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Abstract— We develop an air data system for aerial robots
executing high-speed outdoor missions subject to significant
aerodynamic forces on their bodies. The system is based
on a combination of Extended Kalman Filtering (EKF) and
autoregressive feedforward Neural Networks, relying only on
IMU sensors and GPS. This eliminates the need to instrument
the vehicle with Pitot tubes and mechanical vanes, reduc-
ing associated cost, weight, maintenance requirements and
likelihood of catastrophic mechanical failures. The system is
trained to clone the behaviour of Pitot-tube measurements on
thousands of instrumented simulated and real flights, and does
not require a vehicle aerodynamics model. We demonstrate that
safe guidance and navigation is possible in executing complex
maneuvers in the presence of wind gusts without relying on
airspeed sensors. We also demonstrate accuracy enhancements
from successful “simulation-to-reality” transfer and dataset
aggregation techniques to correct for training-test distribution
mismatches when the air-data system and the control stack
operate in closed loop.

I. INTRODUCTION

Aerial robots [1], [2] equipped with powerful avionics,
on-board sensors, GPS modules and cameras have the po-
tential to accomplish a variety of autonomous navigation
and perceptual reasoning tasks from a bird’s-eye view. Com-
pelling applications include emergency response [3], search-
and-rescue, goods delivery, transportation, precision agricul-
ture [4], industrial inspection, environment preservation and
3D photography. In a recent study [3], GPS-equipped 8-
rotor aerial vehicles flying autonomously over a few miles,
were able to deliver equipment to simulated out-of-hospital
cardiac arrest sites almost four times faster than conventional
emergency medical services. Such applications, combined
with the affordability of smartphone-quality hardware com-
ponents, has led to a surge of interest in low-cost unmanned
aerial vehicles (UAVs).

Typical multi-rotor UAVs (e.g. quadcopters) generally do
not require knowledge of airspeed to operate safely, since
they use their motors to generate the required forces and
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moments. In this case, aerodynamic forces caused by non-
zero airspeeds are usually small enough to be treated as
disturbances by the control system. However this is not
the case for other aircraft designs, from both a safety and
performance standpoint.

Fixed-wing or hybrid aircraft rely on structural features
(wings, tails, control surfaces) to generate aerodynamic
forces and moments, quantities that will vary linearly or
quadratically with airspeed. Errors in the airspeed estimate
will cause the flight control system to under- or over-
predict forces and moments. For example, over-estimating
airspeed will lead to an over-prediction of the effectiveness
of control surfaces such as elevators, and could also lead
to stalling the main lifting surfaces (wings). In both cases
loss of control can ensue. Aircraft are also designed to
operate most efficiently at a best cruise airspeed, which
will maximize the distance that the aircraft can fly. Errors
in the airspeed estimate will cause the aircraft to cruise
at suboptimal airspeed, causing a reduction in range and
possibly preventing it from completing its mission.

It is also worth noting that GPS velocity is not a good re-
placement for airspeed, since winds will cause GPS velocity
and airspeed to differ, sometimes very significantly. Again,
this is most critical for fixed-wing aircraft.

The accurate sensing of relative motion with respect to air
is therefore critical for safe and efficient control of fixed-
wing aerial vehicles executing outdoor missions in variable
wind conditions. An on-board air data system outputs an
estimate of the speed and orientation of the vehicle relative
to the air mass in which it is flying. These quantities are the
airspeed (VT ), angle of attack α, and the sideslip angle β (de-
scribed precisely later). Passenger aircraft measure this triplet
using multiple redundant Pitot tubes and mechanical vanes
fitted near the nose of the aircraft. On small UAVs, however,
such sensors disproportionately increase cost, weight and
maintenance requirements. Air data systems relying on these
sensors require additional design, mechanical integration,
and calibration to be accurate [5]. Once operational, such
instrumentation is susceptible to moisture and blockage,
requiring continual maintenance to ensure reliability. Failure
of the air data system can have catastrophic consequences
[6], such as the 2009 crash of Air France Flight 447 into the
Atlantic ocean caused by pilot disorientation due to erratic
airspeed readings from iced Pitot tubes.

Small, inexpensive airspeed sensors can be purchased off-
the-shelf for small UAVs. However these sensors are not



designed to operate in rainy, icing, or dusty conditions, and
will fail unexpectedly when exposed to such conditions. Due
to the small size of the sensor, these challenges are not
as easily solved as for passenger aircraft, which can afford
costly heated tubes with larger diameters. Designing a small,
inexpensive Pitot sensor that can withstand all operational
environments is very challenging.

Extended Kalman Filtering (EKF) based traditional air
data systems suffer from needing to adequately model system
dynamics. Building an accurate model of the system is chal-
lenging, especially for small UAVs where the aerodynamic
interactions are more complex than on larger fixed-wing
aircraft (e.g. rotor cross-flow, flow around small structures).
This requires pushing the boundary of computational fluid
dynamics tools, or performing complex and expensive mea-
surement campaigns using wind tunnels. In contrast, collect-
ing flight data is easily achievable with small autonomous
systems (as opposed to large aircraft), and something most
small UAV developers are able to do. It is therefore desirable
to use raw flight data to produce a direct airspeed measure-
ment, rather than taking the intermediate step of modeling
the underlying dynamics of the system.

Motivated by the observations above, in this paper, we
develop an alternative air data system based on machine
learning. We demonstrate that a neural network trained
to clone the behavior of the Pitot tube on thousands of
simulated and real flights can learn to sense relative air
motion reliably enough to enable safe guidance, navigation
and control of aerial vehicles. The neural network learns to
map the evolving history of inertial motion of the vehicle
in response to control commands, to an estimate of the
current airspeed. It relies on measurements from only the
IMU (Inertial Measurement Unit) sensors and GPS (Global
Positioning System).

The airspeed prediction is converted to dynamic pressure
and used by on-board controllers to navigate the vehicle
along the trajectory of a payload delivery mission. All our
experiments are conducted on an unconventional Vertical
Takeoff and Landing (VTOL) aircraft with lift motors and
fixed-wing forward flight capability. We consider a variety
of real and simulated missions where the vehicle must fly
through specific waypoints starting from a base location,
dropping off a payload at a designated destination and re-
turning to the base. We find that the airspeed predictions are
accurate to within 2 meters per second for nearly the entirety
of the flight time. We test the robustness of proposed air-data
system in settings that exercise the controller’s use of air-
speed, e.g. in missions requiring several turns in the presence
of wind gusts, and test missions that are explicitly manually
piloted to create unfamiliar mission profiles. Our approach
is completely model-free and is expected to generalize to
other types of UAVs and outdoor mission specifications.
Additionally, we demonstrate two promising mechanisms to
boost the accuracy of the system: (i) successful “simulation-
to-reality” transfer where large amounts of training data
under varying wind conditions can be used from flight
simulators, and (ii) a dataset aggregation mechanism [7], [8]

that boosts baseline models by correcting for training-test
mismatch when the air-data system and the control stack
operate in closed loop.

The goal of our exposition is to provide an accessible
overview to both aerospace engineering and machine learn-
ing communities. We provide a brisk overview of related
work followed by a description of our approach and extensive
empirical analysis (further detailed in supplementary mate-
rial).

II. RELATED WORK

Machine learning has proven to be an effective tool for
modeling the physical properties and dynamics of ground
and air vehicles directly from data. Abbeel et al. [9] and
Ross and Bagnell [10] learned models of helicopter dy-
namics directly from trajectories and then used the learned
models for helicopter control. More recently, Williams et
al. [11] learned neural network models of vehicle dynamics
for model predictive control of a fast-moving autonomous
ground vehicle. Much recent work in machine learning has
focused on the problem of learning for sequential prediction
and decision making: DAgger [7], Data as Demonstrator [8],
and similar algorithms [12] have been used to directly learn
control policies for aerial vehicles from human demonstra-
tions [13], as well as train functions for filtering and state
estimation [14]. Venkatraman et al. [15] and Sun et al. [16]
considered the problem of learning to predict unknown
sensor values from partial state information. They showed
that dataset aggregation [7] could be used for quadrotor
attitude estimation [15] when the attitude was available
during training but not testing and that the learned model
systematically outperformed a hand-tuned complementary
filter [17]. Finally, machine learning has also been used to
learn models in simulation and then transfer those models
to real world systems. While this can be difficult due to the
so-called “Reality Gap” [18], the fact that simulators rarely
capture the full complexity of the real world, recent work
on policy learning for unmanned aerial vehicles has demon-
strated that crossing this gap is sometimes possible [19].

In aerospace engineering, a significant amount of previous
work has focused on estimating angle of attack α̂ and
sideslip angle β̂ using a direct measurement of the true
velocity VT [20], [21], [22]. A synthetic air-data system
was reported to be used for closed-loop control on the X-
45A Joint Unmanned Combat Air system program [23]. This
method used a dynamic pressure measurement and the full
6-DOF non-linear aerodynamic model of an aircraft in an
EKF framework to estimate α and β only. A few meth-
ods provide α̂, β̂, and V̂T without airspeed measurement.
These techniques typically rely upon an inertial measurement
of velocity, attitudes, and an aircraft dynamics model. A
backup synthetic air data system was proposed for the X-
38 Crew return vehicle using inertial measurements and an
aerodynamic model to estimate α, β, and VT [24]. A severe
limitation of this approach was the assumption of a reference
trajectory: only air data perturbations from the reference
were computed limiting filtering performance beyond trim.



Lie et al. [25] proposed a cascaded Extended Kalman Filter
(EKF) architecture to prevent aircraft dynamic modeling
errors from corrupting normal states. A lower level EKF was
used to estimate position, ground speed, attitude, and sensor
biases and a higher level EKF was used, along with aircraft
dynamic models, to produce α̂, β̂, and V̂T . The effects of
dynamic model uncertainty were shown to be mitigated by
capturing specific non-linear aspects in the linear model,
improving the performance of the estimator during deviations
from the trim condition [26]. The filter demonstrated good
performance at off-trim attitudes, but not off-trim velocities.
Finally, Shaqura and Claudel [27] used a “hybrid” approach
to estimate α, β, and Va. The non-linear aircraft model
was decomposed into a finite number of linear modes. The
mode that matched the flight condition was selected at each
time-step and linear regression was performed on this mode
to estimate the air data parameters. This hybrid method
demonstrated a computational performance improvement of
2x over an equivalent EKF implementation.

III. LEARNING TO SENSE THE AIR

A. Aircraft Description, Navigation and Control

In this paper, a prototype fixed-wing Vertical Takeoff and
Landing (VTOL) aircraft designed for a package delivery
mission is used to demonstrate the airspeed estimation tech-
nique. A schematic of the vehicle is shown on the left in
the figure below. An array of 12 vertically mounted electric
motors provide thrust for hovering flight. Two forward thrust
motors, two ailerons, and two ruddervators are used primarily
for cruise flight. This hybrid configuration provides a flight
envelope across a full range of airspeeds from 0 m/s to best
aerodynamic cruise.

Aircraft performance, stability, and control is highly de-
pendent on in-flight aerodynamic forces and moments im-
parted on the air vehicle. These aerodynamic forces, Faero ∈
R1×3, can be expressed as Faero = f(Q,α, β, ω, u), with
dynamic pressure, Q = 1

2ρV
2
T where ρ denotes air-density,

true airspeed, VT ∈ R, angle of attack α ∈ R, sideslip
β ∈ R, angular rates about a body-fixed frame of reference
ωb =

[
p q r

]T
, and actuator inputs u ∈ Rn, for n

actuators [28]. True airspeed, VT , is the velocity magnitude
of the relative airmass, while α and β are the relative
angles of the wind with respect to the aircraft body-axis.
An overview of air data parameters α, β, and VT in the
context of body, stability, and wind axes is presented in the
schematic on the right in the figure above, adapted from [28].
Additionally, the North-East-Down (NED) reference frame

refers to a coordinate system whose origin is typically the
missions home location with axes aligned with the northern
and eastern axis, with the vertical axis pointing downwards
towards the center of the earth.

An air-data system is designed to provide real-time obser-
vations of VT , α, and β. These observations are fundamental
to aircraft operation, as they are often used in automatic
control laws, maintaining a vehicle state within a safe range,
and targeting conditions to maximize flight efficiency. A
typical air data system directly measures Q, α, and β with
sensors such as a Pitot tubes [29], flush mounted pressure
transducers, and wind vanes.

1) Package Delivery Missions: Each mission is defined
by a TAKEOFF action at the home location followed by
a combination of CRUISE, HOVER, PICKUP, DELIVER and
LAND actions at designated waypoints specified by latitude-
longitude pairs. The missions are executed in real flights as
well as in flight simulators. In the latter case, a model of a
Pitot tube incorporating errors such as random noise and bias
is used for airspeed measurements. The simulator allows the
performance of the aircraft to be studied under variable wind
conditions and levels of sensor noise.

2) Vehicle State Estimation: A flight control system re-
quires information about the current state of the aircraft to
track mission commands (e.g. following a path at a given
best-cruise airspeed). The state of interest is defined as:
• 3D Position (e.g. in the North/East/Down (NED) frame, with

origin at the take-off location)
• NED inertial velocity
• Rotation from body to NED frame (e.g. Euler angles: roll φ,

pitch θ, and true heading ψ)
• body rotation rates (p, q, and r)
• body accelerations (ax, ay , and az)
• True airspeed VT

The state is estimated by blending the measurements from
a set of sensors. For a small fixed-wing UAV, the minimum
set of sensors typically includes:
• Inertial Measurement Unit (IMU, consisting of 3 accelerometers

and 3 rate gyros)
• GPS receiver
• 3D magnetometer
• Static pressure sensor
• Pitot tube with dynamic pressure sensor
This information is blended through a state estimator such as
an Extended Kalman Filter (EKF), typically running between
100 Hz and 400Hz. In many cases true airspeed itself is
derived directly from the Pitot tube measurement, and does
not use information from other sensors. It is computed
according to, VT =

√
2Q/ρ, where Q is the measured

differential pressure in Pascals and ρ is air density in kg/m3.
In the absence of an outside air temperature sensor, air
density is looked-up based on altitude, assuming standard
atmospheric conditions [29].

3) Control: The position, velocity, and attitude estimates
from the EKF are compared with commands generated by
a high-level mission planning system. The control algorithm
generates actuator commands to reduce errors between the
state estimate and commands. The controller incorporates
a real-time airspeed estimate to properly allocate control
between individual hover motors and aerodynamic control



surfaces throughout the airspeed envelope. For example,
ailerons are not effective in controlling the roll axis at low
airspeed. Therefore, the control algorithm will allocate roll
control to hover motors rather than ailerons based on the
airspeed estimate.

B. Learning-based Air Data System

1) Cascaded Architecture: The proposed air data system
is a cascade of an EKF state estimator followed by a neural
network autoregressive predictor, as illustrated in Figure 1.
The first stage EKF outputs the velocity and acceleration of
the vehicle relative to the ground, and its orientation and rate
of rotation, based on sensor measurements from the GPS and
IMU. In this architecture, the air data system does not rely
on the knowledge of the aircraft aerodynamic model, and
the cascaded design implies that airspeed estimation errors
cannot corrupt fundamental safety critical state estimation of
attitudes, velocity, and position.

Fig. 1. Hybrid EKF-Neural Network Air Data System

The neural network airspeed predictor and the control
system form a feedback loop. A 22-dimensional feature
vector is formed using the following components: vehicle
state as summarized by (i) Attitude φ (roll), θ (pitch),
and ψ (true heading), (ii) Body rates p, q, r, (iii) Body
acceleration, (iv) NED inertial velocity as measured by the
GPS receiver, together with actuator commands issued by the
control system which include (i) 4 Hover motor commands:
leftfront, rightfront, leftrear, rightrear, (ii) 2 Cruise motor
commands: cruiseleft, cruiseright and (iii) 4 Control sur-
face commands: leftaileron, rightaileron, leftruddervator,
rightruddervator.

These feature vectors are accumulated over a sliding
window of fixed length windowlength = 50 samples. Each
mission typically generates 20-50 thousand sliding window
chunks. The sampling rate is 0.01 second so that the sliding
window lengths are 0.5 seconds long. Each chunk is flattened
into a windowlength × 22 = 1100-dimensional vector by
concatenating all 22-dimensional feature vectors. As flight
data streams in, a circular buffer maintains vehicle state and
actuator commands over the sliding window. The resulting
input vector is fed to the neural network to generate an
airspeed prediction, which is then consumed by the control
stack, completing the loop.

2) Cloning the Behavior of the Pitot Tube: The neural
network is trained to mimic the Pitot tube on data collected
from instrumented real and simulated flights. In this paper,
we demonstrate the system on airspeed prediction though
angle of attack and sideslip angle can also be similarly
handled. The training data is of the form {(xit, V it ), t =
1 . . . T i, i = 1 . . . N}, where i indexes training missions, xt
denotes vehicle states and actuator inputs accumulated over a
sliding window ending at time t, and Vt denotes the airspeed
measurement based on the Pitot tube. The neural network
parameters θ are obtained by minimizing the squared loss,

θ∗ = argmin
θ

N∑
i=1

T i∑
t=1

(V it − fθ(xit))2 (1)

The learning process is regularized with dropout training.
The neural network airspeed predictor is a fully connected

architecture with one hidden layer of size h = 1000 and
ReLU activation functions. We experimented with deeper
networks as well, but did not find appreciable gains.

Training Infrastructure: The loss is minimized using
stochastic gradient descent using the ADAM optimizer [30]
in TensorFlow [31] with minibatch size of 100. The network
weights are initialized from a truncated Normal distribu-
tion with standard deviation 0.1. Large-scale training is
distributed over a cluster of 100 machines, (Tesla k20 GPU
accelerators, 80G RAM). A continuous training infrastruc-
ture is set up to easily retrain on incoming instrumented flight
logs.

IV. EMPIRICAL ANALYSIS

A. Airspeed Prediction: Standalone Accuracy

In this section we study how well our machine learning-
based air data system mimics Pitot tube airspeeds on a
collection of real and simulated test missions. These results
are “standalone” in the sense that the control system still
relies on the Pitot tube. We also report the effectiveness of
“simulation-to-reality” transfer in this setting. In section IV-
B, we disable the Pitot tube and study end-to-end mission
performance where the controller uses air data estimates from
our model. Please note that an exhaustive set of experimental
results are included in our supplementary material.

Metrics: In the experiments below we use the follow-
ing metrics: average error εave, mean squared error εmse,
maximum error L∞, percentage of time with error less
than 1.5 m/s as well as the so-called cdf curves. The
cdf curve at point (x, y) means that for the y-fraction of
flight time the airspeed prediction error is at most x. Neural
network models were trained on data with labels given
as Pitot tube measurements or groundtruth airspeeds (the
latter one for certain simulated training missions). If not
mentioned otherwise, we assume that labels are Pitot tube
measurements.

1) Different train-test modes: Sim2Sim, Real2Real,
Sim2Real and Hybrid2Real: Figures 2 and 3 present results
for four combinations of train-test scenarios depending on
whether the training and test data is drawn from simulated



or real missions. In general, errors εave, εmse and L∞ were
computed for different test missions and averaged over all
of them. For the Sim2Sim setting the averaged test errors
are: εave = 1.74 m/s, εmse = 4.79 m2/s2 and L∞ = 7.10
m/s. For the Real2Real setting the averaged test errors are:
εave = 2.25 m/s, εmse = 16.37 m2/s2 and L∞ = 7.23
m/s. For the Sim2Real setting the averaged test errors are:
εave = 3.15 m/s, εmse = 15.13 m2/s2 and L∞ = 8.2 m/s.
For the Hybrid2Real setting the averaged test errors are:
εave = 2.17 m/s, εmse = 8.46 m2/s2 and L∞ = 8.5 m/s.

High-quality airspeed predictions are obtained throughout
the flight duration (see Figure 2). Training on simulated data
helps improve performance on real flights.

Fig. 2. Comparison of airspeed predicted by the neural network with
Pitot tube measurements for different train-test scenarios: Real2Real (left),
Sim2Real (middle) and Hybrid2Real (right).

Fig. 3. Cdf curves for all four train-test scenarios: Sim2Sim, Real2Real,
Sim2Real and Hybrid2Real. Left: training and testing in the same envi-
ronment (Sim2Sim, Real2Real). Right: sim data participates in training
while testing is conducted on real data.

In the above experiments, the 5-epoch neural network
training was conducted on datasets consisting of 20 missions
(10 real and 10 sim in the hybrid setting).

Remark: We observed that models regressing on
groundtruth airspeed in simulation as opposed to noisy Pitot
tube measurements provide more accurate estimates (in terms
of groundtruth prediction), as expected. The simulated Pitot
tube measurement includes errors such as random noise and
bias. The results, from 20 training missions, are presented in
Fig 4.

Fig. 4. Left: Pitot tube and neural network model predictions on the sim
test mission. This time the neural network model was trained on data with
groundtruth airspeed labels. Right: corresponding cdf curves.

2) Robustness of Airspeed Prediction: The neural network
predictor was tested on two flights in “attitude mode” where
a pilot flies the vehicle around so as to generate mission
profiles explicitly outside the flight envelopes encountered
during training. Despite the mismatch between training and
validation data, the general profile of the airspeed curve is
captured by the neural network model trained on 20 sim
missions. For the first test mission, the error of the prediction
is below 1.5 m/s for the 39.6178% of the time. The average
test error is: εave = 2.04 m/s, the mean squared test error is
εmse = 5.92 m2/s2 and the L∞ error is ε∞ = 5.74 m/s. For
the second test mission, the error of the prediction is below
1.5 m/s for the 51.24% of the time. The average test error is:
εave = 1.59 m/s, the mean squared test error is εmse = 3.79
m2/s2 and the L∞ error is ε∞ = 4.96 m/s. The results are
presented in Fig. 5 and left subfigure of Fig. 6.

Fig. 5. Two subfigures correspond to two test flights in “attitude mode”
where a pilot flies the vehicle around so as to generate mission profiles
explicitly outside the flight envelopes encountered during training. The
neural network model still manages to capture the shape of the airspeed
curve.

Learning Aerodynamics? Does our model effectively
learn correlations between actuator commands and airspeed,
or does it implicitly embody aerodynamics also? We con-
ducted experiments where we trained a model on only
actuator inputs. Results are presented in right subfigure of
Fig. 6. In general, while the actuators-only model is a good



Fig. 6. Left: Cdf curves corresponding to tests from Fig. 5. Right:
comparison of two neural network models: trained on all 22 features and
just on actuators (10 features).

baseline, on test datasets it often produces large transient
errors, e.g. see a spike in right subfigure of Fig 6). Adding
12 non-actuators features leads to smoother and more accu-
rate predictions. Likewise, an impoverished model with no
actuator commands as features performs significantly worse.
In summary, using both actuator commands and vehicle
kinematic state as features results in the best performance.

Fig. 7. On the left: Comparison of the neural network model airspeed
prediction with the Pitot tube measurement. The model is trained on airspeed
curves of a particular profile and tested on the other profile. On the right:
the cdf curve showing what fraction of time the predicted airspeed is within
ε range from the Pitot tube measurement for different values of ε.

3) Training and testing on different types of missions:
Figure 7 compares predictions made by a neural network
model with Pitot tube measurements and presents a cdf
curve measuring quantitatively the quality of the neural
network model. Neural network models are trained on the
sim data (with Pitot tube measurements as labels) with
airspeed profiles characterized by two phases of relatively
stable airspeeds. These two phases are connected by a short
phase with airspeed changing abruptly. Test set corresponds
to the mission with two ”spikes” of airspeed and airspeed
changing more abruptly across the entire mission.

4) Additional experiments for Sim2Real: We also con-
ducted several additional experiments, where neural network
model was trained on missions coming from the simulator
and tested on a real missions. As datasets, we used in

particular 1000 simulated missions generated with different
weather conditions (wind direction, temperature, etc.) Results
are presented in the Appendix (Fig. 12 and Fig. 10).

Statistics from the test phase for the discussed above
Sim2Sim and Real2Real experiments, namely: average error
εave, mean-squared error εmse and percentage of time f with
error at most 1.5 m/s are presented in Fig. 8.

εave in [m/s] εmse in [m2/s2] f
Sim2Sim : 0 1.31617 3.04263 64.1985
Sim2Sim : 1 1.00114 1.63107 77.336
Sim2Sim : 2 1.6879 4.90287 55.0148
Sim2Sim : 3 2.43429 7.20068 18.4717
Sim2Sim : 4 2.73457 7.87346 18.21567
Sim2Sim : 5 1.90391 5.86932 53.5224
Sim2Sim : 6 1.57186 3.44613 48.1156
Sim2Sim : 7 1.15465 2.46146 73.2818
Sim2Sim : 8 1.12157 2.03307 68.1961
Sim2Sim : 9 1.84115 5.29048 49.3446
Sim2Sim : 10 1.03714 1.6679 73.5439
Sim2Sim : 11 3.07193 12.0072 19.2876
Real2Real[1, 1] 1.44312 4.47358 63.7848
Real2Real[1, 2] 1.68805 3.71016 39.4469
Real2Real[2, 1] 3.74855 15.3389 6.86966
Real2Real[2, 2] 1.16543 7.37624 86.8692
Real2Real[3, 1] 1.56724 9.21085 76.3715
Real2Real[3, 2] 0.762481 1.13623 87.7353
Real2Real[4, 1] 6.04936 83.5462 51.029
Real2Real[4, 2] 1.54749 6.16062 66.0864

Fig. 8. Statistics from the test set for Sim2Sim and Real2Real settings
considered in the Appendix. Real2Real[i][j] corresponds to the scenario
from the ith row and jth column from Fig. 11 respectively. Different
Sim2Sim rows correspond to different tests.

B. Closing the Control Loop: Flying without Pitot Tubes

We integrated our proposed air data system with the on-
board flight control system. The predicted airspeed then inter-
acts with the control stack, and the whole system completes
a feedback loop. Figure 9 shows a mission requiring four
180-degree turns in the presence of speed 8 m/s wind gusts,
requiring the controllers to exercise the use of the airspeed
for accurate vehicle guidance. We see that safe and accurate
guidance and navigation is possible without Pitot tubes: the

Fig. 9. Left: Flight trajectory with the neural net air data system (blue
squares) closely tracks flight with pitot-tube (red). Right: Airspeed accuracy
improvements with dataset aggregation.



trajectory of the Pitot-tube based flight is very accurately
tracked. These results were consistent across a variety of
test missions.

C. Accuracy boost from Dataset Aggregation

Here, we provide a proof of concept that model accuracy
can be boosted via data aggregation techniques [7], [8] to cor-
rect potential trajectory divergence due to input distribution
mismatch in feedback control loop. A baseline model trained
on about 10 real missions was used to fly 20 simulated mis-
sions. The pitot tube was disconnected from the controllers
(instead our neural net provided air data estimates) in these
flights; however, pitot tube airspeed measurements were still
recorded. Additional training data was generated by pairing
sliding-window vehicle states and actuator command inputs
encountered during these flights, with Pitot tube airspeeds
as regression targets. The model was then retrained with
this additional aggregated data. Finally, 5 novel validation
missions, each approximately 4-5 minutes long were created,
each requiring flight through 5 points randomly chosen on
a 1 kilometer diameter circle starting and returning back
the center, in the presence of 8m/s wind. On each of
these validation missions, the data-aggregated model shows
significantly higher quality of airspeed prediction accuracy,
as summarized in Figure 9 (right).
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V. APPENDIX: LEARNING TO SENSE THE AIR:
SELF-FLYING VEHICLES WITHOUT AIRSPEED SENSORS

Fig. 10. Sim2Real train-test scenario: cdf curves corresponding to first
three models for which test results are presented in Fig. 12.



In Figure 11 additional experiments regarding training
and testing the neural network on data coming from the
real missions are given. Figures 12 and 10 show sim-to-
real transfer. Training was conducted on a dataset of 1000
missions from the simulator. Comparison of the airspeed
measured by the Pitot tube with the one predicted by the
neural network is on Fig 12 whereas the corresponding cdf
curves are presented on Fig. 10.

Fig. 11. Real2Real train-test scenario: Comparison of the neural network
prediction with the Pitot tube measurements. Neural network models were
trained on the real data, each training datasets consisted of 20 missions.
The trainer used 5 epochs. Testing was conducted on another real mission. Fig. 12. Sim2Real train-test scenario: Statistics from the training phase.

Neural network models were trained on the sim data. The trainer used 5
epochs. Testing was conducted on the real mission.


