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Abstract
Many sequential decision problems involve
finding a policy that maximizes total reward
while obeying safety constraints. Although much
recent research has focused on the development
of safe reinforcement learning (RL) algorithms
that produce a safe policy after training, ensuring
safety during training as well remains an open
problem. A fundamental challenge is performing
exploration while still satisfying constraints in
an unknown Markov decision process (MDP). In
this work, we address this problem for the chance-
constrained setting. We propose a new algorithm,
SAILR, that uses an intervention mechanism
based on advantage functions to keep the agent
safe throughout training and optimizes the agent’s
policy using off-the-shelf RL algorithms designed
for unconstrained MDPs. Our method comes
with strong guarantees on safety during both
training and deployment (i.e., after training and
without the intervention mechanism) and policy
performance compared to the optimal safety-
constrained policy. In our experiments, we show
that SAILR violates constraints far less during
training than standard safe RL and constrained
MDP approaches and converges to a well-
performing policy that can be deployed safely
without intervention. Our code is available at
https://github.com/nolanwagener/safe_rl.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) en-
ables an agent to learn good behaviors with high returns
through interactions with an environment of interest. How-
ever, in many settings, we want the agent not only to find a
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Figure 1. Advantage-based intervention of SAILR and construc-
tion of the surrogate MDP M̃. In M, whenever the policy π
proposes an action a which is disadvantageous (w.r.t. a backup
policy µ) in terms of safety, µ intervenes and guides the agent to
safety (green path). From the perspective of π, it transitions to an
absorbing state s† and receives a penalizing reward of −1.

high-return policy but also avoid undesirable states as much
as possible, even during training. For example, in a bipedal
locomotion task, we do not want the robot to fall over and
risk damaging itself either during training or deployment.
Maintaining safety while exploring an unknown environ-
ment is challenging, because venturing into new regions of
the state space may carry a chance of a costly failure.

Safe reinforcement learning (García & Fernández, 2015;
Amodei et al., 2016) studies the problem of designing learn-
ing agents for sequential decision-making with this chal-
lenge in mind. Most safe RL approaches tackle the safety
requirement either by framing the problem as a constrained
Markov decision process (CMDP) (Altman, 1999) or by
using control-theoretic tools to restrict the actions that the
learner can take. However, due to the natural conflict be-
tween learning, maximizing long-term reward, and satis-
fying safety constraints, these approaches make different
performance trade-offs.

CMDP-based approaches (Borkar, 2005; Achiam et al.,
2017; Le et al., 2019) take inspiration from existing con-
strained optimization algorithms for non-sequential prob-
lems, notably the Lagrangian method (Bertsekas, 2014).
The most prominent examples (Chow et al., 2017; Tessler
et al., 2018) rely on first-order primal-dual optimization to
solve a stochastic nonconvex saddle-point problem. Though
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they eventually produce a safe policy, such approaches have
no guarantees on policy safety during training. Other safe
RL approaches (Achiam et al., 2017; Le et al., 2019; Bharad-
hwaj et al., 2021) conservatively enforce safety constraints
on every policy iterate by solving a constrained optimiza-
tion problem, but they can be difficult to scale due to their
high computational complexity. All of the above methods
suffer from numerical instability originating in solving the
stochastic nonconvex saddle-point problems (Facchinei &
Pang, 2007; Lin et al., 2020); consequently, they are less
robust than typical unconstrained RL algorithms.

Control-theoretic approaches to safe RL use interventions,
projections, or planning (Hans et al., 2008; Wabersich &
Zeilinger, 2018; Dalal et al., 2018; Berkenkamp et al., 2017)
to enforce safe interactions between the agent and the en-
vironment, independent of the policy the agent uses. The
idea is to use domain-specific heuristics to decide whether
an action proposed by the agent’s policy can be safely ex-
ecuted. However, some of these algorithms do not allow
the agent to learn to be safe after training (Wabersich &
Zeilinger, 2018; Hans et al., 2008; Polo & Rebollo, 2011),
so they may not be applicable in scenarios where the control
mechanism relies on resouces only available during training
(such as computationally demanding online planning). It is
also often unclear how these policies perform compared to
the optimal policy in the CMDP-based approach.

In this work, we propose a new algorithm, SAILR (Safe
Advantage-based Intervention for Learning policies with
Reinforcement), that uses a novel advantage-based interven-
tion rule to enable safe and stable RL for general MDPs.
Our method comes with strong guarantees on safety during
both training and deployment (i.e., after training and with-
out the intervention mechanism) and has good on-policy
performance compared to the optimal safety-constrained
policy. Specifically, SAILR trains the agent’s policy by
calling an off-the-shelf RL algorithm designed for standard
unconstrained MDPs. In each iteration, SAILR: 1) queries
the base RL algorithm to get a data-collection policy; 2) runs
the policy in the MDP while utilizing the advantage-based
intervention rule to ensure safe interactions (and executes a
backup policy upon intervention to ensure safety); 3) trans-
forms the collected data into experiences in a new uncon-
strained MDP that penalizes any visits of intervened state-ac-
tions (visualized in Fig. 1); and 4) gives the transformed data
to the base RL algorithm to perform policy optimization.

Under very mild assumptions on the MDP and the safety of
the backup policy used during the intervention,1 we prove
that running SAILR with any RL algorithm for uncon-
strained MDPs can safely learn a policy that has good

1We only assume that the unsafe states are absorbing and that
the backup policy is safe from the initial state with high probability.
We do not assume that the backup policy can achieve high rewards.

performance in the safety-constrained MDP (with a bias
propotional to how often the true optimal policy would
be overridden by our intervention mechanism). Compared
with existing work, SAILR is easier to implement and runs
more reliably than the CMDP-based approaches. In addi-
tion, since we only rely on estimated advantage functions,
our approach is also more generic than the aforementioned
control-theoretic approaches which make assumptions on
smoothness or ergodicity of the problem.

We also empirically validate our theory by comparing
SAILR with several standard safe RL algorithms in simu-
lated robotics tasks. The encouraging experimental results
strongly support the theory: SAILR can learn safe poli-
cies with competitive performance using a standard uncon-
strained RL algorithm, PPO (Schulman et al., 2017), while
incurring only a small fraction of unsafe training rollouts
compared to the baselines.

2. Preliminaries
2.1. Notation
A γ-discounted infinite-horizon Markov decision process
(MDP) is denoted as a 5-tuple,M := (S,A, P, r, γ), where
S is a state space, A is an action space, P (s′|s, a) is a tran-
sition dynamics, r(s, a) ∈ [0, 1] is a reward function, and
γ ∈ [0, 1) is a discount factor. In this work, S and A can
be either discrete or continuous. A policy π on M is a
mapping π : S → ∆(A), where ∆(A) denotes probabil-
ity distributions on A. We use the following overloaded
notation: For a state distribution d ∈ ∆(S) and a func-
tion f : S → R, we define f(d) := Es∼d[f(s)]; similarly,
for a policy π and a function g : S × A → R, we define
g(s, π) := Ea∼π|s[g(s, a)]. We would often omit the ran-
dom variable in the subscript of expectations, if it is clear.

A policy π induces a trajectory distribution ρπ(ξ),
where ξ = (s0, a0, s1, a1, . . . ) denotes a random trajec-
tory. The state-action value function of π is defined
as Qπ(s, a) := Eξ∼ρπ|s0=s,a0=a[

∑∞
t=0 γ

tr(st, at)] and its
state value function as V π(s) = Qπ(s, π). We denote the
optimal stationary policy ofM as π∗ and its respective value
functions as Q∗ and V ∗. Let dπt (s) be the state distribution
at time t induced by running π inM from an initial state
distribution d0 (note that dπ0 = d0); then the average state
distribution induced by π is dπ(s) := (1−γ)

∑∞
t=0 γ

tdπt (s).
For brevity, we overload the notation dπ to also denote the
state-action distribution dπ(s, a) := dπ(s)π(a|s). Finally,
later in the paper we will consider multiple variants of an
MDP (specifically,M,M, and M̃) and will use the deco-
rative symbol on the MDP notation to distinguish similar
objects from different MDPs (e.g., V π and V

π
will denote

the state value functions of π inM andM). Throughout
this paper, we’ll take Es′|s,a to mean Es′∼P|s,a.
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2.2. Safe Reinforcment Learning
We consider safe RL in a γ-discounted infinite horizon MDP
M, where safety means that the probability of the agent
entering an unsafe subset Sunsafe ⊂ S is low. We assume
that we know the unsafe subset Sunsafe and the safe subset
Ssafe := S \ Sunsafe. However, we make no assumption on
the knowledge of reward r and dynamics P , except that the
reward r is zero on Sunsafe and that Sunsafe is absorbing:
once the agent enters Sunsafe in a rollout, it cannot travel
back to Ssafe and stays in Sunsafe for the rest of the rollout.

Objective Our goal is to find a policy π that is safe and
has a high return in M, and to do so via a safe data col-
lection process. Specifically, while keeping the agent safe
during exploration, we want to solve the following chance-
constrained policy optimization problem:

max
π

V π(d0) (1)

s.t. (1− γ)

∞∑
h=0

γhProb(ξh ⊂ Ssafe | π) ≥ 1− δ,

where δ ∈ [0, 1] is the tolerated failure probability, ξh =
(s0, a0, . . . , sh−1, ah−1) denotes an h-step trajectory seg-
ment, and Prob(ξh ⊂ Ssafe | π) denotes the probability of
ξh being safe (i.e., not entering Sunsafe from time step 0 to
h− 1) under the trajectory distribution ρπ of π onM.2

We desire the the agent to provide anytime safety in both
training and deployment. During training, the agent can
interact with the unknown MDPM to collect data under a
training budget, such as the maximum number of environ-
ment interactions or allowed unsafe trajectories the agent
can generate. Once the budget is used up, training stops,
and an approximate solution of (1) needs to be returned.

The constraint in (1) is known as a chance constraint.
The definition here accords to an exponentially weighted
average (based on the discount factor γ) of trajectory
safety probabilities of different horizons. This weighted
average concept arises naturally in γ-discounted MDPs,
because the objective in (1) can also be written as a
weighted average of undiscounted expected returns, i.e.,
V π(d0) = (1 − γ)

∑∞
h=0 γ

hUπh (d0), where Uπh (d0) :=

Eρπ [
∑h
t=0 r(st, at)].

CMDP Formulation The chance-constrained policy op-
timization problem in (1) can be formulated as a con-
strained Markov decision process (CMDP) problem (Alt-
man, 1999; Chow et al., 2017). For the mathematical conve-
nience of defining and analyzing the equivalence between
(1) and a CMDP, instead of treating Sunsafe as a single
meta-absorbing state, without loss of generality we define

2We abuse the notation ξh ⊂ Ssafe to mean that sτ ∈ Ssafe for
each sτ in ξh = (s0, a0, . . . , sh−1, ah−1).

Sunsafe := {s., s◦}. The semantics of this set is that when
an agent leaves Ssafe and enters Sunsafe, it first goes to s.
and, regardless of which action it takes at s., it then goes
to the absorbing state s◦ and stays there forever. We can
view s. as a meta-state that summarizes the unsafe region
in a given RL application (e.g., a biped robot falling on
the ground) and s◦ as a fictitious state that captures the
absorbing property of Sunsafe.

For an MDP M with an unsafe set Sunsafe := {s., s◦},
define the cost c(s, a) := 1{s = s.}, where 1 de-
notes the indicator function. Then we can define a
CMDP (S,A, P, r, c, γ) using a reward-based MDPM :=
(S,A, P, r, γ) and a cost-based MDPM := (S,A, P, c, γ).
Using these new definitions, we can write the chance-
constrained policy optimization in (1) as a CMDP problem:

max
π

V π(d0) subject to V
π
(d0) ≤ δ. (2)

For completeness, we include a proof of this equivalence in
Appendix A.2, which follows from the fact that the unsafe
probability can be represented as the expected cumulative
cost, i.e., Prob(s. ∈ ξh | π) = Eρπ [

∑h−1
t=0 c(st, at)]. In

other words, the chance-constrained policy optimization
problem is a CMDP problem that aims to find a policy that
has a high cumulative reward V π(d0) with cumulative cost
V
π
(d0) below the allowed failure probability δ.

Challenges This CMDP formulation has been commonly
studied to design RL algorithms to find good polices that
can be deployed safely (Chow et al., 2017; Achiam et al.,
2017; Tessler et al., 2018; Efroni et al., 2020). However,
as mentioned in the introduction, these algorithms do not
necessarily ensure safety during training and can be numeri-
cally unstable. At a high level, this instability stems from the
lack of off-the-shelf computationally reliable and efficient
solvers for large-scale constrained stochastic optimization.

While several control-theoretic techniques have been pro-
posed to ensure safe data collection (Dalal et al., 2018;
Wabersich & Zeilinger, 2018; Perkins & Barto, 2002; Chow
et al., 2018; 2019; Berkenkamp et al., 2017; Fisac et al.,
2018) and in some cases prevent the need for solving a
constrained problem, it is unclear how the learned policy
performs in terms of the objective V π(d0) in (2) (i.e., with-
out any interventions). Most of these algorithms also require
stronger assumptions on the environment than approaches
based on CMDPs (e.g., smoothness or ergodicity).

As we will show, our proposed approach retains the best
of both approaches, ensuring safe data collection via inter-
ventions while guaranteeing good performance and safety
when deployed without the intervention mechanism.
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3. Method
Our safe RL approach, SAILR, finds an approximate so-
lution to the CMDP problem in (2) by using an advantage-
based intervention rule for safe data collection and an off-
the-shelf RL algorithm for policy optimization. As we will
see, SAILR can ensure safety for both training and deploy-
ment, when 1) the intervention rule belongs to an “admissi-
ble class” (see Definition 1 in Section 3.1.2); and 2) the base
RL algorithm finds a nearly optimal policy for a new un-
constrained problem of a surrogate MDP M̃ constructed by
the intervention rule together withM. Moreover, because
SAILR can reuse existing RL algorithms for unconstrained
MDPs to optimize policies, it is easier to implement and
is more stable than typical CMDP approaches based on
constrained optimization.

Specifically, SAILR optimizes policies iteratively as out-
lined in Algorithm 1. As input, it takes an RL algo-
rithm F for unconstrained MDPs and an intervention rule
G : π 7→ G(π), where π′ = G(π) is a shielded policy such
that π′ runs a backup policy µ : S → ∆(A) instead of
π when π proposes “unsafe actions.” In every iteration,
SAILR first queries the base RL algorithm F for a data-
collection policy π to execute in M̃ (line 3). Then it uses
the intervention rule G to modify π into π′ (line 4) such that
running π′ in the original MDPM can be safe with high
probability while effectively simulating execution of π in
the surrogate M̃. Next, it collects the data D by running
π′ in M and then transforms it into new data D̃ of π in
M̃ (line 5). It then feeds D̃ to the base RL algorithm F
for policy optimization (line 6), and optionally uses D to
refine the intervention rule G (line 7). The process above
is repeated until the training budget is used up. When this
happens, SAILR terminates and returns the best policy π̂∗

the base algorithm F can produce for M̃ so far (line 9).

We provide the following informal guarantee for SAILR,
which is a corollary of our main result in Theorem 1 pre-
sented in Section 3.3.

Proposition 1 (Informal Guarantee). For SAILR, if the
intervention rule G is admissible (Definition 1 in Sec-
tion 3.1.2)) and the RL algorithm F learns an ε-suboptimal
policy π̂ for M̃, then, for any comparator policy π∗, π̂ has
the following performance and safety guarantees inM:

V π
∗
(d0)− V π̂(d0) ≤ 2

1− γ
PG(π∗) + ε

V
π̂
(d0) ≤ V µ(d0) + ε,

where µ is the backup policy in G and PG(π∗) is the proba-
bility that π∗ visits the intervention set of G inM.

In other words, if the base algorithm F used by SAILR can
find an ε-suboptimal policy for the surrogate, unconstrained

Algorithm 1 SAILR

Input: MDPM, RL algorithm F , Intervention rule G
Output: Optimized safe policy π̂∗

1: F.Initialize()
2: while training budget available do
3: π ← F.GetDataCollectionPolicy()
4: π′ ← DefineShieldedPolicy(π,G)
5: D, D̃ ← CollectData(π′,M)
6: F.OptimizePolicy(D̃)
7: G ← UpdateInterventionRule(D) (Optional)
8: end while
9: π̂∗ ← F.GetOptimizedPolicy()

MDP M̃, then the policy returned by SAILR is roughly ε-
suboptimal in the original MDPM, up to an additional error
proportional to the probabilty that the comparator policy π∗

would be overridden by the intervention rule G at some point
while running inM. Furthermore, the returned policy π̂
is as safe as the backup policy µ of the intervention rule
G, up to an additional unsafe probability ε arising from the
suboptimality in solving M̃ with F .

We point out the results above hold without any assumption
on the MDP (other than that the unsafe subset Sunsafe is
absorbing and the reward is zero on Sunsafe). To learn
a safe policy, SAILR only needs a good unconstrained
RL algorithm F , a backup policy µ that is safe starting at
the initial state (not globally), and an advantage function
estimate of µ, as we explain later in this section.

The price we pay for keeping the agent safe using an in-
tervention rule G is a performance bias proportional to
PG(π∗)/(1− γ). This happens because employing an inter-
vention rule during data collection limits where the agent
can explore inM. Thus, if the comparator policy π∗ goes
to high-reward states which would be cut off by the in-
tervention rule, SAILR (and any other intervention-based
algorithm) will suffer in proportion to the intervention prob-
ability. Despite the dependency on PG(π∗), we argue that
SAILR provides a resonable trade-off for safe RL thanks
to its training safety and numerical stability. Moreover, we
will discuss how to use data to improve the intervention rule
G to reduce this performance bias.

In the following, we first discuss the design of our advantage-
based intervention rules (Section 3.1) and provide details of
the new MDP M̃ (Section 3.2). Then we state and prove the
main result Theorem 1 (Section 3.3). The omitted proofs
for the results in this section can be found in Appendix A.

3.1. Advantage-Based Intervention
We propose a family of intervention rules based on advan-
tage functions. Each intervention rule G here is specified
by a 3-tuple (Q,µ, η), where Q : Ssafe × A → [0, 1] is a
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state-action value estimator, η ∈ [0, 1] is a threshold, and
µ ∈ Π is a backup policy. Given an arbitrary policy π,
G = (Q,µ, η) constructs a new shielded policy π′ based on
an intervention set I defined by the advantage-like function
A(s, a) := Q(s, a)−Q(s, µ):

I := {(s, a) ∈ Ssafe ×A : A(s, a) > η}. (3)

When sampling a from π′(·|s) at some s ∈ Ssafe, it first
samples a− from π(·|s). If (s, a−) /∈ I , it executes a = a−.
Otherwise, it samples a according to µ(·|s). Mathematically,
π′ is described by the conditional distribution

π′(a|s) := π(a|s)1{(s, a) /∈ I}+ µ(a|s)w(s), (4)

wherew(s) := 1−
∑
ã:(s,ã)∈I π(ã|s). Note that π′ may still

take actions in I when µ has non-zero probability assigned
to those actions.

By running the shielded policy contructed by the advantage
functionA, SAILR controls the safety relative to the backup
policy µ with respect to d0. As we will show later, if the
relative safety for each time step (i.e., advantage) is close
to zero, then the relative safety overall is also close to zero

(i.e. V
π′

(d0) ≤ δ). Note that the sheilded policy π′, while

satisfying V
π′

(d0) ≤ δ, can generally visit (with low prob-
ability) the states where V

µ
(s) > 0 (e.g., = 1). At these

places where µ is useless for safety, we need an intervention
rule that naturally deactivates and lets the learner explore.
Our advantage-based rule does exactly that. On the contrary,
designing an intervention rule direclty based on Q-based
functions, as in (Bharadhwaj et al., 2021; Thananjeyan et al.,
2021; Eysenbach et al., 2018; Srinivasan et al., 2020), can
be overly conservative in this scenario.

3.1.1. MOTIVATING EXAMPLE

Let us use an example to explain why the advantage-based
rule works. Suppose we have a baseline policy µ that is safe
starting at the intial state of the MDPM (i.e., V

µ
(d0) is

small). We can use µ as the backup policy and construct an
intervention rule G = (Q

µ
, µ, 0), where we recall Q

µ
de-

notes the state-action value of µ for the cost-based MDPM.
Because the intervention set in (3) only allows actions that
are no more unsafe than than backup policy µ in execution,
intuitively we see that the intervenend policy π′ will be at
least as safe as the baseline policy µ. Indeed, we can quickly
verify this by the performance difference lemma (Lemma 3):

V
π′

(d0) = V
µ
(d0) + 1

1−γEdπ′ [A
µ
(s, a)] ≤ V µ(d0). Im-

portantly, in this example, we see that the safety of π′ is
ensured without requiring V

µ
(s) to be small for any s ∈ S ,

but only starting from states sampled from d0.

3.1.2. GENERAL RULES

We now generalize the above motivating example to a class
of admissible intervention rules.

Definition 1 (σ-Admissible Intervention Rule). We say an
intervention rule G = (Q,µ, η) is σ-admissible if, for some
σ ≥ 0, the following holds for all s ∈ Ssafe and a ∈ A:

Q(s, a) ∈ [0, γ] (5)

Q(s, a) + σ ≥ c(s, a) + γEs′|s,a[Q(s′, µ)], (6)

where we recall c(s, a) = 1{s = s.}. If the above holds
with σ = 0, we say G is admissible.

One can verify that the previous example G = (Q
µ
, µ, 0)

is admissible. But more generally, an admissible inter-
vention rule with a backup policy µ can use Q 6= Q

µ
.

In a sense, admissibility (with σ = 0) only needs Q
to be a conservative version of Q

µ
, because Q

µ
(s, a) =

c(s, a) + γEs′|s,a[Q
µ
(s, µ)] and (6) uses an upper bound;

the σ term is a slack to allow for non-conservative Q. More
precisely, we have the following relationship.
Proposition 2. If G = (Q,µ, η) is σ-admissible, then
Q
µ
(s, a) ≤ Q(s, a) + σ

1−γ for all s ∈ Ssafe and a ∈ A.

The condition in (6) is also closely related to the concept and
theory of improvable heuristics in (Cheng et al., 2021) (i.e.,
we can view the Q(s, µ) as a heurisitic for safety), where
the authors show such Q can be constructed by pessimistic
offline RL methods.

Examples We discuss several ways to construct admissi-
ble intervention rules. From Definition 1, it is clear that if
G = (Q,µ, η) is σ-admissible, then G is also σ′-admissible
for any σ′ ≥ σ (in particular, (Q,µ, η) is γ-admissible if
Q(s, a) ∈ [0, γ]). So we only discuss the minimal σ.
Proposition 3 (Intervention Rules). The following are true.

1.Baseline policy: Given a baseline policy µ ofM, G =
(Q

µ
, µ, η) or G = (Q

µ
, µ+, η) is admissible, where µ+ is

the greedy policy that treats Q
µ

as a cost.

2.Composite intervention: Given K intervention rules
{Gk}Kk=1, where each Gk = (Qk, µk, η) is σk-admissible.
Define Qmin(s, a) = minkQk(s, a) and let µmin be the
greedy policy w.r.t. Qmin, and σmax = maxk σk. Then,
G = (Qmin, µmin, η) is σmax-admissible.

3.Value iteration: Define T as T Q(s, a) := c(s, a) +
γEs′∼P |s,a[mina′ Q(s′, a′)]. If G = (Q,µ, η) is σ-

admissible, then Gk = (T kQ,µk, η) is γkσ-admissible,
where µk is the greedy policy that treats T kQ as a cost.

4.Optimal intervention: Let π∗ be an optimal policy for
M, and let Q

∗
be the corresponding state-action value

function. Then G∗ = (Q
∗
, π∗, η) is admissible.

5.Approximation: For σ-admissible G = (Q,µ, η), con-
sider Q̂ such that Q̂(s, a) ∈ [0, γ] for all s ∈ Ssafe
and a ∈ A. If ‖Q̂ − Q‖∞ ≤ δ, then Ĝ = (Q̂, µ, η)
is (σ + (1 + γ)δ)-admissible.
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Proposition 3 provides recipes for constructing σ-admissible
intervention rules for safe RL, such as leveraging exist-
ing baseline policies in a system (Examples 1 and 2) and
performing short-horizon planning (Example 3; namely
model-predictive control (Bertsekas, 2017)). Moreover,
Proposition 3 hints that we can treat designing interven-
tion rules as finding the optimal state-action value function
Q
∗

in the cost-based MDPM (Example 4). Later in Sec-
tion 3.3.1, we prove that this intuition is indeed correct:
among all intervention rules that provide optimal safety, the
rule G∗ = (Q

∗
, π∗, 0) provides the largest free space for

data collection (i.e., small PG(π∗) in Proposition 1) among
the safest intervention rules. Finally, Proposition 3 shows
that an approximation of any σ-admissible intervention rule
(such as one learned from data or inferred from an inaccu-
rate model, see (Cheng et al., 2021)) is also a reasonable
intervention rule (Example 5). As learning continues in
SAILR, we can use the newly collected data fromM to
refine our estimate of the ideal Q, such as by performing
additional policy evaluation for µ or policy optimization to
find Q

∗
of the cost-based MDPM.

General Backup Policies To conclude this section, we
briefly discuss how to extend the above results to work with
general backup policies that may take actions outsideA (i.e.,
the actions the learner policy aims to use), as in (Turchetta
et al., 2020). For example, such a backup policy can be
implemented through an external kill switch in a robotics
system. For SAILR’s theoretical guarantees to hold in this
case, we require one extra assumption: for all (s, a) ∈ I
that can be reached from d0 with some policy, there must be
some a′ ∈ A such that A(s, a′) = Q(s, a′)−Q(s, µ) ≤ η.
In other words, for every state-action we can reach from
d0 that will be overridden, there must an alternative action
in the agent’s action space A that keeps the agent’s policy
from being intervened. This condition is a generalization of
Definition 2 introduced later for our analysis (a condition
we call partial), which is essential to the unconstrained
policy optimization reduction in SAILR (Section 3.3.2).
Note that while this condition holds trivially when backup
policy µ takes only actions in A, generally the validity of
this condition depends on the details of µ and transition
dynamics P .

3.2. Absorbing MDP
SAILR performs policy optimization by running a base
RL algorithm F to solve a new unconstrained MDP M̃.
In this section, we define M̃ and discuss how to simulate
experiences of π in M̃ by running the shielded policy π′ =
G(π) in the original MDPM.

Given the MDPM = (S,A, P, r, γ) and the intervention
set I in (3), we define M̃ = (S̃,A, P̃ , r̃, γ) as follows: Let
s† denote an absorbing state and R̃ ≤ 0 be some problem-
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s† M̃

Figure 2. A simple example of the construction of M̃ from M
using advantage-based intervention given by some G = (Q,µ, η).
InM, the transitions are deterministic, and the blue arrows corre-
spond to actions given by µ. The edge weights correspond to Q,
and G can be verified to be 0.25-admissible when γ = 0.9. The
surrogate MDP M̃ is formed upon intervention with η = 0.05.
The transitions 1→ 2 and 1→ 3 are replaced with transitions to
the absorbing state s†.

independent constant. The new MDP M̃ has the state space
S̃ = S ∪ {s†} and modified dynamics and reward,

r̃(s, a) =


R̃, (s, a) ∈ I
0, s = s†

r(s, a), otherwise
(7)

P̃(s′|s, a) =

{
1{s′ = s†}, (s, a) ∈ I or s = s†

P(s′|s, a), otherwise.
(8)

Since s† is absorbing, given a policy π defined onM, with-
out loss of generality we extend its definition on M̃ by
setting π(a|s†) to be the uniform distribution over A. A
simple example of this construction is shown in Fig. 2.

Compared with the originalM, the new MDP M̃ has more
absorbing state-action pairs and assigns lower rewards to
them. When the agent takes some (s, a) ∈ I in M̃, it
goes to an absorbing state s† and receives a non-positive
reward. Thus, the new MDP M̃ gives larger penalties for
taking intervened state-actions than for going into Sunsafe,
where we only receive zero reward. This design ensures
that any nearly-optimal policy of M̃ will (when run inM)
have high reward and low probability of visiting intervened
state-actions. As we will see, as long as G provides safe
shielded polices, solving M̃ will lead to a safe policy with
potentially good performance in the original MDPM even
after we lift the intervention.

To simulate experiences of a policy π in M̃, we sim-
ply run π′ = G(π) in the original MDP M and collect
samples until the intervention triggers (if at all). Specif-
ically, suppose running π′ in M generates a trajectory
ξ = (s0, a0, . . . , sT , a

′
T , . . . ), where T is the time step

of intervention and a′T is the first action given by the
backup policy µ. Let aT be the corresponding action
from π that was overridden. We construct the trajectory
ξ̃ that would be generated by running π in M̃ by setting
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ξ̃ = (s0, a0, . . . , sT , aT , s̃T+1, ãT+1, . . . ), where s̃τ = s†
and ãτ is arbitrary for any τ ≥ t+ 1. This is valid since the
two MDPsM and M̃ share the same dynamics until the
intervention happens at time step T .

3.3. Theoretical Analysis
We state the main theoretical result of SAILR, which in-
cludes the informal Proposition 1 as a special case.
Theorem 1 (Performance and Safety Guarantee at Deploy-
ment). Let R̃ = −1 and G be σ-admissible. If π̂ is an
ε-suboptimal policy for M̃, then, for any comparator policy
π∗, the following performance and safety guarantees hold
for π̂ inM:

V π
∗
(d0)− V π̂(d0) ≤ 2

1− γ
PG(π∗) + ε

V
π̂
(d0) ≤ Q(d0, µ) +

min{σ + η, 2γ}
1− γ

+ ε,

where PG(π∗) := (1 − γ)
∑∞
h=0 γ

hProb(ξh ∩ I 6= ∅ |
π∗,M) is the probability that π∗ visits I inM.

Theorem 1 shows that, when the base RL algorithm F finds
an ε-suboptimal policy π̂ in M̃, this policy π̂ is also close
to ε-suboptimal in the CMDP in (2), as long as running the
comparator policy π∗ inM will result in low probability
of visiting state-actions that would be intervened by G (i.e.,
PG(π∗) is small). In addition, the policy π̂ is almost as
safe as the backup policy µ, since Q(d0, µ) can be viewed
as an upper bound of Q

µ
(d0, µ). The safety deterioration

can be made small when the suboptimality ε, intervention
threshold η, and imperfect admissibility σ of G are small.
The proof of Theorem 1 follows directly from Theorem 2
and Proposition 7 below, which are main properties of the
advantage-based intervention rules and the absorbing MDPs
in SAILR. We now discuss these properties in more detail.

3.3.1. INTERVENTION RULES

First, we show that the shielded policy π′ produced by a
σ-admissible intervention rule G = (Q,µ, η) has a small
unsafe cost if backup policy µ has a small cost.
Theorem 2 (Safety of Shielded Policy). Let G = (Q,µ, η)
be σ-admissible as per Definition 1. For any policy π, let
π′ = G(π). Then,

V
π′

(d0) ≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
. (9)

Next we provide a formal statement that G∗ = (Q
∗
, π∗, 0)

is the optimal intervention rule that gives the largest free
space for policy optimization, among the safest intervention
rules. The size of the free space provided G∗ is captured
as SuppS×A(d̃∗,π), which can be interpreted as the state-
actions that G∗(π) can explore before any intervention is
triggered.

Proposition 4. Let π∗ be an optimal policy for M,
Q
∗

be its state-action value function, and V
∗

be
its state value function. Let G0 = {(Q,µ, 0) :

(Q,µ, 0) is admissible, Q(d0, µ) = V
∗
(d0)}. Let G∗ =

(Q
∗
, π∗, 0) ∈ G0. Consider arbitrary G ∈ G0 and policy π.

Let M̃ and M̃∗ be the absorbing MDPs induced by G and
G∗, respectively, and let d̃π and d̃∗,π be their state-action
distributions of π. Then,

SuppS×A(d̃π) ⊆ SuppS×A(d̃∗,π),

where SuppS×A(d) denotes the support of a distribution d
when restricted on S ×A.

Finally, we highlight a property of the intervention set I
of our advantage-based rules, which is crucial for the un-
constrained MDP reduction described in the next section.

Definition 2. A setX ⊂ Ssafe×A is called partial if for ev-
ery (s, a) ∈ X , there is some a′ ∈ A such that (s, a′) /∈ X .

Proposition 5. If η ≥ 0, then I in (3) is partial.

Proof. For (s, a) ∈ I, define a′ = arg mina′′∈AQ(s, a′′).
Because A(s, a′) = Q(s, a′) − Q(s, µ) ≤ 0 ≤ η, we con-
clude that (s, a′) /∈ I.

3.3.2. ABOSRBING MDP

As discussed in Section 3.2, the new MDP M̃ provides a
pessimistic value estimate ofM by penalizing trajectories
that trigger the intervention rule G. Precisely, we can show
that the amount of pessimism introduced on a policy π
is proportional to PG(π) (the probability of triggering the
intervention rule G when running π inM).

Lemma 1. For every policy π, it holds that

|R̃| PG(π) ≤ V π(d0)− Ṽ π(d0) ≤
(
|R̃|+ 1

1− γ

)
PG(π).

As a result, one would intuitively imagine that an optimal
policy of M̃ would never visit the intervention set I at all.
Below we show that this intuition is correct. Importantly,
we highlight that this property holds only because the inter-
vention set I used here is partial (Proposition 5). If we were
to construct an absorbing MDP M̃′ described in Section 3.2
using an arbitrary non-partial subset I ′ ⊆ Ssafe ×A, then
the optimal policy of M̃′ can still enter I ′ for any R̃ > −∞,
because an optimal policy of M̃′ can use earlier rewards to
mitigate penalties incurred in I ′ (Appendix B.1).

Proposition 6. If R̃ is negative and G induces a partial I,
then every optimal policy π̃∗ of M̃ satisfies PG(π̃∗) = 0.

The partial property of I enables our unconstrained MDP
reduction, which relates the performance and safety of a
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policy π in the original MDPM to the suboptimality in the
new MDP M̃ and the safety of π′ = G(π).

Proposition 7 (Suboptimality in M̃ to Suboptimality and
Safety inM). Let R̃ be negative. For some policy π, let
π′ be the shielded policy defined in (4). Suppose π is ε-
suboptimal for M̃. Then, for any comparator policy π∗, the
following performance and safety guarantees hold for π in
M:

V π
∗
(d0)− V π(d0) ≤

(
|R̃|+ 1

1− γ

)
PG(π∗) + ε

V
π
(d0) ≤ V π

′

(d0) +
ε

|R̃|
.

4. Related Work
CMDPs (Altman, 1999) have been a popular framework
for safe RL as it side-steps the reward design problem for
ensuring safety in a standard MDP (Geibel & Wysotzki,
2005; Shalev-Shwartz et al., 2016). Most existing CMDP-
based safe RL algorithms closely follow algorithms in the
constrained optimization literature (Bertsekas, 2014). They
can be classified into either online or offline schemes. On-
line schemes learn by coupling the iteration of a numerical
optimization algorithm (notably primal-dual gradient up-
dates) with data collection (Borkar, 2005; Chow et al., 2017;
Tessler et al., 2018; Bohez et al., 2019), and these algorithms
have also been studied in the exploration context (Ding et al.,
2021; Qiu et al., 2020; Efroni et al., 2020). However, they
have no guarantees on policy safety during training. Offline
schemes (Achiam et al., 2017; Bharadhwaj et al., 2021; Le
et al., 2019; Efroni et al., 2020), on the other hand, sepa-
rate optimization and data collection. They conservatively
enforce safety constraints on every policy iterate but are
more difficult to scale up. Many of these constrained algo-
rithms for CMDPs, however, have worse numerical stability
compared with typical RL algorithms for MDPs, because of
the nonconvex saddle-point of the CMDP (Lee et al., 2017;
Chow et al., 2018).

Another line of safe RL research uses control-theoretic tech-
niques to enforce safe exploration, though only few provide
guarantees with respect to the CMDP in (2). These methods
include restricting the agent to take actions that lead to next-
state safety (Dalal et al., 2018; Wabersich & Zeilinger, 2018)
or states where a safe backup exists (Hans et al., 2008; Polo
& Rebollo, 2011; Li & Bastani, 2020). Other works con-
sider more structured shielding approaches, including those
with temporal logic safety rules and backup policies (Al-
shiekh et al., 2018) and neurosymbolic policies (Anderson
et al., 2020) whose safety can be checked easily. Many of
these approaches require strong assumptions on the MDP
(e.g., taking an action to ensure the next state’s safety being
sufficient to imply all future states will continue to have
such safe actions available). Algorithms based on Lyapunov

functions and reachability (Perkins & Barto, 2002; Chow
et al., 2018; 2019; Berkenkamp et al., 2017; Fisac et al.,
2018) address the long-term feasibility issue, but they are
more complicated than common RL algorithms. We note
that our admissible intervention rules in (6) can be viewed
as a state-action Lyapunov function.

To the best of our knowledge, SAILR is the first uncon-
strained method that provides formal guarantees with re-
spect to the CMDP objective. The closest work to ours
is (Turchetta et al., 2020), which also uses the idea of inter-
vention for training safety and trains the agent in a new MDP
that discourages visiting intervened state-actions. However,
their algorithm, CISR, is still based on calling CMDP sub-
routines (Le et al., 2019). They neither specify how the
intervention rules can be constructed nor provide perfor-
mance guarantees. By comparsion, we provide a general
recipe of intervention rules and obtain the properties desired
in (Turchetta et al., 2020) by simply unconstrained RL.

5. Experiments
We conduct experiments to corroborate our theoretical analy-
sis of SAILR. We aim to verify whether a properly designed
intervention mechanism can drastically reduce the amount
of unsafe trajectories generated in training while still result-
ing in good safety and performance in deployment.

Our experiments consider two different tasks: 1) A toy point
robot based on (Achiam et al., 2017) that gets reward for
following a circular path at high speed, but is constrained
to stay in a region smaller than the target circle; and 2) a
half-cheetah that gets reward equal to its forward velocity,
with one of its links constrained to remain in a given height
range, outside of which the robot is deemed to be unsafe. In
all experiments, when computing Q, we opt to use a shaped
cost function in place of the original sparse indicator cost
function to make our intervention mechanism more conser-
vative (and hence the training process safer). In particular,
this shaped cost function is a function of the distance to the
unsafe set and is an upper bound of the original sparse cost.
The appendix includes some additional experiments where
the original sparse cost is used.

We implement SAILR by using PPO (Schulman et al., 2017)
as the RL subroutine. We also compare our approach to
two CMDP-based approaches: CPO (Achiam et al., 2017)
and a primal-dual optimization (PDO) algorithm (Chow
et al., 2017). For the PDO algorithm, we use PPO as the
policy optimization subroutine and dual gradient ascent as
the Lagrange multiplier update. We also consider a variant
of PDO, called CSC, where a learned conservative critic is
used to filter unsafe actions (Bharadhwaj et al., 2021).



Safe Reinforcement Learning Using Advantage-Based Intervention

Episode return without intervention Episode length without intervention Safety violations during training

(a) Results for point

(b) Results for half-cheetah

Figure 3. Results of SAILR and baseline CMDP-based methods. Overall SAILR dramatically reduces the amount of safety constraint
violations while still having large returns at deployment. Plots in a row share the same legend. All error bars are ±1 standard deviation
over 10 (point robot) or 8 (half-cheetah) random seeds. Any curve not plotted in the third column corresponds to zero safety violations.

5.1. Point Robot
Here SAILR uses the intervention rule G = (µ,Q, η): the
baseline policy µ aims to stop the robot by deceleration.
The function Q is estimated by either querying a fitted Q-
network or by rolling out µ on a dynamical model (denoted
“MB” in Fig. 3a) of the point robot and querying a shaped
cost function. We consider both biased and unbiased models
(details in Appendix C.1). Fig. 3a show the main experimen-
tal results, with all three instances of SAILR outperforming
the baselines on all three metrics. For SAILR, the shield-
ing prevents many safety violations, and the unconstrained
approach allows for reliable convergence as opposed to the
baselines which rely on elaborate constrained approaches.

5.2. Half-Cheetah
We consider two intervention rules in SAILR: a reset
backup policy µ with a simple heuristic Q based on the
predicted height of the link after taking a proposed action,
and a reset backup policy µ based on a sampling-based
model predictive control (MPC) algorithm (Williams et al.,
2017; Bhardwaj et al., 2021) with a model-based value es-
timate (i.e., Q ≈ Qµ). The simple heuristic uses a slightly
smaller height range for intervention to attempt to construct
a partial intervention set (Section 3.3). The MPC algorithm
optimizes a control sequence over the same cost function.
The function Q is computed by rolling out this control se-
quence on the dynamical model and querying the cost func-
tion. We also consider model bias in the MPC experiments
(details in Appendix C.2).

As with the point environment, SAILR incurs orders of

magnitude fewer safety violations than the baselines (right
plot of Fig. 3b), with all three instances having compara-
ble deployment performance to that of CPO. Though the
heuristic intervention violates no constraints in training, it
is consistently unsafe in deployment (middle plot), likely
because the resulting intervention set is not partial. On the
other hand, MPC-based approaches are consistently safe
in deployment, owing to its multi-step lookahead yielding
an intervention rule that is likely to be σ-admissible (and
therefore give an intervention set that is partial).

6. Conclusion
We presented an intervention-based method for safe rein-
forcement learning. By utilizing advantage functions for
intervention and penalizing an agent for taking intervened
actions, we can use unconstrained RL algorithms in the safe
learning domain. Our analysis shows that using advantage
functions for the intervention decision gives strong guar-
antees for safety during training and deployment, with the
performance only limited by how often the true optimal
policy would be intervened. We also discussed ways of
synthesizing good intervention rules, such as using value
iteration techniques. Finally, our experiments showed that
the shielded policy violates few if any constraints during
training while the corresponding deployed policy enjoys
convergence to a large return.
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A. Missing Proofs
A.1. Useful Lemmas

Lemma 2. For any γ-discounted MDP with reward function r, the identity V π(d0) = (1 − γ)
∑∞
h=0 γ

hUπh (d0) holds,
where Uπh (d0) = Eρπ [

∑h
t=0 r(st, at)]] is the undiscounted h-step return.

Proof. The proof follows from exchanging the order of summations:

(1− γ)

∞∑
h=0

γhUπh (d0) = (1− γ)

∞∑
h=0

γhEρπ
[

h∑
t=0

r(st, at)

]

= (1− γ)Eρπ
[ ∞∑
t=0

r(st, at)

∞∑
h=t

γh

]

= Eρπ
[ ∞∑
t=0

γtr(st, at)

]
= V π(d0)

Lemma 3 (Performance Difference Lemma (Kakade & Langford, 2002; Cheng et al., 2020)). LetM be an MDP and π be
a policy. For any function f : S → R and any initial state distribution d0, it holds that

V π(d0)− f(d0) =
1

1− γ
E(s,a)∼dπ [r(s, a) + γEs′|s,a[f(s′)]− f(s)]

Corollary 1. LetM and M̂ be MDPs with common state and action spaces. For any policy π, the difference in value
functions inM and M̂ satisfies

V π(d0)− V̂ π(d0) =
1

1− γ
E(s,a)∼dπ [(DπQ̂π)(s, a)]

where Dπ is the temporal-difference operator ofM:

(DπQ)(s, a) := (BπQ)(s, a)−Q(s, a),

and Bπ is the Bellman operator ofM:

(BπQ)(s, a) := r(s, a) + γEs′|s,a[Q(s′, π)].

Proof. Set f = V̂ π and observe that V̂ π(s) = Q̂π(s, π).

A.2. Proof of Equivalent CMDP Formulation in Section 2

Here we show that (1) and (2) are the same by proving the equivalence

(1− γ)

∞∑
h=0

γhProb(ξh ⊂ Ssafe|π) ≥ 1− δ ⇐⇒ V
π
(d0) ≤ δ (10)

By the definition of the cost function c(s, a) = 1{s = s.} and absorbing property of Sunsafe = {s., s◦}, we can write

1− Prob(ξh ⊂ Ssafe|π) = Prob(s. ∈ ξh|π) = Eρπ
[

h∑
t=0

c(st, at)

]
(11)
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since s. can only appear at most once within ξh. Substituting this equality into the negation of the chance constraint,

1− (1− γ)

∞∑
h=0

γhProb(ξh ⊂ Ssafe|π) = (1− γ)

∞∑
h=0

γhEρπ
[

h∑
t=0

c(st, at)

]

= Eρπ
[ ∞∑
t=0

γtc(st, at)

]
= V

π
(d0)

where the second equality follows from Lemma 2. Therefore, (10) holds.

A.3. Proof for Intervention Rules in Section 3

A.3.1. ADMISSIBLE RULES AND PESSIMISM

Proposition 2. If G = (Q,µ, η) is σ-admissible, then Q
µ
(s, a) ≤ Q(s, a) + σ

1−γ for all s ∈ Ssafe and a ∈ A.

Proof of Proposition 2. The proof follows by repeating the inequality of Q.

Q(s, a) ≥ c(s, a) + γEs′|s,a[Q(s′, µ)]− σ

≥ c(s, a) + γEs′|s,a
[
c(s′, µ),+γEs′′|s′,µ[Q

µ
(s′′, µ)]

]
− (1 + γ)σ

...

≥ Qµ(s′, µ)− σ

1− γ
.

A.3.2. EXAMPLE INTERVENTION RULES

Proposition 3 (Intervention Rules). The following are true.

1.Baseline policy: Given a baseline policy µ ofM, G = (Q
µ
, µ, η) or G = (Q

µ
, µ+, η) is admissible, where µ+ is the

greedy policy that treats Q
µ

as a cost.

2.Composite intervention: Given K intervention rules {Gk}Kk=1, where each Gk = (Qk, µk, η) is σk-admissible. Define
Qmin(s, a) = minkQk(s, a) and let µmin be the greedy policy w.r.t. Qmin, and σmax = maxk σk. Then, G =
(Qmin, µmin, η) is σmax-admissible.

3.Value iteration: Define T as T Q(s, a) := c(s, a) + γEs′∼P |s,a[mina′ Q(s′, a′)]. If G = (Q,µ, η) is σ-admissible, then

Gk = (T kQ,µk, η) is γkσ-admissible, where µk is the greedy policy that treats T kQ as a cost.

4.Optimal intervention: Let π∗ be an optimal policy forM, and let Q
∗

be the corresponding state-action value function.
Then G∗ = (Q

∗
, π∗, η) is admissible.

5.Approximation: For σ-admissible G = (Q,µ, η), consider Q̂ such that Q̂(s, a) ∈ [0, γ] for all s ∈ Ssafe and a ∈ A. If
‖Q̂−Q‖∞ ≤ δ, then Ĝ = (Q̂, µ, η) is (σ + (1 + γ)δ)-admissible.

Proof of Proposition 3. We show each intervention rule G = (Q,µ, η) below satisfies the admissibility condition

Q(s, a) + σ ≥ c(s, a) + γEs′∼P |s,a[Q(s′, µ)].

For convenience, we define the Bellman operator Bµ as BµQ(s, a) := c(s, a) + γEs′|s,a[Q(s, µ)]. Then the admissibility
condition can be written as Q(s, a) + σ ≥ (BµQ)(s, a) for any s ∈ Ssafe and a ∈ A. Also, we write Q ∈ [0, γ] on Ssafe if
Q(s, a) ∈ [0, γ] for all s ∈ Ssafe and a ∈ A.
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1. Baseline policy: We know G = (Q
µ
, µ, η) is admissible since Q

µ
= BµQµ. For G = (Q

µ
, µ+, η), we have

Q
µ ≥ Bµ

+

Q
µ

since µ+ is greedy with respect to Q
µ

. Also, by the definition of the cost c and transition dynamics P ,
we know that Q

µ
(s, a) ∈ [0, 1] for all s ∈ S and a ∈ A. Furthermore, when s ∈ Ssafe, we have c(s, a) and therefore

Q
µ
(s, a) = γEs′|s,a[Q

µ
(s′, µ)] ∈ [0, γ].

2. Composite intervention: For any k ∈ {1, . . . ,K}, the following bound holds:

(Bµmin
Qmin)(s, a) = c(s, a) + γEs′|s,a[Qmin(s′, µmin)]

≤ c(s, a) + γEs′|s,a[Qmin(s′, µk)]

≤ c(s, a) + γEs′|s,a[Qk(s′, µk)]

≤ Qk(s, a) + σk

≤ Qk(s, a) + σmax,

where the first inequality comes from µmin being a minimizer of Qmin, and the second inequality from Qmin being a
pointwise minimum of {Qk}Kk=1. Since this holds for every k, we conclude:

(Bµmin
Qmin)(s, a) ≤ min

k

[
Qk(s, a) + σmax

]
= min

k
Qk(s, a) + σmax

= Qmin(s, a) + σmax,

which establishes the Bellman bound holds. Finally, since each Qk satisfies Qk ∈ [0, γ] on Ssafe, we conclude that
Qmin has the same range. Therefore, G is σmax-admissible.

3. Value iteration: Define shortcuts Qk := T kQ, where Q0 = Q.

We first show that, by policy improvement, we have Qk(s, a) ≤ Qk−1(s, a) + γk−1σ on Ssafe × A. We do this by
induction. First, we see that:

Q1(s, a) = T Q0(s, a)

= c(s, a) + γEs′|s,a
[
min
a′

Q0(s′, a′)
]

= c(s, a) + γEs′|s,a
[
min
a′

Q(s′, a′)
]

≤ c(s, a) + γEs′|s,a
[
Q(s′, µ)

]
≤ Q(s, a) + σ

= Q0(s, a) + σ.

Now suppose Qκ(s, a) ≤ Qκ−1(s, a) + γκ−1σ holds on Ssafe ×A for some κ. Therefore,

Qκ+1(s, a) = T Qκ(s, a)

= c(s, a) + γEs′|s,a
[
min
a′

Qκ(s′, a′)
]

≤ c(s, a) + γEs′|s,a
[
min
a′

Qκ−1(s′, a′)
]

+ γκσ

= T Qκ−1(s, a) + γκσ

= Qκ(s, a) + γκσ.
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Using this inequality, we now show that Gk = (Qk, µ
k, η) is indeed γkσ-admissible:

Qk(s, a) = T Qk−1(s, a)

= c(s, a) + γEs′|s,a
[
min
a′

Qk−1(s′, a′)
]

≥ c(s, a) + γEs′|s,a
[
min
a′

Qk(s′, a′)
]
− γkσ

= T Qk(s, a)− γkσ

= Bµ
k

Qk(s, a)− γkσ,

where the inequality was used in the third line. This establishes the Bellman bound holds.

We prove that Qk ∈ [0, γ] on Ssafe by induction. Clearly, Q0 = Q ∈ [0, γ] on Ssafe since G is σ-admissible.
Now suppose Qκ ∈ [0, γ] on Ssafe for some κ. Then, for any s ∈ Ssafe and a ∈ A, we have Qκ+1(s, a) =

γEs′|s,a[mina′ Qκ(s, a)] ∈ [0, γ]. Therefore, Gk is γkσ-admissible.

4. Optimal intervention: This is a special case of case 1.

5. Approximation: The following holds on Ssafe ×A:

Q̂(s, a) = Q̂(s, a)−Q(s, a) +Q(s, a)

≥ −δ + (BµQ)(s, a)− σ
= −δ − σ + c(s, a) + γEs′|s,a[Q(s′, µ)]

≥ −δ − σ + c(s, a) + γEs′|s,a[Q̂(s′, µ)− δ]
= −δ − σ − γδ + BµQ̂(s, a).

That is, BµQ̂(s, a) ≤ Q̂(s, a) + σ + (1 + γ)δ. Therefore, Ĝ = (Q̂, µ, η) is (σ + (1 + γ)δ)-admissible.

A.3.3. SAFETY GUARANTEE OF SHIELDED POLICY

Before proving Theorem 2, we prove two lemmas, one showing that the average advantage of a shielded policy satisfies the
intervention threshold (Lemma 4) and the other stating that the cost-value function is equal to the expected occupancy of the
unsafe set (Lemma 5).

Lemma 4. For some policy π and intervention rule G = (Q,µ, η), let π′ := G(π) and A(s, a) := Q(s, a)−Q(s, µ). Then,
A(s, π′) ≤ η for any s ∈ Ssafe.

Proof. We use the definition of π′ (in (4)), the facts that A(s, µ) = 0, and that (s, a) /∈ I if and only if A(s, a) ≤ η. The
following then holds:

A(s, π′) =
∑
a∈A

π′(a|s)A(s, a)

=
∑

a:(s,a)/∈I

π(a|s)A(s, a) + w(s)
∑
a∈A

µ(a|s)A(s, a)

≤ η
∑

a:(s,a)/∈I

π(a|s) + w(s)A(s, µ)

≤ η · 1 + w(s) · 0
= η.
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Lemma 5. For any policy π,
Es∼dπ [1{s ∈ {s., s◦}}] = V

π
(d0).

Proof. We know from the definition of the cost function that V
π
(d0) = 1

1−γEs∼dπ [1{s = s.}]. From the absorbing
property of Sunsafe, we have Es∼dπ [1{s = s◦}] = γ

1−γEs∼dπ [1{s = s.}]. We can then derive

Es∼dπ [1{s ∈ {s., s◦}}] = Es∼dπ [1{s = s.}] + Es∼dπ [1{s = s◦}]

=
1

1− γ
Es∼dπ [1{s = s.}]

= V
π
(d0).

We now prove the safety guarantee of the shieled policy π′.

Theorem 2 (Safety of Shielded Policy). Let G = (Q,µ, η) be σ-admissible as per Definition 1. For any policy π, let
π′ = G(π). Then,

V
π′

(d0) ≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
. (9)

Proof.

Q(s., a) = 1 and Q(s◦, a) = 0 for all a ∈ A.

Define V (s) := Q(s, µ). Since c(s, a) +γEs′|s,a[V (s′)] = V (s) when s ∈ {s., s◦}, we can use the performance difference
lemma (Lemma 3) to derive

V
π′

(d0)−Q(d0, µ) =
1

1− γ
E(s,a)∼dπ′ [c(s, a) + γEs′|s,a[V (s′)]− V (s)]

=
1

1− γ
E(s,a)∼dπ′ [

(
c(s, a) + γEs′|s,a[V (s′)]− V (s)

)
1{s 6∈ {s., s◦}}]

≤ 1

1− γ
E(s,a)∼dπ′ [

(
min{σ, γ}+Q(s, a)− V (s)

)
1{s 6∈ {s., s◦}}]

≤ min{σ, γ}+ min{η, γ}
1− γ

Es∼dπ′ [1{s 6∈ {s., s◦}}]

=
min{σ, γ}+ min{η, γ}

1− γ
V
π′

(d0),

where the first inequality comes from Q being σ-admissible and γ-admissible, the second inequality from A(s, π′) ≤
η (Lemma 4) and A(s, π′) ≤ γ (Definition 1) for s /∈ {s., s◦}, and the last equality from Lemma 5.

Therefore, after some algebraic rearrangement,

V
π′

(d0) ≤ (1− γ)Q(d0, µ) + min{σ, γ}+ min{η, γ}
1− γ + min{σ, γ}+ min{η, γ}

≤ Q(d0, µ) +
min{σ, γ}+ min{η, γ}

1− γ

≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
.
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A.3.4. AN OPTIMAL INTERVENTION RULE

First, we show that every state-action pair visited by π′ will not have an advantage function lower than that of the optimal
policy forM.

Lemma 6. Let π∗ be an optimal policy forM, Q
∗

be its state-action value function, and V
∗

be its state value function.
Let G0 = {(Q,µ, 0) : (Q,µ, 0) is admissible, Q(d0, µ) = V

∗
(d0)} be a subset of admissible intervention rules with a

threshold of zero and average Q that matches V
∗
. Define A

∗
(s, a) = Q

∗
(s, a)−Q∗(s, π∗) as the advantage function of

the optimal policy. For some intervention rule G ∈ G0 and policy π, let π′ = G(π).

Then, the inequality A(s, a) ≥ A∗(s, a) holds for all a ∈ A almost surely over the distribution dπ
′
(s).

Proof. First, we show by induction that running π′ starting from d0 results in the agent staying in the subset SG = {s ∈ S :

Q(s, µ) = V
∗
(s)}.

For t = 0, consider some s0 ∼ d0. We observe from admissibility of G and Proposition 2 that Q(s, a) ≥ Qµ(s, a) ≥ V ∗(s)
on S ×A. Since Q(d0, µ) = V

∗
(d0), we conclude that Q(s0, µ) = V

∗
(s0). Therefore, s0 ∈ SG almost surely over d0.

Now suppose the agent is in SG with probability one at some time step t. Consider some st ∼ dπ
′

t (observing that st ∈ SG).
We assume that st ∈ Ssafe (otherwise, the below is trivially true as there is no intervention outside Ssafe). By Lemma 4 and
admissibility, we can derive:

0 = η ≥ A(st, π
′)

= Q(st, π
′)−Q(st, µ)

≥ c(st, π′) + γEst+1∼P|st,π′ [Q(st+1, µ)]−Q(st, µ)

= γEst+1|st,π′ [Q(st+1, µ)]−Q(st, µ)

= γEst+1|st,π′ [Q(st+1, µ)]− V ∗(st)

= γEst+1|st,π′ [Q(st+1, µ)]− γEst+1|st,π∗ [V
∗
(st+1)],

where the second and fourth equalities are due to st ∈ Ssafe, and the third equality is due to st ∈ SG . Notice also, since
st ∈ Ssafe, we have

γEst+1|st,π′ [V
∗
(st+1)] = Q

∗
(st, π

′) ≥ Q∗(st, π∗) = γEst+1|st,π∗ [V
∗
(st+1)].

Therefore, combining the two inequalities above, we have

Est+1|st,π′ [V
∗
(st+1)] ≥ Est+1|st,π′ [Q(st+1, µ)].

Since Q(s, a) ≥ V
∗
(s) on S × A, by the same argument we made for s0, we conclude Q(st+1, µ) = V

∗
(st+1) with

probability one. Therefore, the agent stays in the subset SG .

With this property in mind, let s ∼ dπ′ . Then the following holds for all a ∈ A:

A(s, a) = Q(s, a)−Q(s, µ)

= Q(s, a)−Q∗(s, π∗)

≥ Q∗(s, a)−Q∗(s, π∗) = A
∗
(s, a),

where the second equality is due to Q(s, µ) = V
∗
(s) = Q

∗
(s, π∗) on SG .

Proposition 4. Let π∗ be an optimal policy forM, Q
∗

be its state-action value function, and V
∗

be its state value function.
Let G0 = {(Q,µ, 0) : (Q,µ, 0) is admissible, Q(d0, µ) = V

∗
(d0)}. Let G∗ = (Q

∗
, π∗, 0) ∈ G0. Consider arbitrary

G ∈ G0 and policy π. Let M̃ and M̃∗ be the absorbing MDPs induced by G and G∗, respectively, and let d̃π and d̃∗,π be
their state-action distributions of π. Then,

SuppS×A(d̃π) ⊆ SuppS×A(d̃∗,π),

where SuppS×A(d) denotes the support of a distribution d when restricted on S ×A.
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Proof. Let ξ = (s0, a0, s1, a1, . . . ) be any trajectory that has non-zero probabilty in the trajectory distribution ρ̃π of π
on M̃. Let I and I∗ be the intervention sets of G and G∗, respectively. Suppose for some t that (st, at) ∈ I. We know
for τ ≥ t + 1 that sτ = s†. In addition, by Lemma 6, we have A

∗
(sτ , aτ ) ≤ A(sτ , aτ ) ≤ 0 for any τ ∈ [0, t − 1], so

(sτ , aτ ) /∈ I∗. Therefore, the sub-trajectory (sτ , aτ ) with τ ∈ {0, 1, . . . , t} also has a non-zero probability in M̃∗. By this
argument, every sub-trajectory in S ×A with non-zero probability in M̃ also has non-zero probability in M̃∗. The final
thesis follows from defining the state-action distributions through averaging the trajectory distributions.

A.4. Proof for Absorbing MDP in Section 3.3.2

We derive some properties of the Bellman operator of the absorbing MDP.

Lemma 7. For a policy π, let (BπQ)(s, a) := r(s, a)+γEs′|s,a[Q(s′, π)] denote the Bellman operator of π inM; similarly
define B̃π for M̃. Let Q : S̃ × A → R be some function satisfying Q(s†, a) = 0 for all a ∈ A.

1. The Bellman operator in M̃ can be written as

(B̃πQ)(s, a) =

{
(BπQ)(s, a) · 1{(s, a) /∈ I}+ R̃ · 1{(s, a) ∈ I}, (s, a) ∈ S ×A
0, s = s†.

(12)

2. The following holds when the temporal-difference operator D̃π for M̃ is applied to the policy’s state-action value
function Qπ forM:(

R̃− 1

1− γ

)
1{(s, a) ∈ I} ≤ (D̃πQπ)(s, a) ≤ R̃1{(s, a) ∈ I} for all (s, a) ∈ S ×A (13)

(D̃πQπ)(s†, a) = 0, (14)

where the definition of Qπ is extended to s† as Qπ(s†, a) = 0.

Proof. For brevity, let Ω(s, a) = 1{(s, a) ∈ I}.

1. Since Q(s†, π) = 0, the following holds for any (s, a) ∈ S ×A:

(B̃πQ)(s, a) = r̃(s, a) + γEs′∼P̃ |s,a[Q(s′, π)]

= (1− Ω(s, a))
(
r(s, a) + γEs′∼P |s,a[Q(s′, π)]

)
+ Ω(s, a) · R̃

= (1− Ω(s, a)) · (BπQ)(s, a) + Ω(s, a) · R̃

and

(B̃πQ)(s†, a) = 0 + γQ(s†, π) = 0.

2. For (13), using the fact that (BπQ)π = Qπ , the following applies on S ×A:

(D̃πQπ)(s, a) = (B̃πQπ)(s, a)−Qπ(s, a) = Ω(s, a) ·
(
R̃−Qπ(s, a)

)
.

Since 0 ≤ Qπ(s, a) ≤ 1
1−γ , we have(

R̃− 1

1− γ

)
Ω(s, a) ≤ (D̃πQπ)(s, a) ≤ R̃Ω(s, a).

For the absorbing state in (14), by the extended definition and the equality (B̃πQ)(s†, a) = 0, we have

(D̃πQπ)(s†, a) = (B̃πQπ)(s†, a)−Qπ(s†, a) = 0.
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Lemma 8. For any policy π, PG(π) = 1
1−γE(s,a)∼d̃π [1{(s, a) ∈ I}] .

Proof. Notice that for any h,

Prob(ξh ∩ I 6= ∅ | π,M) = Prob(ξh ∩ I 6= ∅ | π,M̃) = Eρ̃π
[
h−1∑
t=0

1{(st, at) ∈ I}

]
.

By Lemma 2,

1

1− γ
E(s,a)∼d̃π [1{(s, a) ∈ I}] = Eρ̃π

[ ∞∑
t=0

γt1{(st, at) ∈ I}

]

= (1− γ)

∞∑
h=0

γhEρ̃π
[
h−1∑
t=0

1{(st, at) ∈ I}

]

= (1− γ)

∞∑
h=0

γhProb(ξh ∩ I 6= ∅ | π,M)

= PG(π).

Using the above results, we can bound the difference between the values of the original and the absorbing MDPs.
Lemma 1. For every policy π, it holds that

|R̃| PG(π) ≤ V π(d0)− Ṽ π(d0) ≤
(
|R̃|+ 1

1− γ

)
PG(π).

Proof of Lemma 1. First, extend the definition of Qπ to s† as Qπ(s†, a) = 0 for any a ∈ A. By Corollary 1, we have

Ṽ π(d0)− V π(d0) =
1

1− γ
E(s,a)∼d̃π [(D̃πQπ)(s, a)]

By Lemma 7, we can derive(
R̃− 1

1− γ

) E(s,a)∼d̃π [1{(s, a) ∈ I}]
1− γ

≤ Ṽ π(d0)− V π(d0) ≤ R̃
E(s,a)∼d̃π [1{(s, a) ∈ I}]

1− γ
.

Finally, substituting the equality from Lemma 8 and negating the inequality concludes the proof.

Next we derive some lemmas, which will be later to used to show that when the intervention set is partial, the unconstrained
reduction is effective.
Lemma 9. Let I ⊂ Ssafe ×A be partial, and let F = (Ssafe ×A) \ I be the state-action pairs that are not intervened. For
an arbitrary policy π, define

πf (a|s) := π(a|s)1{(s, a) ∈ F}+ f(s, a), (15)

where f(s, a) is some arbitrary non-negative function which is zero on I and that ensures
∑
a∈A πf (a|s) = 1 for all s ∈ S .

Define

J̃π+ :=
1

1− γ
E(s,a)∼d̃π [r(s, a) · 1{(s, a) ∈ F}]

J̃π− :=
1

1− γ
E(s,a)∼d̃π [R̃ · 1{(s, a) ∈ I}]

as the expected returns in F and I, respectively.

The following are true:
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1. Ṽ π(d0) = J̃π+ + J̃π−.

2. d̃πf (s, a) ≥ d̃π(s, a) for all (s, a) ∈ F .

3. J̃πf+ ≥ J̃π+.

4. E(s,a)∼d̃πf [1{(s, a) ∈ I}] = 0, implying J̃πf− = 0.

5. Ṽ πf (d0) ≥ Ṽ π(d0) whenever R̃ ≤ 0. Furthermore, if R̃ < 0 and π(a|s) > 0 for some (s, a) ∈ I, then
Ṽ πf (d0) > Ṽ π(d0).

Proof. 1. This follows from the definition of r̃ in (7).

2. Recall d̃π(s, a) = (1−γ)
∑∞
t=0 γ

td̃πt (s, a). To show the desired result, we show by induction that d̃πft (s, a) ≥ d̃πt (s, a)
for all (s, a) ∈ F and t ≥ 0. For t = 0, by construction of πf , we have πf (a|s) ≥ π(a|s) for all (s, a) ∈ F and
therefore d̃πf0 (s, a) ≥ d̃π0 (s, a) for all (s, a) ∈ F .

Now suppose that for some t ≥ 0 the inequality d̃πft (s, a) ≥ d̃πt (s, a) holds for all (s, a) ∈ F . Then, for some
(s, a) ∈ F , we can derive

d̃
πf
t+1(s, a) = πf (a|s)

∑
(st,at)∈S×A

P̃ (s|st, at)d̃
πf
t (st, at)

= πf (a|s)
∑

(st,at)∈F

P (s|st, at)d̃
πf
t (st, at)

≥ π(a|s)
∑

(st,at)∈F

P (s|st, at)d̃πt (st, at)

= d̃πt+1(s, a),

where we use the inductive hypothesis in the inequality. Thus, we have d̃πf (s, a) ≥ d̃π(s, a) by summing over each
time step.

3. By statement 2, definition of J̃π+, and non-negativity of the reward r, it follows that J̃πf+ ≥ J̃π+.

4. This statement from the construction of πf and induction. First, we have d̃πf0 (s, a) = 0 for all (s, a) ∈ I . Now suppose
for some t ≥ 0 that d̃πft (s, a) = 0 for all (s, a) ∈ I. We can see that d̃πft+1(s, a) = 0 for all (s, a) ∈ I since πf never
chooses actions such that (s, a) ∈ I.

Therefore, d̃πf (s, a) = 0 for all (s, a) ∈ I. By definition of J̃π−, this allows us to conclude that J̃π− = 0.

5. Using statements 3 and 4, we conclude that

Ṽ πf (d0) = J̃
πf
+ + J̃

πf
− ≥ J̃π+ + J̃π− = Ṽ π(d0).

The special case follows from observing that J̃π− < 0 whenever π(a|s) > 0 for some (s, a) ∈ I.

Lemma 10. Let R̃ be non-positive and Ṽ ∗ denote the optimal value function for M̃.

1. For any policy π,
Ṽ ∗(d0) ≥ J̃π+.

2. There is an optimal policy π̃∗ of M̃ satisfying

E(s,a)∼d̃π̃∗ [1{(s, a) ∈ I}] = 0. (16)
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3. If R̃ is negative, every optimal policy of M̃ satisfies (16).

Proof of Lemma 10. 1. Let the policy π be arbitrary, and define πf using (15). The following then holds by Lemma 9:

Ṽ ∗(d0) ≥ Ṽ πf (d0) = J̃
πf
+ ≥ J̃π+.

2. Suppose that π is an optimal policy of M̃, and define πf using (15). Because R̃ is non-positive, we know by Lemma 9
and optimality of π that Ṽ πf (d0) = Ṽ π(d0). Therefore, we can define an optimal policy as π̃∗ = πf and conclude by
Lemma 9 that E(s,a)∼d̃π̃∗ [1{(s, a) ∈ I}] = 0.

3. Suppose for the sake of contradiction there is an optimal policy π̃∗ of M̃ such that (16) does not hold (i.e., it may take
some (s, a) ∈ I). By Lemma 9, we can construct some policy πf such that Ṽ πf (d0) > Ṽ π̃

∗
(d0). This contradicts π̃∗

being optimal, so every optimal policy of M̃ must satisfy (16).

These results show that if the intervention set is partial and the penalty of being intervened is strict, then the optimal policy
of the absorbing MDP would not be intervened.

Proposition 6. If R̃ is negative and G induces a partial I, then every optimal policy π̃∗ of M̃ satisfies PG(π̃∗) = 0.

Proof of Proposition 6. This directly follows from Lemmas 8 and 10.

Below we derive some lemmas to show a near optimal policy of the absorbing MDP is safe. (We already proved above that
the optimal policy of the absorbing MDP is safe).

Lemma 11. Let I ⊂ S × A be partial (Definition 2). Given some policy π, let π′ be the corresponding shielded policy
defined in (4). Then, the following holds for any h ≥ 0 inM:

Prob(s. ∈ ξh | π,M) ≤ Prob(s. ∈ ξh | π′,M) + Prob(ξh ∩ I 6= ∅ | π,M), (17)

where ξh = (s0, a0, . . . , sh−1, ah−1) is an h-step trajectory segment.

Proof. First, we notice that π′(a|s) ≥ π(a|s) when (s, a) /∈ I, because π′(a|s) = π(a|s) + w(s)µ(a|s) ≥ π(a|s).

We bound the probability of π violating a constraint inM by introducing whether π visits the intervention set:

Prob(s. ∈ ξh | π,M) = Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) + Prob(s. ∈ ξh, ξh ∩ I 6= ∅ | π,M)

≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) + Prob(ξh ∩ I 6= ∅ | π,M).

We now bound the first term. Let ξh satisfy the event “s. ∈ ξh, ξh ∩I = ∅”, and let T be the time index such that sT = s.
in ξh. Then, the probability of this trajectory under π andM is

d0(s0)π(a0|s0)P (s1|s0, a0) · · ·π(aT−1|sT−1)P (sT |sT−1, aT−1).

Since each (st, at) is not in I, we have π(at|st) ≤ π′(at|st) for each (st, at) in ξh. Thus, the probability of this trajectory
under π andM is upper bounded by its probability under π′ andM. Summing over each trajectory ξh satisfying the event
then yields:

Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) ≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π′,M).

We now complete the original bound:

Prob(s. ∈ ξh | π,M) ≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) + Prob(ξh ∩ I 6= ∅ | π,M)

≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π′,M) + Prob(ξh ∩ I 6= ∅ | π,M)

≤ Prob(s. ∈ ξh | π′,M) + Prob(ξh ∩ I 6= ∅ | π,M).
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Lemma 12. For any policy π and I ⊂ S×A that is partial, let π′ be the corresponding shielded policy. Then, the following
safety bound holds:

V
π
(d0) ≤ V π

′

(d0) +
1

1− γ
E(s,a)∼d̃π [1{(s, a) ∈ I}].

Proof of Lemma 12. Using (17) from Lemma 11 and the fact that the probabilities can be expressed as expected sums of
indicators:

Prob(s. ∈ ξh | π,M) = Eρπ
[
h−1∑
t=0

1{st = s.}

]

Prob(s. ∈ ξh | π′,M) = Eρπ′
[
h−1∑
t=0

1{st = s.}

]

Prob(ξh ∩ I 6= ∅ | π,M) = Eρ̃π
[
h−1∑
t=0

1{(st, at) ∈ I}

]

Then, applying Lemma 2 results in the desired inequality.

Proposition 7 (Suboptimality in M̃ to Suboptimality and Safety inM). Let R̃ be negative. For some policy π, let π′ be
the shielded policy defined in (4). Suppose π is ε-suboptimal for M̃. Then, for any comparator policy π∗, the following
performance and safety guarantees hold for π inM:

V π
∗
(d0)− V π(d0) ≤

(
|R̃|+ 1

1− γ

)
PG(π∗) + ε

V
π
(d0) ≤ V π

′

(d0) +
ε

|R̃|
.

Proof of Proposition 7. The performance bound follows from Lemma 1.

V π
∗
(d0)− V π(d0) = V π

∗
(d0)− Ṽ π

∗
(d0) + Ṽ π

∗
(d0)− Ṽ π(d0) + Ṽ π(d0)− V π(d0)

≤
(
|R̃|+ 1

1− γ

)
PG(π∗) + Ṽ π

∗
(d0)− Ṽ π(d0)− |R̃|PG(π)

≤
(
|R̃|+ 1

1− γ

)
PG(π∗) + Ṽ ∗(d0)− Ṽ π(d0)

≤
(
|R̃|+ 1

1− γ

)
PG(π∗) + ε.

For the safety bound, we start with Lemma 12:

V
π
(d0) ≤ V π

′

(d0) +
1

1− γ
E(s,a)∼d̃π [1{(s, a) ∈ I}]

We provide an upper bound on the second term on the right hand side above. Using the definition of J̃π− in Lemma 9, we
derive that

Ed̃π [1{(s, a) ∈ I}]
1− γ

= −
J̃π−

|R̃|

=
1

|R̃|

(
−Ṽ π(d0) + Ṽ ∗(d0) + J̃π+ − Ṽ ∗(d0)

)
≤ 1

|R̃|

(
Ṽ ∗(d0)− Ṽ π(d0)

)
=

ε

|R̃|
,

where the inequality is due to Lemma 10.
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Combine everything altogether:

V
π
(d0) ≤ V π

′

(d0) +
Ed̃π [1{(s, a) ∈ I}]

1− γ

= V
π′

(d0) +
ε

|R̃|
.

We now prove the main result of the paper.

Theorem 1 (Performance and Safety Guarantee at Deployment). Let R̃ = −1 and G be σ-admissible. If π̂ is an ε-suboptimal
policy for M̃, then, for any comparator policy π∗, the following performance and safety guarantees hold for π̂ inM:

V π
∗
(d0)− V π̂(d0) ≤ 2

1− γ
PG(π∗) + ε

V
π̂
(d0) ≤ Q(d0, µ) +

min{σ + η, 2γ}
1− γ

+ ε,

where PG(π∗) := (1− γ)
∑∞
h=0 γ

hProb(ξh ∩ I 6= ∅ | π∗,M) is the probability that π∗ visits I inM.

Proof. This is a direct result of Proposition 7.

The performance suboptimality results from:

V π
∗
(d0)− V π̂(d0) ≤

(
|R̃|+ 1

1− γ

)
PG(π∗) + ε

≤
(

1 +
1

1− γ

)
PG(π∗) + ε

=
2− γ
1− γ

PG(π∗) + ε

≤ 2

1− γ
PG(π∗) + ε.

For the safety bound,

V
π̂
(d0) ≤ V G(π̂)(d0) + ε

≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
+ ε,

where the second inequality follows from Theorem 2 and ε-suboptimality of π̂ in M̃.

B. Additional Discussion of SAILR
B.1. Necessity of the partial property

We highlight that the subset I being partial (Definition 1) is crucial for the unconstrained MDP reduction behind SAILR. If
we were to construct an absorbing MDP M̃′ described in Section 3.2 using an arbitrary non-partial subset I ′ ⊆ S ×A, then
the optimal policy of M̃′ can still enter I ′ when R̃ > −∞, because the optimal policy of M̃′ can use earlier rewards to
make up for the penalty incurred in I ′.

To see this, consider the toy MDPM shown in Fig. 4. Since there is no alternative action available at state 2, the intervention
illustrated in M̃′ is not partial. Suppose R̃ > −1/γ. Then, in M̃′, a policy choosing to transition from 1 to 3 has a value of
0, and a policy choosing to transition from 1 to 2 has a value of 1 + γR̃ > 0. Therefore, the optimal policy will transition
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0

Figure 4. A simple example illustrating a non-partial intervention. Edge weights correspond to rewards. If R̃ > −1/γ, the optimal policy
in M̃′ will always go into the intervention set.

from 1 to 2 and go into the non-partial intervention set I ′. Once applied to the original MDPM, this policy will always go
into the unsafe set.

One might think generally it is possible to set R̃ to be negative enough to ensure the optimal policy will never go into
the intervention set, which is indeed true for the counterexample above. But we remark that we need to set R̃ to be
arbitrarily large (in the negative direction) for general problems, which can cause high variance issues in return or gradient
estimation (Shalev-Shwartz et al., 2016). Because of the discount factor γ < 1, the negative reward stemming from the
absorbing state will be at most γT R̃, where T is the time step that the system enters I ′. For a fixed and finite R̃, we can then
extend the above MDP construction to let the agent go through a long enough chain after transitioning from 1 to 2 so that
the resultant value satisfies 1 + γT R̃ > 0. Like the example above, this path would be the only path with positive reward,
despite intersecting the intervention set. Therefore, the optimal policy of M̃′ will enter I ′.

B.2. Bias of SAILR

In Theorem 1, we give a performance guarantee of SAILR

V ∗(d0)− V π̂(d0) ≤ 2

1− γ
PG(π∗) + ε.

It shows that SAILR has a bias PG(π∗) ∈ [0, 1], which is the probability that the optimal policy π∗ would be intervened by
the advantage-based intervention rule. Here we discuss special cases where this bias vanishes.

The first special case is when the original problem is unconstrained (i.e., (2) has a trivial constraint with δ = 1). In this case,
we can set the threshold η ≥ γ in SAILR to turn off the intervention, and SAILR returns the optimal policy of the MDPM
when the base RL algorithm can find one.

Another case is when π∗ is a perfect safe policy, i.e., V
π∗

(d0) = 0 and we run SAILR with the intervention rule
G∗ = (Q

∗
, π∗, 0) (Proposition 4). Similar to the proof of Lemma 6, one can show that running π∗ would not trigger the

intervention rule G∗ and therefore the bias PG∗(π∗) is zero.

However, we note that generally the bias PG(π∗) can be non-zero.

C. Experimental Details
C.1. Point Robot

This environment (Fig. 5) is a simplification of the point environment from (Achiam et al., 2017). The state is s = (x, y, ẋ, ẏ),
where (x, y) is the x-y position and (ẋ, ẏ) is the corresponding velocity. The action a = (ax, ay) is the force applied to the
robot (each component has maximum magnitude amax). The agent has some mass m and can achieve maximum speed
vmax. The dynamics update (with time increment ∆t) is:

(xt+1, yt+1) = (xt, yt) + (ẋt, ẏt)∆t+
1

2m
at∆t

2

(ẋt+1, ẏt+1) = clip-norm

(
((ẋt, ẏt) +

1

m
at∆t, vmax

)
,
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Figure 5. The point environment. The black dot corresponds to the agent, the green circle to the desired path, and the red lines to the
constraints on the horizontal position. The vertical constraints are outside of the visualized environment.

where clip-norm(u, c) scales u so that its norm matches c if ‖u‖ > c. The reward corresponds to following a circular path
of radius R∗ at a high speed and the safe set to staying within desired positional bounds xmax and ymax:

r(s, a) =
(ẋ, ẏ) · (−y, x)

1 + |‖(x, y)‖ −R∗|
Ssafe = {s ∈ S : |x| ≤ xmax and |y| ≤ ymax}

For our experiments, we set these parameters to m = 1, vmax = 2, amax = 1, ∆t = 0.1, R∗ = 5, xmax = 2.5, and
ymax = 15.

For this environment, we also consider a shaped cost function ĉ(s, a) which is a function of the distance of the state s to the
boundary of the unsafe set, denoted by dist(s,Sunsafe). Here, Sunsafe denotes the 2D unsafe region in this environment (i.e.,
those outside the vertical lines in Fig. 5). Note that in the theoretical analysis Sunsafe is abstracted into {s., s†}.

For the point environment, the distance function is dist(s, Sunsafe) = max{0,min{xmax−x, xmax+x, ymax−y, ymax+y}}.
For some constant α ≥ 0, the cost function is defined as a hinge function of the distance:

ĉ(s, a) =

{
1{dist(s,Sunsafe) = 0}, α = 0

max
{

0, 1− 1
αdist(s,Sunsafe)

}
, otherwise.

(18)

We note that ĉ is an upper bound for c if α > 0 and ĉ = c if α = 0. We shape the cost here to make it continuous, so that the
effects of approximation bias is smaller than that resulting from a discontinuous cost (i.e., the original indicator function).

Intervention Rule: The backup policy µ applies a decelerating force (with component-wise magnitude up to amax) until
the agent has zero velocity. Our experiments consider the following approaches to construct Q:

• Neural network approximation: We construct a dataset of points mapping states and actions to state-action values
Q
µ

by picking some state and action in the MDP, executing the action from that state, and then continuing the rollout
with the backup policy µ to find the empirical state-action value with respect to the shaped cost function ĉ. Our dataset
consists of 107 points resulting from a uniform discretization of the state-action space. We apply a similar method to
form a dataset for the state values V

µ
.

We then train four networks (two to independently approximate Q
µ

, and two for V
µ

), where each network
has three hidden layers each with 256 neurons and a ReLU activation. The predicted advantage is A(s, a) =
max{Q1(s, a), Q2(s, a)} −min{V 1(s), V 2(s)}, where we apply the pessimistic approach from (Thananjeyan et al.,
2021) to prevent overestimation bias.

• Model-based evaluation: Here, we have access to a model of the robot where all parameters match the real environment
except possibly the mass m̂. We refer to the modeled transition dynamics as P̂ and the resulting trajectory distribution
under µ as ρ̂µ. The function Q is then set to be the model-based estimate of Q

µ
using the shaped cost function ĉ and
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dynamics P̂:

Q(s, a) = Eρ̂µ|s0=s,a0=a

[ ∞∑
t=0

γtĉ(st, at)

]
.

For our experiments, the modeled mass m̂ is either 1 (unbiased case) or 0.5 (biased case).

For our experiments, we set the advantage threshold η = 0.08 when using the neural network approximator and η = 0 when
using the model-based rollouts.

Hyperparameters: All point experiments were run on a 32-core Threadripper machine. The given hyperparameters were
found by hand-tuning until good performance was found on all algorithms.

Hyperparameter Value
Epochs 500
Neural Network Architecture 2 hidden layers, 64 neurons per hidden layer, tanh act.
Batch size 4000
Discount γ 0.99
Entropy bonus 0.001
CMDP threshold δ 0.01
Penalty value R̃ −2
Lagrange multiplier step size (for constrained approaches) 0.05
Cost shaping constant α 0.5
Number of seeds 10

C.2. Half-Cheetah

Figure 6. The half-cheetah environment. The green circle is centered on the link of interest, and the white double-headed arrow denotes
the allowed height range of the link.

This environment (Fig. 6) comes from OpenAI Gym and has reward equal to the agent’s forward velocity. One of the agent’s
links (denoted by the green circle in Fig. 6) is constrained to lie in a given height range, outside of which the robot is deemed
to have fallen over. In other words, if h is the height of the link of interest, hmin is the minimum height, and hmax is the
maximum height, the safe set is defined as Ssafe = {s ∈ S : hmin ≤ h ≤ hmax}. For our experiments, we set hmin = 0.4
and hmax = 1.

Heuristic Intervention Rule: This intervention rule G = (Q,µ, η) relies on a dynamics model (here, unbiased) to greedily
predict whether the safety constraint would be violated at the next time step. In particular, if s is the current state and
â ∼ π(·|s) is the proposed action, the agent will be intervened if the height ĥ′ in the next state ŝ′ ∼ P(·|s, â) lies outside
the range [ĥmin, ĥmax], where ĥmin and ĥmax can be set to a smaller range than [hmin, hmax] to induce a more conservative
intervention. Once intervened, the episode terminates. The reason for using a smaller range [ĥmin, ĥmax] is an attempt to
make the intervention rule possess the partial property (see the discussion in Section 3.1.2). If we were to set the range to be
the ordinary range [hmin, hmax] that defines the safe subset, the penalty R̃ would need to be very negative, which would
destabilize learning. Furthermore, there is no guarantee that the intervention set for the original range is partial since there
may be no available action to keep the agent from being intervened.

MPC-Based Intervention Rule: Similarly with the model-based intervention rule for the point environment, the MPC
intervention rule G = (Q,µ, η) uses a model of the half-cheetah. The backup policy µ is a sampling-based model predictive
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control (MPC) algorithm based on (Williams et al., 2017). The MPC algorithm has an optimization horizon of H = 16
time steps and minimizes the cost function corresponding to an indicator function of the link height being in the range
[0.45, 0.95].3 The function Q is defined as:

Q(s, a) = Eρ̂

[
H∑
t=0

γtĉ(ŝt, ât)

∣∣∣∣∣ ŝ0 = s, â0 = a, â1:H = MPC(ŝ1)

]
,

where ĉ(s, a) is the hinge-shaped cost function (in (18)) corresponding to the distance function dist(s, Sunsafe) =
max{0,min{h− hmin, hmax − h}}.

For our experiments, we set the advantage threshold η = 0.2. We also use a modeled mass of 14 (unbiased) and 12 (biased)
in our experiments.

Hyperparameters: Except for the MPC-based intervention, all half-cheetah experiments were run on a 32-core Threadripper
machine. The MPC-based intervention experiments were run on 64-core Azure servers with each run taking 24 hours. The
given hyperparameters were found by hand-tuning until good performance was found on all algorithms.

Hyperparameter Value
Epochs 1250
Neural Network Architecture 2 hidden layers, 64 neurons per hidden layer, tanh act.
Batch size 4000
Discount γ 0.99
Entropy bonus 0.01
CMDP threshold δ 0.01
Penalty value R̃ −0.1
Lagrange multiplier step size (for constrained approaches) 0.05
Heuristic intervention range [ĥmin, ĥmax] [0.4, 0.9]
Cost shaping constant α 0.05
Number of seeds 8

D. Ablations for Point Robot
We run the following two ablations for the point environment, with results shown in Fig. 7:

1. We additionally run all the algorithms with the original sparse cost (Fig. 7a). Here, the baseline algorithms as expected
yield high deployment returns while violating many constraints during training. For SAILR, however, only the
model-based instance with an unbiased model is able to satisfy the desiderata of high deployment returns while being
safe during training. In this case, the sparse cost along with the approximation errors from the other two instances
result in the slack σ being large for admissibilty, meaning the safety bounds in Theorems 1 and 2 are loose.

2. We run the model-based instance of SAILR with a biased model and either the sparse cost or the shaped cost (Fig. 7b).
Using the sparse cost with the biased model for intervention has deleterious effects in safety and performance. The
model mismatch causes a compounding number of safety violations in training (bottom plot) and destabilizes the policy
optimization, as observed in the deteriorated returns (top plot) and safety (middle plot), respectively. Shaping the cost
function for intervention results in far fewer safety violations and stabilizes the policy optimization.

E. Varying Intervention Penalty for Half-Cheetah

We vary the intervention penalty R̃ for both the MPC-based intervention and heuristic intervention (Fig. 8). Common among
all results is that the deployment episode return (top row) decreases and deployment safety (middle row) increases with
the magnitude of the penalty, consistent with the performance and safety bounds in Proposition 7. Furthermore, early in
training, we remark that larger penalties result in the agent learning to be safe more quickly (middle row). This is likely

3Observe that this is slightly smaller than the [0.4, 1] height range of the original safety constraint.
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Episode return without the intervention

Episode length without the intervention

Total number of safety violations during training

(a) Sparse cost (b) Biased model, either a sparse cost or
shaped cost

Figure 7. Ablations for point experiment

because the large penalties prioritize the agent to not be intervened, which allows it to more quickly learn to be as safe as the
backup policy µ.

For training-time safety with the MPC backup policy (bottom row of Figs. 8a and 8b), we observe that there are more
violations as the penalty decreases, likely because the agent is less conservative during rollouts.

For the heuristic intervention (Figs. 8c and 8d), we surmise that neither heuristic is partial since we require R̃ to be relatively
large in order for the agent to learn to be safe (middle row). This is in constrast with the MPC-based intervention rule (middle
row of Figs. 8a and 8b), where the penalty only needs to be nonzero, which indicates that the MPC-based intervention is
partial.
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Episode return without the intervention

Episode length without the intervention

Total number of safety violations during training

(a) MPC with unbiased model (b) MPC with biased model (c) Heuristic with smaller height
range

(d) Heuristic with original height
range

Figure 8. Varying intervention penalty for half-cheetah experiment


