ((y
i

, ẏ
i

), [f
i

,M
i

]Ni); the edge connecting u and v
i

points from u to v
i

along  
ei . We will continue to use this example to illustrate how RMP-algebra

propagates the information across the RMP-tree.

7 Here we adopt a slightly di↵erent terminology from [16]. We note that M and f do
not necessarily correspond to the inertia and force of a physical mechanical system.
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3.4 RMP-algebra

The RMP-algebra consists of three operators (pushforward, pullback, and
resolve) to propagate information.8 They form the basis of the forward and
backward passes for automatic policy generation, described in the next section.

1. pushforward is the operator to forward propagate the state from a parent
node to its child nodes. Using the previous example, given (x, ẋ) from u,
it computes (y

i

, ẏ
i

) = ( 
ei(x),Ji

(x)ẋ) for each child node v
i

, where J
i

=
@x ei is a Jacobian matrix. The name “pushforward” comes from the linear
transformation of tangent vector ẋ to the image tangent vector ẏ

i

.
2. pullback is the operator to backward propagate the natural-formed RMPs

from the child nodes to the parent node. It is done by setting [f ,M]M with

f =
P

K

i=1

J>
i

(f
i

�M
i

J̇
i

ẋ) and M =
P

K

i=1

J>
i

M
i

J
i

(1)

The name “pullback” comes from the linear transformations of the cotangent
vector (1-form) f

i

�M
i

J̇
i

ẋ and the inertia matrix (2-form) M
i

. In summary,
velocities can be pushfowarded along the direction of  

i

, and forces and
inertial matrices can be pullbacked in the opposite direction.
To gain more intuition of pullback, we write pullback in the canonical
form of RMPs. It can be shown that the canonical form (a,M)M of the
natural form [f ,M]M above is the solution to a least-squared problem:

a = argmina0
1

2

P
K

i=1

kJ
i

a0 + J̇
i

ẋ� a
i

k2Mi
(2)

where a
i

= M†
i

f
i

and k · k2Mi
= h·,M

i

·i. Because ÿ
i

= J
i

ẍ+ J̇
i

ẋ, pullback
attempts to find an a that can realize the desired accelerations {a

i

} while
trading o↵ approximation errors with an importance weight defined by the
inertia matrix M

i

(y
i

, ẏ
i

). The use of state dependent importance weights
is a distinctive feature of RMPflow. It allows RMPflow to activate di↵erent
RMPs according to both configuration and velocity (see Section 3.6 for ex-
amples). Finally, we note that the pullback operator defined in this paper
is slightly di↵erent from the original definition given in [16], which ignores
the term J̇

i

ẋ in (2). While ignoring J̇
i

ẋ does not necessary destabilize the
system [20], its inclusion is critical to implement consistent policy behaviors.

3. resolve is the last operator of RMP-algebra. It maps an RMP from its nat-
ural form to its canonical form. Given [f ,M]M, it outputs (a,M)M with
a = M†f , where † denotes Moore-Penrose inverse. The use of pseudo-inverse
is because in general the inertia matrix is only positive semi-definite. There-
fore, we also call the natural form of [f ,M]M the unresolved form, as poten-
tially it can be realized by multiple RMPs in the canonical form.

3.5 Algorithm: Motion Policy Generation

Now we show how RMPflow uses the RMP-tree and RMP-algebra to generate a
global policy ⇡ on C. Suppose each subtask policy is provided as an RMP. First,

8 Precisely it propagates the numerical values of RMPs and states at a particular time.
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we construct an RMP-tree with the same structure as  , where we assign subtask
RMPs as the leaf nodes and the global RMP [f

r

,M
r

]C as the root node. With the
RMP-tree specified, RMPflow can perform automatic policy generation. At every
time instance, it first performs a forward pass: it recursively calls pushforward
from the root node to the leaf nodes to update the state information in each
node in the RMP-tree. Second, it performs a backward pass: it recursively calls
pullback from the leaf nodes to the root node to back propagate the values of
the RMPs in the natural form, and finally calls resolve at the root node to
transform the global RMP (f

r

,M
r

)C into its canonical form (a
r

,M
r

)C for policy
execution (i.e. setting ⇡(q, q̇) = a

r

).
The process of policy generation of RMPflow uses the tree structure for

computational e�ciency. For K subtasks, it has time complexity O(K) in the
worst case as opposed to O(K logK) of a naive implementation which does not
exploit the tree structure. Furthermore, all computations of RMPflow are carried
out using matrix-multiplications, except for the final resolve call, because the
RMPs are expressed in the natural form in pullback instead of the canonical
form suggested originally in [16]. This design makes RMPflow numerically stable,
as only one matrix inversion M†

r

f
r

is performed at the root node with both f
r

and M
r

in the span of the same Jacobian matrix due to pullback.

3.6 Example RMPs
We give a quick overview of some RMPs useful in practice (a complete discussion
of these RMPs are postponed to Appendix D). We recall from (2) thatM dictates
the directional importance of an RMP.

Collision/joint limit avoidance Barrier-type RMPs are examples that use
velocity dependent inertia matrices, which can express importance as a function
of robot heading (a property that traditional mechanical principles fail to cap-
ture). Here we demonstrate a collision avoidance policy in the 1D distance space
x = d(q) to an obstacle. Let g(x, ẋ) = w(x)u(ẋ) > 0 for some functions w and u.
We consider a motion policy such that m(x, ẋ)ẍ+ 1

2

ẋ2@
x

g(x, ẋ) = �@
x

�(x)� bẋ
and define its inertia matrix m(x, ẋ) = g(x, ẋ) + 1

2

ẋ@
ẋ

g(x, ẋ), where � is a po-
tential and b > 0 is a damper. We choose w(x) to increase as x decreases (close
to the obstacle), u(ẋ) to increase when ẋ < 0 (moving toward the obstacle), and
u(ẋ) to be constant when ẋ � 0. With this choice, the RMP can be turned o↵ in
pullback when the robot heads away from the obstacle. This motion policy is a
GDS and g is its metric (cf. Section 4.1); the terms 1

2

ẋ@
ẋ

g(x, ẋ) and 1

2

ẋ2@
x

g(x, ẋ)
are due to non-Euclidean geometry and produce natural repulsive behaviors.

Target attractors Designing an attractor policy is relatively straightforward.
For a task space with coordinate x, we can consider an inertia matrix M(x) � 0
and a motion policy such that ẍ = �re���(x)ẋ�M�1⇠M, where e�(x) ⇡ kxk is
a smooth attractor potential, �(x) � 0 is a damper, and ⇠M is a curvature term.
It can be shown that this di↵erential equation is also a GDS (see Appendix D.4).

Orientations As RMPflow directly works with manifold objects, orientation
controllers become straightforward to design, independent of the choice of coor-
dinate (cf. Section 4.4). For example, we can define RMPs on a robotic link’s



8 Cheng, Mukadam, Issac, Birchfield, Fox, Boots, Ratli↵

surface in any preferred coordinate (e.g. in one or two axes attached to an arbi-
trary point) with the above described attractor to control the orientation. This
follows a similar idea outlined in the Appendix of [16].

Q-functions Perhaps surprising, RMPs can be constructed using Q-functions
as metrics (we invite readers to read [16] for details on how motion optimizers
can be reduced to Q-functions and the corresponding RMPs). While these RMPs
may not satisfy the conditions of a GDS that we later analyze, they represent
a broader class of RMPs that leads to substantial benefits (e.g. escaping local
minima) in practice. Also, Q-functions are closely relate to Lyapunov functions
and geometric control [30]; we will further explore this direction in future work.

4 Theoretical Analysis of RMPflow

We investigate the properties of RMPflow when the child-node motion policies
belong to a class of di↵erential equations, which we call structured geometric

dynamical systems (structured GDSs). We present the following results.

1. Closure: We show that the pullback operator retains a closure of structured
GDSs. When the child-node motion policies are structured GDSs, the parent-
node dynamics also belong to the same class.

2. Stability: Using the closure property, we provide su�cient conditions for
the feedback policy of RMPflow to be stable. In particular, we cover a class
of dynamics with velocity-dependent metrics that are new to the literature.

3. Invariance: As its name suggests, RMPflow is closely related to di↵erential
geometry. We show that RMPflow is intrinsically coordinate-free. This means
that a set of subtask RMPs designed for one robot can be transferred to
another robot while maintaining the same task-space behaviors.

Setup We assume all that manifolds and maps are su�ciently smooth. For now,
we assume also that each manifold has a single chart; the coordinate-free analysis
is postponed to Section 4.4. All the proofs are provided in Appendix B.

4.1 Geometric Dynamical Systems (GDSs)

We define a family of dynamics useful to specify RMPs on manifolds. Let man-
ifold M be m-dimensional with chart (M,x). Let G : Rm ⇥ Rm ! Rm⇥m

+

,
B : Rm ⇥ Rm ! Rm⇥m

+

, and � : Rm ! R. The tuple (M,G,B,�) is called a
GDS if and only if

(G(x, ẋ) +⌅G(x, ẋ)) ẍ+ ⇠G(x, ẋ) = �rx�(x)�B(x, ẋ)ẋ, (3)

where⌅G(x, ẋ) := 1

2

P
m

i=1

ẋ
i

@
˙xgi

(x, ẋ), ⇠G(x, ẋ) :=
x

G(x, ẋ)ẋ� 1

2

rx(ẋ>G(x, ẋ)ẋ),

and
x

G(x, ẋ) := [@xgi

(x, ẋ)ẋ]m
i=1

. We refer to G(x, ẋ) as the metric matrix,
B(x, ẋ) as the damping matrix, and �(x) as the potential function which is lower-
bounded. In addition, we define M(x, ẋ) := G(x, ẋ) + ⌅G(x, ẋ) as the inertia

matrix, which can be asymmetric. We say a GDS is non-degenerate if M(x, ẋ) is
nonsingular. We will assume (3) is non-degenerate so that it uniquely defines a
di↵erential equation and discuss the general case in Appendix A.G(x, ẋ) induces
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a metric of ẋ, measuring its length as 1

2

ẋ>G(x, ẋ)ẋ. When G(x, ẋ) depends on
x and ẋ, it also induces the curvature terms ⌅(x, ẋ) and ⇠(x, ẋ). In a particu-
lar case when G(x, ẋ) = G(x), the GDSs reduce to the widely studied simple

mechanical systems (SMSs) [15], M(x)ẍ+C(x, ẋ)ẋ+rx�(x) = �B(x, ẋ)ẋ; in
this case M(x) = G(x) and the Coriolis force C(x, ẋ)ẋ is equal to ⇠G(x, ẋ).
The extension to velocity-dependent G(x, ẋ) is important and non-trivial. As
discussed in Section 3.6, it generalizes the dynamics of classical rigid-body sys-
tems, allowing the space to morph according to the velocity direction.

As its name suggests, GDSs possess geometric properties. Particularly, when
G(x, ẋ) is invertible, the left-hand side of (3) is related to a quantity aG =
ẍ+G(x, ẋ)�1(⌅G(x, ẋ)ẍ+ ⇠G(x, ẋ)), known as the geometric acceleration (cf.
Section 4.4). In short, we can think of (3) as setting aG along the negative natural
gradient �G(x, ẋ)�1rx�(x) while imposing damping �G(x, ẋ)�1B(x, ẋ)ẋ.

4.2 Closure
Earlier, we mentioned that by tracking the geometry in pullback in (1), the task
properties can be preserved. Here, we formalize the consistency of RMPflow as
a closure of di↵erential equations, named structured GDSs. Structured GDSs
augment GDSs with information on how the metric matrix factorizes. Suppose
G has a structure S that factorizes G(x, ẋ) = J(x)>H(y, ẏ)J(x), where y :
x 7! y(x) 2 Rn and H : Rn ⇥ Rn ! Rn⇥n

+

, and J(x) = @xy. We say the tuple
(M,G,B,�)S is a structured GDS if and only if

(G(x, ẋ) +⌅G(x, ẋ)) ẍ+ ⌘G;S(x, ẋ) = �rx�(x)�B(x, ẋ)ẋ (4)

where ⌘G;S(x, ẋ) := J(x)>(⇠H(y, ẏ) + (H(y, ẏ) +⌅H(y, ẏ))J̇(x, ẋ)ẋ). Note the
metric and factorization in combination defines ⌘G;S . As a special case, GDSs
are structured GDSs with a trivial structure (i.e. y = x). Also, structured GDSs
reduce to GDSs (i.e. the structure o↵ers no extra information) ifG(x, ẋ) = G(x),
or if n,m = 1 (cf. Appendix B.1). Given two structures, we say S

a

preserves S
b

if S
a

has the factorization (of H) made by S
b

. In Section 4.4, we will show that
structured GDSs are related to a geometric object, pullback connection, which
turns out to be the coordinate-free version of pullback.

To show the closure property, we consider a parent node on M with K child
nodes on {N

i

}K
i=1

. We note that G
i

and B
i

can be functions of both y
i

and ẏ
i

.

Theorem 1. Let the ith child node follow (N
i

,G
i

,B
i

,�
i

)Si and have coordinate

y
i

. Let f
i

= �⌘Gi;Si�ryi�i

�B
i

ẏ
i

and M
i

= G
i

+⌅Gi . If [f ,M]M of the parent

node is given by pullback with {[f
i

,M
i

]Ni}K
i=1

and M is non-singular, the parent

node follows (M,G,B,�)S , where G =
P

K

i=1

J>
i

G
i

J
i

, B =
P

K

i=1

J>
i

B
i

J
i

, � =P
K

i=1

�
i

� y
i

, S preserves S
i

, and J
i

= @xyi

. Particularly, if G
i

is velocity-free

and the child nodes are GDSs, the parent node follows (M,G,B,�).

Theorem 1 shows structured GDSs are closed under pullback. It means that
the di↵erential equation of a structured GDS with a tree-structured task map
can be computed by recursively applying pullback from the leaves to the root.

Corollary 1. If all leaf nodes follow GDSs and M
r

at the root node is nonsingu-

lar, then the root node follows (C,G,B,�)S as recursively defined by Theorem 1.
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4.3 Stability

By the closure property above, we analyze the stability of RMPflow when the
leaf nodes are (structured) GDSs. For compactness, we will abuse the notation to
write M = M

r

. Suppose M is nonsingular and let (C,G,B,�)S be the resultant
structured GDS at the root node. We consider a Lyapunov candidate V (q, q̇) =
1

2

q̇>G(q, q̇)q̇+ �(q) and derive its rate using properties of structured GDSs.

Proposition 1. For (C,G,B,�)S , V̇(q, q̇) = �q̇>B(q, q̇)q̇.

Proposition 1 directly implies the stability of structured GDSs by invoking
LaSalle’s invariance principle [31]. Here we summarize the result without proof.

Corollary 2. For (C,G,B,�)S , if G(q, q̇),B(q, q̇) � 0, the system converges

to a forward invariant set C1 := {(q, q̇) : rq�(q) = 0, q̇ = 0}.
To show the stability of RMPflow, we need to further check when the as-

sumptions in Corollary 2 hold. The condition B(q, q̇) � 0 is easy to satisfy: by
Theorem 1, B(q, q̇) ⌫ 0; to strictly ensure definiteness, we can copy C into an
additional child node with a (small) positive-definite damping matrix. The con-
dition on G(q, q̇) � 0 can be satisfied similarly. In addition, we need to verify
the assumption that M is nonsingular. Here we provide a su�cient condition.
When satisfied, it implies the global stability of RMPflow.

Theorem 2. Suppose every leaf node is a GDS with a metric matrix in the form

R(x) + L(x)>D(x, ẋ)L(x) for di↵erentiable functions R, L, and D satisfying

R(x) ⌫ 0, D(x, ẋ) = diag((d
i

(x, ẏ
i

))n
i=1

) ⌫ 0, and ẏ
i

@
ẏidi(x, ẏi) � 0, where x is

the coordinate of the leaf-node manifold and ẏ = Lẋ 2 Rn

. It holds ⌅G(q, q̇) ⌫ 0.
If further G(q, q̇),B(q, q̇) � 0, then M 2 Rd⇥d

++

, and the global RMP generated

by RMPflow converges to the forward invariant set C1 in Corollary 2.

A particular condition in Theorem 2 is when all the leaf nodes with velocity
dependent metric are 1D. Suppose x 2 R is its coordinate and g(x, ẋ) is its
metric matrix. The su�cient condition essentially boils down to g(x, ẋ) � 0
and ẋ@

ẋ

g(x, ẋ) � 0. This means that, given any x 2 R, g(x, 0) = 0, g(x, ẋ) is
non-decreasing when ẋ > 0, and non-increasing when ẋ < 0. This condition is
satisfied by the collision avoidance policy in Section 3.6.

4.4 Invariance

We now discuss the coordinate-free geometric properties of (C,G,B,�)S gener-
ated by RMPflow. Due to space constraint, we only summarize the results (please
see Appendix B.4 and, e.g., [32]). Here we assume that G is positive-definite.

We first present the coordinate-free version of GDSs (i.e. the structure is
trivial) by using a geometric object called a�ne connection, which defines how
tangent spaces on a manifold are related. Let TC denote the tangent bundle of
C, which is a natural manifold to describe the state space. We first show that
a GDS on C can be written in terms of a unique, asymmetric a�ne connection
Gr that is compatible with a Riemannian metric G (defined by G) on TC. It is
important to note that G is defined on TC not the original manifold C. As the
metric matrix in a GDS can be velocity dependent, we need a larger manifold.
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Theorem 3. Let G be a Riemannian metric on TC such that, for s = (q, v) 2
TC, G(s) = Gv

ij

(s)dqi⌦dqj +Ga

ij

dvi⌦dvj, where Gv

ij

(s) and Ga

ij

are symmetric

and positive-definite, and Gv

ij

(·) is di↵erentiable. Then there is a unique a�ne

connection

Gr that is compatible with G and satisfies, �k

i,j

= �k

ji

, �k

i,j+d

= 0,

and �k

i+d,j+d

= �k

j+d,i+d

, for i, j = 1, . . . , d and k = 1, . . . , 2d. In coordinates,

if Gv

ij

(q̇) is identified as G(q, q̇), then pr
3

(Gr
q̈

q̈) can be written as aG := q̈ +
G(q, q̇)�1(⇠G(q, q̇) +⌅G(q, q̇)q̈), where pr

3

: (q,v,u,a) 7! u is a projection.

We call pr
3

(Gr
q̇

q̇) the geometric acceleration of q(t) with respect to Gr. It
is a coordinate-free object, because pr

3

is defined independent of the choice of
chart of C. By Theorem 3, it is clear that a GDS can be written abstractly as
pr

3

(Gr
q̈

q̈) = (pr
3

�G]�F )(s), where F : s 7! �d�(s)�B(s) defines the covectors
due to the potential function and damping, and G] : T ⇤TC ! TTC denotes the
inverse of G. In coordinates, it reads as q̈+G(q, q̇)�1(⇠G(q, q̇)+⌅G(q, q̇)q̈) =
�G(q, q̇)�1(rq�(q) +B(q, q̇)q̇), which is exactly (3).

Next we present a coordinate-free representation of RMPflow.

Theorem 4. Suppose C is related to K leaf-node task spaces by maps { 
i

:
C ! T

i

}K
i=1

and the ith task space T
i

has an a�ne connection

Gir on TT
i

, as

defined in Theorem 3, and a covector function F
i

defined by some potential and

damping as described above. Let

Gr̄ =
P

K

i=1

T ⇤
i

Gir be the pullback connection,

G =
P

K

i=1

T ⇤
i

G
i

be the pullback metric, and F =
P

K

i=1

T ⇤
i

F
i

be the pullback

covector, where T ⇤
i

: T ⇤TT
i

! T ⇤TC. Then

Gr̄ is compatible with G, and

pr
3

(Gr̄
q̈

q̈) = (pr
3

� G] � F )(s) can be written as q̈ + G(q, q̇)�1(⌘G;S(q, q̇) +
⌅G(q, q̇)q̈) = �G(q, q̇)�1(rq�(q) +B(q, q̇)q̇). In particular, if G is velocity-

independent, then

Gr̄ =G r.

Theorem 4 says that the structured GDS (C,G,B,�)S can be written abstractly,
without coordinates, using the pullback of task-space covectors, metrics, and
asymmetric a�ne connections (that are defined in Theorem 3). In other words,
the recursive calls of pullback in the backward pass of RMPflow is indeed
performing “pullback” of geometric objects. Theorem 4 also shows, when G is
velocity-independent, the pullback of connection and the pullback of metric com-
mutes. In this case, Gr̄ =G r, which is equivalent to the Levi-Civita connection
of G. The loss of commutativity in general is due to the asymmetric definition
of the connection in Theorem 3, which however is necessary to derive a control
law of acceleration, without further referring to higher-order time derivatives.

4.5 Related Approaches

While here we focus on the special case of RMPflow with GDSs, this family
already covers a wide range of reactive policies commonly used in practice. For
example, when the task metric is Euclidean (i.e. constant), RMPflow recovers
OSC (and its variants) [10, 19, 11, 12, 20]. When the task metric is only con-
figuration dependent, RMPflow can be viewed as performing energy shaping
to combine multiple SMSs in geometric control [15]. Further, RMPflow allows
using velocity dependent metrics, generating behaviors all those previous rigid
mechanics-based approaches fail to model. We also note that RMPflow can be



12 Cheng, Mukadam, Issac, Birchfield, Fox, Boots, Ratli↵

0 30 60

-80

-30

20

(a)

0 30 60

-80

-30

20

(b)

0 30 60

-80

-30

20

(c)

0 30 60

-80

-30

20

(d)

Fig. 2: Phase portraits (gray) and integral curves (blue; from black circles to red
crosses) of 1D example. (a) Desired behavior. (b) With curvature terms. (c) With-
out curvature terms. (d) Without curvature terms but with nonlinear damping.

easily modified to incorporate exogenous time-varying inputs (e.g. forces to real-
ize impedance control [18] or learned perturbations as in DMPs [29]). In compu-
tation, the structure of RMPflow in natural-formed RMPs resembles the classical
Recursive Newton-Euler algorithm [17, 33] (see Appendix C). Alternatively, the
canonical form of RMPflow in (2) resembles Gauss’ Principle [11, 12], but with
a curvature correction ⌅G on the inertia matrix (suggested by Theorem 1) to
account for velocity dependent metrics. Thus, we can view RMPflow as a natural
generalization of these approaches to a broader class of non-Euclidean behaviors.

5 Experiments

We perform controlled experiments to study the curvature e↵ects of nonlinear
metrics, which is important for stability and collision avoidance. We then per-
form several full-body experiments (video: https://youtu.be/aFJMxfWV760) to
demonstrate the capabilities of RMPflow on high-DOF manipulation problems
in clutter, and implement an integrated vision-and-motion system on two phys-
ical robots.

5.1 Controlled Experiments

1D Example Let q 2 R. We consider a barrier-type task map x = 1/q and
define a GDS in (3) with G = 1, �(x) = 1

2

(x� x
0

)2, and B = (1 + 1/x), where
x
0

> 0. Using the GDS, we can define an RMP [�rx��Bẋ� ⇠G,M]R, where
M and ⇠G are defined according to Section 4.1. We use this example to study
the e↵ects of J̇q̇ in pullback (1), where we define J = @qx. Fig. 2 compares
the desired behavior (Fig. 2a) and the behaviors of correct/incorrect pullback.
If pullback is performed correctly with J̇q̇, the behavior matches the designed
one (Fig. 2b). By contrast, if J̇q̇ is ignored, the observed behavior becomes
inconsistent and unstable (Fig. 2c). While the instability of neglecting J̇q̇ can

be recovered with a damping B = (1 + ˙x2

x ) nonlinear in ẋ (suggested in [20]),
the behavior remains inconsistent (Fig. 2d).

2D Example We consider a 2D goal-reaching task with collision avoidance and
study the e↵ects of velocity dependent metrics. First, we define an RMP (a GDS
as in Section 3.6) in x = d(q) (the 1D task space of the distance to the obstacle).
We pick a metric G(x, ẋ) = w(x)u(ẋ), where w(x) = 1/x4 increases if the parti-
cle is close to the obstacle and u(ẋ) = ✏+min(0, ẋ)ẋ (where ✏ � 0), increases if
it moves towards the obstacle. As this metric is non-constant, the GDS has cur-
vature terms ⌅G = 1

2

ẋw(x)@
˙xu(ẋ) and ⇠G = 1

2

ẋ2u(ẋ)@xw(x). These curvature



RMPflow 13

-5 0 5

x1

-5

0

5

x
2

(a)

-5 0 5

x1

-5

0

5

x
2

(b)

-5 0 5

x1

-5

0

5

x
2

(c)

-5 0 5

x1

-5

0

5

x
2

(d)

-5 0 5

x1

-5

0

5

x2

w/ curvature

w/o curvature

w/o velocity-based metric

(e)

Fig. 3: 2D example; initial positions (small circle) and velocities (arrows). (a-d) Ob-
stacle (circle) avoidance: (a) w/o curvature terms and w/o potential. (b) w/ curvature
terms and w/o potential. (c) w/o curvature terms and w/ potential. (d) w/ curvature
terms and w/ potential. (e) Combined obstacle avoidance and goal (square) reaching.
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0

0.5

1

1.5

2 RMPflow
PF-nonlinear
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Fig. 4: Results for reaching experiments. Though some methods achieve a shorter goal
distance than RMPflow in successful trials, they end up in collision in most the trials.

terms along with J̇q̇ produce an acceleration that lead to natural obstacle avoid-
ance behavior, coaxing the system toward isocontours of the obstacle (Fig. 3b).
On the other hand, when the curvature terms are ignored, the particle travels in
straight lines with constant velocity (Fig. 3a). To define the full collision avoid-
ance RMP, we introduce a barrier-type potential �(x) = ↵w(x)@xw(x) to create
extra repulsive forces, where ↵ � 0. A comparison of the curvature e↵ects in this
setting is shown in Fig. 3c and 3d (with ↵ = 1). Next, we use RMPflow to com-
bine the collision avoidance RMP above (with ↵ = 0.001) and an attractor RMP.
Let q

g

be the goal. The attractor RMP is a GDS in the task space y = q� q
g

with a metric w(y)I, a damping ⌘w(y)I, and a potential that is zero at y = 0,
where ⌘ > 0 (see Appendix D.4). Fig. 3e shows the trajectories of the combined
RMP. The combined non-constant metrics generate a behavior that transitions
smoothly towards the goal while heading away from the obstacle. When the
curvature terms are ignored (for both RMPs), the trajectories oscillate near the
obstacle. In practice, this can result in jittery behavior on manipulators. When
the metric is not velocity-based (G(x) = w(x)) the behavior is less e�cient in
breaking free from the obstacle to go toward the goal.

5.2 System Experiments

Reaching-through-clutter Experiments We compare RMPflow with OSC,
(i.e. potential fields (PF) with dynamics reshaping), denoted as PF-basic, and
a variant, denoted PF-nonlinear, which scales the collision-avoidance weights
nonlinearly as a function of obstacle proximity. We highlight the results here;
Appendix E provides additional details, and the supplementary video shows
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simulated worlds real-world experiments

Fig. 5: Two of the six simulated worlds in the reaching experiments (left), and the two
physical dual-arm platforms in the full system experiment (right).

footage of the trials. In both baselines, the collision-avoidance task spaces are
specified by control points along the robot’s body (rather than the distance space
used in RMPflow) with an isotropic metric G = w(x)I (here w(x) = w

o

2 R
+

for PF-basic and w(x) 2 [0, w
o

] for PF-nonlinear, where w
o

is the max metric
size used in RMPflow). The task-space policies of both variants follow GDSs,
but without the curvature terms (see Appendix E).

Fig. 4 summarizes their performance. We measure time-to-goal, C-space
path length (assessing economy of motion), achievable distance-to-goal (e�cacy
in solving the problem), collision intensity (percent time in collision given a
collision), collision failures (percent trials with collisions). The isotropic met-
rics, across multiple settings, fail to match the speed and precision achieved
by RMPflow. Higher-weight settings tend to have fewer collisions and better
economy of motion, but at the expense of e�ciency. Additionally, adding non-
linear weights as in PF-nonlinear does not seem to help. The decisive factor of
RMPflow’s performance is rather its non-isotropic metric, which encodes direc-
tional importance around obstacles in combing policies.

System Integration for Real-Time Reactive Motion Generation We
present an integrated system for vision-driven dual arm manipulation on two
robotic platforms, the ABB YuMi robot and the Rethink Baxter robot (Fig. 5)
(see the supplementary video). Our system uses the real-time optimization-based
tracking algorithm DART [34] to communicate with the RMP system, receiving
prior information on robot configuration and sending tracking updates of world
state. The system is tested in multiple real-world manipulation problems, like
picking up trash in clutter, reactive manipulation of a cabinet with human per-
turbation, active lead-through (compliant guiding of the arms with world-aware
collision controllers) and pick-and-place of objects into a drawer which the robot
opens and closes. Please see Appendix F for the details of the experiments.

6 Conclusion

We propose an e�cient policy synthesis framework, RMPflow, for generating
policies with non-Euclidean behavior, including motion with velocity dependent
metrics that are new to the literature. In design, RMPflow is implemented as
a computational graph, which can geometrically consistently combine subtask
policies into a global policy for the robot. In theory, we provide conditions for
stability and show that RMPflow is intrinsically coordinate-free. In the experi-
ments, we demonstrate that RMPflow can generate smooth and natural motion
for various tasks, when proper subtask RMPs are specified. Future work is to
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further relax the requirement on the quality of designing subtask RMPs by in-
troducing learning components into RMPflow for additional flexibility.
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