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Abstract: In this paper, we present Combined Learning from demonstration And
Motion Planning (CLAMP) as an efficient approach to skill learning and gener-
alizable skill reproduction. CLAMP combines the strengths of Learning from
Demonstration (LfD) and motion planning into a unifying framework. We carry
out probabilistic inference to find trajectories which are optimal with respect to a
given skill and also feasible in different scenarios. We use factor graph optimiza-
tion to speed up inference. To encode optimality, we provide a new probabilistic
skill model based on a stochastic dynamical system. This skill model requires
minimal parameter tuning to learn, is suitable to encode skill constraints, and al-
lows efficient inference. Preliminary experimental results showing skill general-
ization over initial robot state and unforeseen obstacles are presented.

Keywords: Learning from Demonstration, Trajectory Learning, Motion Plan-
ning, Probabilistic Inference

1 Introduction

As robots assume collaborative roles alongside humans in dynamic environments, they must have
the ability to learn and execute new behaviors to achieve desired tasks. To accomplish this, there are
two established approaches for generating trajectories, namely, motion planning [1] and Learning
from Demonstration (LfD) [2]. Motion planning focuses on generating trajectories that are optimal
with respect to pre-defined criteria (e.g. smooth accelerations) while maintaining feasibility (e.g.
obstacle avoidance, reaching via points) [1]. LfD, on the other hand, aims to generate trajectories
which satisfy the skill-based constraints learned from demonstrations [2, 3]. As a result, motion
planning and LfD can be viewed as having complementary trade-offs. Motion planning generalizes
well to new scenarios (comprising the desired/given robot states and the external environment) but
requires precise optimality criteria that may be difficult to define for complicated skills, whereas
trajectory-based LfD methods circumvent the need for hand coding optimality criteria, but typically
do not generalize well.

Our aim is to develop an efficient approach to skill learning and generalizable skill reproduction by
combining the strengths of motion planning and trajectory-based LfD while mitigating their weak-
nesses. Toward this end, we view the problem of generating trajectories as equivalent to probabilistic
inference. In this framework, a posterior distribution of successful trajectories is computed from a
prior that encodes optimality, and a likelihood that characterizes feasibility in a given scenario. In
an earlier application of this view on motion planning [4, 5], the trajectory prior was simple and
pre-defined: it encouraged trajectories that minimize acceleration. We argue that the trajectory prior
can instead be learned from a set of demonstrations, and our key insight is that the resulting infer-
ence based planning paradigm is identical to skill reproduction. The resulting algorithm, Combined
Learning from demonstration And Motion Planning (CLAMP), performs probabilistic inference to
compute a posterior distribution of trajectories encouraged to match demonstrations while remaining
feasible for any given scenario.

Our specific contributions with CLAMP include: (i) a probabilistic skill model (trajectory prior) that
extracts the spatio-temporal variance and correlation among the demonstrations in terms of stochas-
tic dynamics, requires minimal parameter tuning while enabling efficient inference; and (ii) a novel
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reproduction method that finds a trajectory via efficient probabilistic inference, which is optimal
with respect to the learned skill while remaining feasible when subjected to different scenarios. We
validate our approach on three skills including box-opening, drawer-opening, and picking. We show
that CLAMP is capable of successfully reproducing the learned skills and generalizing them over
the initial robot state while avoiding new obstacles in the environment.

2 Related Work
Probabilistic methods for trajectory-based LfD provide a viable way to learn a skill from multiple
demonstrations. However, the generalization capabilities of these methods vary immensely. Purely
probabilistic approaches, including Gaussian mixture models (GMM/GMR) [6] and LfD by Aver-
aging Trajectories (LAT) [7], attract reproduced trajectories towards an average form of the demon-
strated motions, without regard to the initial or goal state. Task-parameterized GMM/GMRs [8]
generalize better by assigning reference frames to relevant objects and landmarks. Attempts at com-
bining probabilistic approaches with dynamical systems [9, 10, 11] have also met some success
at generalization. However, these methods generally require tedious parameter tuning to generate
the desired skill models. Although Gaussian processes (GPs) provide a non-parametric alterna-
tive [12, 13], the computational complexity of conventional GP approaches scales cubically with the
number of data points, limiting their effectiveness in trajectory-based LfD settings.

CLAMP assumes that the demonstrated trajectories are governed by a latent stochastic feedback
control policy, which can be approximated as a linear stochastic dynamical system. This simple
yet powerful assumption yields a GP over trajectories with an exactly sparse inverse kernel matrix,
enabling a significant boost in learning and inference efficiency. This GP produces a Gaussian prior
distribution over trajectories. A similar approach, probabilistic movement primitives (ProMPs) [14]
directly fits a Gaussian distribution over demonstrations. New skill constraints are incorporated in
ProMPs via inference and feedback control policy is then found to follow the resulting trajectory
distribution on a robot. In contrast, inference over the prior in CLAMP generates trajectories which
naturally follow the demonstrated policy while satisfying all additional constraints.

We consider skill reproduction as performing inference over a prior trajectory distribution, drawing
connections to GPMP2 [5], an inference-based planner. Similarly, Dragan et al. [15] show that tra-
jectory adaptation to new start/goal states via dynamic movement primitives (DMPs) [16] is a result
of pre-specified Hilbert norm minimization based on finite differences, thus drawing connections to
CHOMP [17], a gradient-based trajectory optimizer. The norm minimization procedure in CLAMP,
however, goes one step further by minimizing the Mahalanobis distance from a learned prior distri-
bution. While Mukadam et al. [18] describe how GPMP generalizes CHOMP, Dong et al. [5] have
shown GPMP2 to provide orders of magnitude faster convergence than CHOMP.

Apart from generalizing skills over different start and goal states, skill reproduction should also
generalize to environmental changes, e.g. avoiding unforeseen obstacles. Many conventional LfD
approaches are not equipped to handle arbitrarily placed obstacles [6, 7]. Of those that do, obstacle
avoidance is rather carried out reactively, without regard to optimality of the entire trajectory [16].
Since motion planning provides a principled way to handle obstacles, attempts at combining LfD
and motion planning have been relatively more successful. Ye and Alterovitz [19] presented a hier-
archical framework that adapts the output of a learned statistical model to avoid obstacles using a
sampling-based motion planner as an ad-hoc post-processing step. However, since the aim of both
LfD and motion planning is finding optimal and feasible trajectories, such a hierarchical approach
induces redundancies by assuming the two constituent steps to be independent. Recent trajectory
optimization based methods take a relatively more unified route. Osa et al. [20] carry out a functional
gradient-based optimization for reproduction similar to CHOMP. Not only does their optimization
routine carry the same computational inefficiencies as CHOMP (see the discussion in [4]), their
demonstration based cost functional disregards the motion dynamics. On the other hand, Koert et al.
[21], in a similar approach as ours, carry out probabilistic trajectory optimization. This method
performs optimization as a (partially) redundant two-step process. An offline routine first learns a
trajectory distribution in the presence of new obstacles and fits a ProMP to represent it, and then
an online routine adapts the ProMP given new start/goal states or via-points. A major disadvan-
tage of this approach is that the trajectory distribution has to be re-learned every time an obstacle is
displaced or further new obstacles are introduced. In CLAMP, all skill generalization routines are
carried out in an efficient one-shot posterior inference procedure, while the trajectory distribution
(prior) only encodes human demonstrations.
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Figure 1: Block diagram showing various components of CLAMP.

3 Trajectory Optimization as Probabilistic Inference
We argue that for generalizable skill reproduction, LfD should adhere to the same motivation as
motion planning: finding trajectories that are optimal and feasible. In contrast to motion planning,
where optimality is pre-specified (e.g. smooth accelerations), LfD would require the optimality
criteria to be learned from demonstrations. The feasibility criteria represent the reproduction sce-
nario, e.g. collision avoidance, a fixed start state, reaching a desired goal/via-point, or a combination
thereof. We adopt the probabilistic inference perspective on motion planning [5, 4] that naturally
allows the incorporation of optimality metrics learned from demonstrations in the form of a prior
distribution. Feasibility is encoded into a likelihood function specified in terms of a collection of
binary events e. Thus the desired trajectory can be found by calculating the maximum a posteriori
(MAP) trajectory from the prior and likelihood. Figure 1 illustrates our proposed framework.

3.1 The Trajectory Prior
We define trajectories as continuous-valued functions that map time t to the robot state θ(t). We de-
fine the prior distribution over trajectories with a vector-valued Gaussian process (GP) [22], θ(t) ∼
GP(µ(t),K(t, t′)), whereµ(t) is a vector-valued mean function and K(t, t′) is a matrix-valued ker-
nel function. From the definition of a GP, for any collection of time instances t

.
= {t0, t1, . . . , tN},

the corresponding set of vector-valued robot states are jointly Gaussian distributed as
θ

.
= [θ0,θ1, . . . ,θN ]T ∼ N (µ,K), µ

.
= [µ(t0),µ(t1), . . . ,µ(tN )]T , K .

= [K(ti, tj)]
∣∣
ij,0≤i,j≤N

(1)

The support states θi, parameterize the continuous-time trajectory at discrete time instances. The
GP prior distribution can thus be concisely written as

p(θ) ∝ exp{−1

2
‖θ − µ‖2K}. (2)

In a motion planning problem, the prior distribution p(θ) defines optimality. Intuitively, this means
that during inference, the desired trajectory is encouraged to stay close to the mean of this distri-
bution and is weighted by the kernel. In contrast, we will learn this prior from demonstrations,
which can also be interpreted as learning the hyper-parameters (mean µ and covariance K) of the
distribution. We employ a sparse, structured GP formulation [23] as detailed in Section 4.

3.2 The Likelihood
The likelihood function specifies information about the new scenarios involved in skill reproduction.
Specifically, it is a conditional distribution l(θ; e) ∝ p(e|θ) that assigns a probability to the occur-
rence of random events e, given the trajectory θ. We model the likelihood function as a distribution
in the exponential family [4]

p(e|θ) ∝ exp{−1

2
‖h(θ; e)‖2Σ}, (3)

where h(θ; e) is a vector-valued cost function with covariance matrix Σ. The likelihood defines
feasibility for a given trajectory during skill reproduction. In our experiments, we employ events
such as collision avoidance and starting from different initial states. The associated distribution and
cost functions are detailed in Section 5.

3.3 MAP Inference

The desired optimal and feasible trajectory is the maximum a posteriori (MAP) trajectory given the
events, i.e. the mode of the posterior distribution p(θ|e) found through inference,

θ∗ = argmax
θ

{
p(θ|e)

}
= argmax

θ

{
p(θ)p(e|θ)

}
(4)
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In Section 5, we show how to exploit the sparse structure of the problem by representing distribu-
tions with factor graphs [24], and use the duality between inference and optimization to provide an
efficient approach [5] that solves (4).

4 The Trajectory Prior as a Skill Model
We use Gaussian processes (GPs) to generate the trajectory prior in Section 3.1. Specifically, we
employ a special class of structured GPs generated via stochastic differential equations (SDE) [23].
The sparsity in the precision matrix (i.e. inverse covariance matrix) associated with these GPs can
be exploited in both learning and inference for efficient computation.

4.1 Structured Heteroscedastic GPs Generated by LTV-SDEs

We view trajectories as solutions to a linear time-varying stochastic differential equation (LTV-SDE)

θ̇(t) = A(t)θ(t) + u(t) + F(t)w(t), w(t) ∼ GP(0,QC(t)δ(t− t′)), (5)
where θ(t) is the instantaneous robot state consisting of vectorized current positions and their higher-
order time derivatives (for all degrees of freedom), u(t) is a bias term, A(t) and F(t) are time-
varying system matrices and w(t) is a white noise process with covariance QC(t) and dirac-delta δ.
A similar dynamical system has been employed to generate trajectory distributions in mapping and
estimation [23, 25], planning [4, 26], planning and estimation [27], and planning and control [28]
problems. However, the key difference here is that the covariance QC(t), is time-varying and hence
generates a heteroscedastic GP, which is suitable for encoding the different ways of executing a skill.

Taking the first and second moments of the solution to the LTV-SDE yields the desired GP with

µ(t) = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)u(s)ds, (6)

K(t, t′) = Φ(t, t0)Q0Φ(t′, t0)
T +

∫ min(t,t′)

t0

Φ(t, s)F(s)QC(s)F(s)TΦ(t′, s)T ds (7)

where Φ(t, s) is the state transition matrix, and µ0 and Q0 are the initial mean and covariance. Fol-
lowing Anderson et al. [23], we can decompose the mean, covariance and precision (i.e the inverse
covariance) of the GP parameterized by a finite number of support states θ = [θ0,θ1, . . . ,θN ]T as

µ = Au, K = AQAT , K−1 = A−TQ−1A−1, (8)

where,
µ =

[
µ(t0),µ(t1), . . .µ(tN )

]T
, u =

[
µ0,u0,1, . . .uN−1,N

]T
, ui,i+1 =

∫ ti+1

ti

Φ(ti+1, s)u(s)ds,

Q = diag(Q0,Q0,1, . . . ,QN−1,N ), Qi,i+1 =

∫ ti+1

ti

Φ(ti+1, s)F(s)QC(s)F(s)TΦ(ti+1, s)
T ds,

A =



1 0 . . . 0 0
Φ(t1, t0) 1 . . . 0 0

Φ(t2, t0) Φ(t2, t1)
. . .

...
...

...
...

. . . 0 0
Φ(tN−1, t0) Φ(tN−1, t1) . . . 1 0
Φ(tN , t0) Φ(tN , t1) . . . Φ(tN , tN−1) 1


.

Due to the lower-triangular form of A, and the block-diagonal form of Q, the precision matrix K−1
has a block-tridiagonal structure. In Section 5, we show how to perform fast and efficient inference
by exploiting the exactly sparse structure of this precision matrix.

Note that, from now onwards, θ(t) will specifically refer to the robot state in configuration space.

4.2 A Combined Prior

Usually, only the demonstrated workspace trajectories are relevant for skill execution. Therefore, we
choose to learn a prior distribution p(x|θ) from demonstrations, generated by using the LTV-SDE
described in Section 4.1, but defined over the state in workspace x(t), instead of that in configuration
space θ(t). We can directly use p(x|θ) as the prior in (4) to generate a MAP trajectory in workspace.
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However, the problem of finding an associated configuration space trajectory is under-constrained
for high-degree-of-freedom robots. To resolve this, we introduce a pre-specified smoothness prior
in configuration space, p(θ) ∝ exp{− 1

2
||θ −µθ||2Kθ}, giving a combined configuration space prior

px(θ) = p(θ|x) ∝ p(θ)p(x|θ). (9)

The combined prior eventually functions as our skill model instead of (2). The effect of the combined
prior is to yield trajectories that are similar to the demonstrations given in workspace while at the
same time maintaining smoothness in configuration space. We detail the procedure for learning the
workspace prior p(x|θ), in Section 4.3. The configuration space smoothness prior given by p(θ), is
analogous to the homoscedastic GP prior used for motion planning in [4].

Based on the skills required, we may instead choose to directly learn the prior p(θ) in the config-
uration space, by considering the configuration space demonstrations. In fact, any combination of
learned or hand-coded priors in configuration or workspace can be used, as the skill dictates.

4.3 Learned Workspace Prior

The workspace prior distribution in (9) is defined as

p(x|θ) ∝ exp{−1

2
||C(θ)− µx||2Kx}, (10)

where the function C maps a trajectory in configuration space to a workspace trajectory, and the
hyper-parameters µx and Kx are the mean and the covariance of the distribution. We seek to
estimate these hyper-parameters from provided workspace demonstrations.

Since demonstrations are recorded at discrete time instances, we only have access to the support
states xi to estimate the underlying workspace LTV-SDE. A discrete version of the LTV-SDE in (5)
proved sufficient for the experiments we considered in this work, defined as

xi+1 = Φx(ti+1, ti)xi + uxi,i+1 + wx
i,i+1, wx

i,i+1 ∼ N (0,Qx
i,i+1), (11)

where the unknown parameters Φx(ti+1, ti), uxi,i+1 and Qx
i,i+1 are defined as in (8), but in

workspace. Given a set of M trajectory demonstrations X = {x1,x2, . . . ,xM}, the regularized
maximum likelihood estimate of the unknown parameters for the time interval [ti, ti+1] is given by

Φx(ti+1, ti), uxi,i+1 = argmin
uxi,i+1, Φx(ti+1,ti)

M∑
m=1

‖rmi,i+1‖2 + λ‖Φx(ti+1, ti)‖2F , (12)

Qx
i,i+1 =

1

M

M∑
m=1

rmi,i+1r
mT

i,i+1, (13)

where the residual rmi,i+1 = uxi,i+1 − xm
i+1 + Φx(ti+1, ti)x

m
i and λ is the regularization parameter.

We use linear ridge regression [29] to solve (12). The hyper-parameters of the prior are calculated
using the relationships in (8). The computational complexity associated with learning the workspace
prior is O(N · d3), where N is the number of support states comprising the trajectory and d is the
dimensionality of each support state. Note that, if necessary, a continuous formulation could be
learned through variational inference [30].

5 Efficient Inference via Factor Graphs
In this section, we show how to exploit the sparsity of the underlying system to efficiently carry out
MAP inference using the learned prior, to reproduce the skill. Any probability distribution P can be
represented as a product of functions organized as a bipartite factor graph [24] G = {Θ,F , E},

P (Θ) ∝
∏
i

fi(Θi), (14)

where a set of random variables Θ
.
= {θi} and a set of factors F .

= {fi} which are functions on
variable subsets Θi, are connected by a set of edges E . The structure of the precision matrix of a
distribution is captured by the structure of its factor graph, i.e. a sparser precision matrix leads to a
more factorized distribution. Efficiency during inference is a direct result of this factorization.
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Figure 2: Example factor graphs of (a) the prior distribution, and the joint distribution of the prior and the
likelihood when the likelihood describes events associated with (b) different start conditions or (c) obstacle
avoidance and different start conditions. States θi are shown as white circles.

5.1 Prior Factors

Using the structured GP formulation (Section 4.1), the combined prior in (9) can be factored as

px(θ) ∝ p(θ)p(x|θ) ∝ f gp,θf gp,x =

N−1∏
i=0

f gp,θ
i (θi,θi+1) f

gp,x
i (θi,θi+1), (15)

where,
f gp,x
i (θi,θi+1) = exp

{
− 1

2
‖Φx(ti+1, ti)C(θi)−C(θi+1) + uxi,i+1‖2Qxi,i+1

}
, (16)

are the workspace prior factors learned from demonstrations as described in Section 4.3, and

f gp,θ
i (θi,θi+1) = exp

{
− 1

2
‖Φθ(ti+1, ti)θi − θi+1 + uθi,i+1‖2Qθi,i+1

}
, (17)

are the pre-specified smoothness prior factors in configuration space (see Section 4.2) as described
in [4].

5.2 Likelihood Factors

The factorization of the likelihood (Section 3.2) is problem-specific and depends on the events being
considered. In this work. we only consider events involving different start conditions and/or colli-
sion avoidance. Figure 2(b) shows the joint distribution of the prior and start-state likelihood. The
posterior inference involves conditioning the prior on a desired start state,

p(e|θ) ∝ f start = exp

{
− 1

2
‖θ0 − θstart‖2σstart

}
, (18)

where a very small covariance σstart signifies the certainty of finding a solution that starts from a
desired start state θstart. Figure 2(c) shows the joint distribution with an additional collision-free
likelihood. The posterior and associated likelihood are then defined as,

p(e|θ) ∝ f startf obs = f start(θ0)

N∏
i=1

f obs
i (θi), f obs

i (θi) = exp

{
− 1

2
‖ h(θi) ‖2σobs

}
, (19)

where f obs
i are unary obstacle factors. The collision for any state is evaluated with a precomputed

signed distance field, a cost function h, and a hyperparameter σobs that balances the weight on
collision avoidance versus staying close to the prior. This technique is also used in GPMP2 for
collision avoidance during motion planning (see [5] for details). It is worth noting that, due to this
generic formulation, the learned skills can be reproduced in any new environment with never-before-
seen obstacles as long as a signed distance field is calculated beforehand.

5.3 Efficient Inference

Finally, for efficient MAP inference (Section 3.3), we take the negative log of the posterior distribu-
tion p(θ|e) ∝ px(θ)p(e|θ) using the combined prior (9),

θ∗ = argmin
θ

{
1

2
‖ θ − µθ ‖2Kθ +

1

2
‖ C(θ)− µx ‖2Kx +

1

2
‖ h(θ; e) ‖2Σ,

}
(20)

Thus, giving a nonlinear least squares optimization based formulation for the inference problem.
The factor graph allows us to compactly organize the computation, with optimization performed
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(a) Kinesthetic demonstration (b) Reproduction (c) Reproduction with an obstacle

Figure 3: Demonstration and reproduction of box-opening(top) and drawer-opening(bottom)

(a) box-opening skill (b) drawer-opening skill (c) picking skill

Figure 4: Top: Position workspace priors shown in 3D; Middle: Position workspace priors plotted against
time; Bottom: Velcocity workspace priors plotted againt time. The mean is in blue with an envelope showing
the 95% confidence. Demonstrations are overlayed.

using Gauss-Newton or Levenberg-Marquardt. Combining the structure exploiting inference and
the quadratic convergence rates of the optimization, make this approach computationally efficient.
The computational complexity is directly related to how well the distributions factorize, and since
only unary or binary factors are present, the problem is extremely sparse and thus very efficient to
solve. The complexity is O(N · d3), although the complexity would increase in the presence of
further higher-order factors that define costs across multiple states.

6 Experimental Results
We implemented CLAMP using the GPMP21 C++ library and tested it on manipulation problems.
For skill learning, we considered workspace state x(t) as composed of end-effector 3D position and
linear velocity, which proved sufficient for the experiments considered in this work. We considered
joint positions and velocities for the configuration space state θ(t), and, as in [4], we employed the
constant velocity prior for f gp,θ, encouraging smoothness in joint accelerations. The accompanying
video shows the experimental results2.

We validated our proposed method on three skills including, box-opening, drawer-opening and pick-
ing. All skills were executed on a Kinova JACO2 6-DOF arm. For each skill, we provided multiple
demonstrations with different initial end-effector states (varying initial position, zero initial velocity)
through kinesthetic teaching [2]. The end-effector positions over time were recorded and the trajec-
tories were temporally aligned using dynamic time warping [31]. The corresponding end-effector
linear velocities were estimated by fitting a cubic spline and differentiating with respect to time.
Figure 4 shows the learned prior distributions i.e. the skill models.

1Available at https://github.com/gtrll/gpmp2
2Available at https://youtu.be/DDs_ZxsN0Ek
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(a) box-opening skill (b) drawer-opening skill

Figure 5: Reproduced position trajectories in red from different initial states. The obstacle is in yellow and
the prior position mean is in blue.

For the box-opening skill, each demonstration is composed of two primitive actions, reaching and
sliding the lid of the box. The sliding part of the skill is more constrained compared to the reaching
part. As shown in Figure 4(a), the variance in the state variables (i.e. positions and velocities) be-
come much smaller during the sliding portion of the trajectory. For the drawer-opening skill, each
demonstration involves reaching the drawer handle and pulling it in the direction perpendicular to
the drawer body. Like the box-opening skill, the second part of the demonstrations are highly re-
strictive in both positions and velocities to satisfy skill completion, as shown in Figure 4(b). Finally,
the picking skill involves reaching an object from different initial end-effector positions and then
placing it at different locations. As shown in Figure 4(c), since object location is fixed across all
demonstrations, the variance in the position state variable is much smaller in the middle part of the
skill. However, compared to the other two skills which deal with articulated object manipulation,
the velocity profile is not as critical for the picking skill. For all the skills, the prior also encodes the
coupling between the state variables. This is a consequence of the underlying LTV-SDE.

Provided the initial state of the robot, the likelihood in (18) was used during inference to find MAP
trajectories for skill reproduction. For obstacle avoidance, we further incorporated the likelihood
in (19). σobs was set manually to enable the desired clearance of the robot from the obstacle. In
general, σobs depends on the size of the robot, desired clearance and the environment itself. The
MAP trajectories for all scenarios were found using factor graph optimization to solve (20). A video
accompanying this paper shows the experimental results.

Figure 5(a) shows the reproduced trajectories for the box-opening skill with three different initial
robot states. In the left figure, our method was able to adapt the reaching motion as per the initial
state. In the presence of a new obstacle (right figure), our method further adapted the reaching part
of the skill around the obstacle. The sliding part of the skill is highly constrained, as encoded in the
prior and hence does not allow as much adaptability as the reaching part. Figure 5(b) shows three
MAP trajectories for the drawer-opening skill with different starting states, with and without a new
obstacle. In this case, like the others, the reaching part of the skill adapts with varying initial states
and obstacles, but the highly constrained pulling part remains more-or-less unchanged. Apart from
the position trajectories, the direction of motion is also highly constrained in the latter part of these
skills, so having velocities in our prior played a crucial role. In all cases, the robot was successful at
executing the desired skill. We note that placing the obstacle in front of the object being manipulated
would cause failure due to the robot’s inability to carry out the required pulling or sliding action. To
detect such failure cases, we can use the workspace prior in (10) to provide a demonstration-based
success likelihood of the MAP trajectory θ∗, as a pre-execution evaluation step.

7 Conclusion
We have presented CLAMP, a novel approach which unifies probabilistic LfD and inference-based
planning. Within this approach, we first learn the skill in a non-parametric and efficient manner,
modeling the underlying system as a stochastic dynamical system. Next, we carried out fast numer-
ical optimization over factor graphs for efficient inference for generalized skill reproduction. Using
this approach, we managed to generate trajectories that are optimal with respect to the learned skill
(i.e. the trajectory prior) and feasible with respect to the reproduction scenario composed of various
events (i.e. the likelihood). Although in our current implementation, we consider robot trajectories
to be comprised of positions and velocities and the events to be made up of robot’s current initial
state and obstacle clearance, our approach allows incorporation of further higher-order dynamics
or event likelihoods. We have provided experimental validation of our approach in learning and
generalizing object manipulation skills, even in the presence of new obstacles.
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