
Stein Variational Model Predictive Control

Alexander Lambert1,2 ∗ Adam Fishman2,3 Dieter Fox2,3

Byron Boots2,3 Fabio Ramos2,4

1 Georgia Tech 2 NVIDIA 3 University of Washington 4 The University of Sydney

Abstract: Decision making under uncertainty is critical to real-world,
autonomous systems. Model Predictive Control (MPC) methods have
demonstrated favorable performance in practice, but remain limited when dealing
with complex probability distributions. In this paper, we propose a generalization
of MPC that represents a multitude of solutions as posterior distributions. By
casting MPC as a Bayesian inference problem, we employ variational methods
for posterior computation, naturally encoding the complexity and multi-modality
of the decision making problem. We propose a Stein variational gradient descent
method to estimate the posterior over control parameters, given a cost function and
a sequence of state observations. We show that this framework leads to successful
planning in challenging, non-convex optimal control problems.
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1 Introduction

Model predictive control (MPC) is a powerful framework for sequential decision making in
robotics [1, 2]. This success can be largely attributed to its simplicity and scalability in dealing
with stochastic, non-stationary optimization problems encountered on real systems. MPC has
been applied in effectively in different areas, including autonomous driving [1–3], humanoid
locomotion [4], and dextrous manipulation [5]. However, common approaches to MPC often fall
short in their ability to adequately contend with complex, multi-modal distributions over possible
actions. For instance, such distributions may arise from non-convexity of constraints, such as
obstacles [6, 7] or from multiple goal locations [8]. Although common sampling-based SOC
algorithms have been shown to exhibit symmetry-breaking in the presents of sudden disturbances [9]
and multiple optima [10], the sampling scheme may inadequately resolve the true posterior [6]. We
require a new class of MPC algorithms that can effectively contend with complex, non-Gaussian
distributions.

In the following, we formulate MPC as a Bayesian inference problem, where the target posterior is
defined directly over control policy parameters or control inputs, as opposed to joint probabilities
over states and actions [11, 12]. By taking this perspective, we can construct a relative-entropy
minimization problem to approximate the posterior, and leverage recent advances in variational
inference [13–15] to derive the optimal distribution over parameters. Specifically, we use Stein
variational gradient descent [16], to infer a set of solutions which constitute a nonparametric
approximation to the posterior distribution over decision parameters, given state observations and
a defined cost function. The generality of this approach offers flexibility in designing appropriate
MPC algorithms, and is directly related to common MPC approaches. Furthermore, we show how
this framework can be extended to general trajectory optimization problems.

Related Work The duality between probabilistic inference and optimization for stochastic
optimal control (SOC) has been examined extensively in previous work [17–20]. A wide range
of approximate inference methods have been proposed, including Expectation-Propagation (EP)
and moment-matching approaches to control and trajectory optimization [3, 19]. These methods
typically assume a restricted form of the target posterior distribution over controls (usually in
the exponential family), which, under simplifying assumptions, return the optimal control input.
However, these distributions are often insufficiently expressive for many SOC problems, where non-
convexity may arise from nonlinear dynamics or non-convex cost functions, for instance.
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Our interpretation of MPC as an approximate inference problem is perhaps most closely related to
the formulation presented in [11, 18]. Here, an iterative KL-minimization problem for finite-horizon
problems is presented, where the prior is defined to be the control distribution obtained from the
previous iteration. However, this does not include a strategy for contending with non-stationary
distributions, where the posterior may change between iterations, and the analysis is restricted to
exact inference of the log-partition function.

Expectation-Maximization (EM) approaches to SOC have also been considered [21–23], which
iteratively optimize a variational lower-bound. However, these approaches share the limitations
inherent with common EM strategies, in that the form of the posterior distribution is assumed to
be known and tractable. Additionally, representations based on mixture models must contend with
mode-collapse and poor local minima, especially prevalent in higher dimensions [24, 25]. These
issues can be mitigated, for example, by introducing entropy regularization heuristics [22].

The Path Integral (PI) formulation of stochastic optimal control [26–28] bears close resemblance to
the open-loop-controls characterization of our proposed approach, where a particular choice of the
marginal log-likelihood is assumed to contain an exponentiated cost. In fact, PI attempts to minimize
a variational lower-bound with respect to the controlled stochastic dynamics. This follows from the
perspective presented here. This comparison applies equally to KL-control [20], the discrete-time
counterpart to PI-control. A more detailed discussion is included in Appendix E.

2 Model Predictive Control
We consider the discrete-time stochastic dynamical system: xt+1 ∼ f (xt,ut), where at time t, the
system state is denoted by xt ∈ Rn and the control input as ut ∈ Rd. The stochastic transition map
f : Rn × Rd → Rn randomly produces the subsequent state xt+1 and this state is accompanied by
an instantaneous cost c(xt,ut).

Over a time horizon H , we define a control trajectory as a sequence of control inputs beginning
at time t : Ut , (ut,ut+1, ...,ut+H−1). Similarly, we define the state trajectory: Xt ,
(xt,xt+1, ...,xt+H−1,xt+H). The total cost incurred over H timesteps can then be specified as

C(Xt, Ut) = cterm(xt+H) +

H−1∑
h=0

c(xt+h,ut+h), (1)

where cterm(·) is the terminal cost. As in [2], we define an instantaneous feedback policy, πθt(xt),
as a parameterized probability distribution p(ut|xt; θt) used to generate a control input at time t
given the xt, i.e., ut ∼ πθt(xt), where θt ∈ Θ, is the set of feasible parameter values. MPC
describes the process of finding the optimal, time-indexed sequence of policy parameters θt ,
(θt, θt+1, ..., θt+H−1), which determine the sequence of instantaneous feedback policies πθt ,(
πθt , πθt+1

, ..., πθt+H−1

)
. At each time step, we must find θt, the parameters that define the optimal

policy. We can do this by defining a statistic J(·) on cost C(Xt, Ut) where the minimal J(·) occurs
at the optimal θt. In real-world situations, the true dynamics function f is often unavailable, and is
commonly estimated using a parameterized function f̂ξ with parameters ξ. As such, we define the

surrogate loss function Ĵ(πθ; xt) = Eπθ,f̂ξ

[
C(Xt, Ut)

]
. For each MPC-step, the optimal decision

is defined as θt = arg minθ Ĵ(πθ; xt) which parameterizes the optimal policy πθt , from which we
can sample a new control value for the first timestep: ut ∼ πθt(xt) = p(ut|xt; θt). This is then
executed on the physical system to generate the next state value: xt+1 ∼ f(xt,ut).

3 Bayesian Model Predictive Control
MPC as Bayesian Inference Optimal control can be framed as Bayesian inference by
considering the distribution over parameters θ. Similarly to [12, 18], we introduce an auxiliary
binary random variable Oτ = {0, 1} to indicate optimality of the state-action trajectory τ =
(Xt, Ut) with respect to the cost function C(·). Using Bayes’ rule, the distribution of parameters
θ conditioned on the requirement for optimal trajectories (Oτ = 1) and the current state xt can be
expressed as

pt(θ|Oτ = 1; ξ,xt) =
pt(Oτ = 1|θ; ξ,xt) pt(θ; xt)∫
pt(Oτ = 1|θ; ξ,xt) pt(θ; xt) dθ

, (2)
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where explicit dependence on state xt is included for generality. In the remaining discussion, we
will denote Oτ = 1 simply as Oτ without ambiguity. The likelihood pt(Oτ |θ; ξ,xt) is defined as
the marginal probability over all possible control and state trajectories:

pt(Oτ |θ; ξ,xt) =

∫ ∫
p(Oτ |Xt, Ut) p(Xt, Ut |θ; ξ,xt) dUt dXt (3)

where p(Oτ |Xt, Ut) is the probability of optimality given the observed trajectory τ = (Xt, Ut), and
p(Xt, Ut|θ; ξ,xt) is the joint probability of state-control trajectories, conditioned on parameters θ
and assumed dynamics model f̂ξ = pξ(xt+1|xt,ut). In the discrete-time case, the joint probability
can be factorized as

p(Xt, Ut|θ; ξ,xt) =

H−1∏
h=0

pξ(xt+h+1|xt+h,ut+h)πθh(xt+h), (4)

where the current state xt is observed. If dynamics parameters must also be inferred, the equations
can be extended to include ξ as an inference variable, where the posterior is defined over both
parameters: pt(θ, ξ|Oτ ; xt) ∝ pt(Oτ |θ, ξ; xt) pt(θ|ξ; xt) p(ξ), suggesting the definition of an
alternative latent random variable, such as Θ = (θ, ξ).

We can further model p(Oτ |Xt, Ut) using a non-negative function L(τ) ∝ p(Oτ |Xt, Ut), which we
refer to as the “cost-likelihood". This is defined to be the composition L = g◦C of the cost function
C(·) with a monotonically decreasing function g(·). The likelihood in (3) then takes the form

pt(Oτ |θ; ξ,xt) ∝
∫
L(τ) p(τ |θ; ξ,xt) dτ = Eπθ,f̂ξ

[
L(τ)

]
. (5)

Nonparametric Bayesian MPC Instead of performing inference over policy parameters, the
Bayesian MPC formulation can be used for inference over control input sequences. In this case, the
inference variable θ is defined as the sequence of open-loop controls: θ , (ut,ut+1, ...,ut+H−1).
This can be interpreted as a nonparametric version of Bayesian-MPC, as no assumption is made on
the existence of a parametrized policy π. Although the relationship in (2) still holds, the likelihood
function pt(Oτ |θ; ξ,xt) must then be re-defined as

pt(Oτ |θ; ξ,xt) =

∫
p(Oτ |Xt,θ) p(Xt|θ; ξ,xt) dXt ∝ Ef̂ξ

[
L(Xt,θ)

]
, (6)

where p(Xt|θ; ξ,xt) is the probability of state trajectories, conditioned on decisions θ and assumed
dynamics model f̂ξ = pξ(xt+1|xt,ut). In the discrete-time case, this can be written as the product
of state transition probabilities along a trajectory:

p(Xt|θ; ξ,xt) =

H−1∏
h=0

pξ(xt+h+1|xt+h, θt+h) . (7)

Furthermore, if we assume a fixed current state (xt = const.), we can apply this model to trajectory
optimization problems by performing approximate inference on the posterior p(θ|Oτ ; ξ), and taking
the maximum a posteriori estimate, θ∗ = arg maxθ p(θ|Oτ ; ξ).

4 Inference for Bayesian MPC
Variational Inference Variational inference poses posterior estimation as an optimization task
where a candidate distribution q∗(θ) within a distribution family Q = {q(θ)} is chosen to best
approximate the target distribution p(θ|Oτ ). This is typically obtained by minimizing the Kullback-
Leibler (KL) divergence:

q∗ = arg min
q∈Q

DKL (q(θ)||p(θ|Oτ )) . (8)

The solution also maximizes the Evidence Lower Bound (ELBO), as expressed by the following
objective (details in Appendix D):

q∗ = arg min
q∈Q

−Eq
[

log p(Oτ |θ)
]

+DKL (q(θ) || p(θ)) . (9)
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This optimization seeks to maximize the log-likelihood of the observations with the first term while
penalizing for differences between the target and the prior with the second term. For a high-capacity
model space Q that includes the target distribution, the second term becomes increasingly small.
Selecting a model space Q with both high capacity and computational efficiency is critical to
variational inference, but remains a challenging problem.

Stein Variational Gradient Descent In order to circumvent the challenge of determining an
appropriate Q, while also addressing (8), we develop an algorithm based on Stein variational
gradient descent (SVGD) for Bayesian inference. The nonparametric nature of SVGD is
advantageous as it removes the need for assumptions on restricted parametric families for q. This
approach approximates a posterior p(θ|x) with a set of particles {θi}mi=1, θi ∈ Rp. The particles
are iteratively updated according to

θi ← θi + εφ∗(θi) (10)

given a step-size ε. The function φ∗(·) lies in the unit-ball of an Rp-valued reproducing kernel
Hilbert space (RKHS) of the formH = H0× ...H0, whereH0 is a scalar-valued RKHS with kernel
k(θ′,θ). It characterizes the optimal perturbation or velocity field (i.e. gradient direction) which
maximally decreases the KL-divergence:

φ∗ = arg max
φ∈H

{
−∇εDKL

(
q[εφ]||p(θ|x)

)
s.t.
∣∣∣∣φ∣∣∣∣H ≤ 1

}
, (11)

where q[εφ] indicates the particle distribution resulting from taking an update step θ = θ + εφ(θ).
This has been shown to yield a closed-form solution [16] which can be interpreted as a functional
gradient in RKHS and approximated with the set of particles:

φ̂∗(θ) =
1

m

m∑
j=1

[
k(θj ,θ)∇θj log p(θj ||x) +∇θjk(θj ,θ)

]
. (12)

Eq. 12 has two terms that control different aspects of the algorithm. The first term is essentially a
scaled gradient of the log-likelihood over the posterior’s particle approximation. The second term
is known as the repulsive force. Intuitively, it pushes particles apart when they get too close to each
other and prevents them from collapsing into a single mode. This allows the method to approximate
complex, possibly multi-modal posteriors in MPC. When there is only a single particle, the method
reduces to a standard optimization of the log-likelihood or a MAP estimate of the posterior as the
repulsive force term vanishes, i.e. ∇θk(θ,θ) = 0. SVGD’s optimization structure empirically
provides better particle efficiency than other popular sampling procedures, such as Markov Chain
Monte Carlo [29].

5 Stein Variational MPC
In this section we present our novel method for Stein inference, specifically designed around MPC
requirements. The full algorithm can be found in Appendix B.

Posterior Sequential Updates As described in Section 3, the Bayesian interpretation of MPC
seeks to find the posterior distribution over decision parameters at time t. Recalling Eq. 2:

pt(θ|Oτ ; ξ,xt) =
pt(Oτ |θ; ξ,xt) q̃t(θ; xt)∫
pt(Oτ |θ; ξ,xt) q̃t(θ; xt) dθ

. (13)

with a prior q̃t(θ; xt). Our approach approximates the posterior over decision parameters using
a weighted set of particles {θi}mi=1, where the proposal q is defined as the empirical distribution
q(θ) =

∑m
i=1 w

iδ(θi) with weights evaluated according to:

wi =
pt(Oτ |θi; ξ,xt) q̃t(θ; xt)∑m
j=1 pt(Oτ |θj ; ξ,xt) q̃t(θ; xt)

(14)

such that
∑m
i=1 w

i = 1. Following the procedure outlined in (10)-(12), an SVGD update can be
computed for the individual particles by computing the functional gradient

φ̂∗(θi) =
1

m

m∑
j=1

[
k(θj ,θi)∇θj log pt(θ

j |Oτ ; ξ,xt) +∇θjk(θj ,θi)
]

(15)

4



and performing the gradient step: θi ← θi + εφ̂∗(θi) . The evaluation of (15) requires computation
of the log-posterior gradient, which can be written as the sum of the gradients of both the log-prior
and log-likelihood:

∇θi log pt(θ
i|Oτ ; ξ,xt) = ∇θi log pt(Oτ |θi; ξ,xt) +∇θi log q̃t(θ

i; xt) (16)

= ∇θi logEπθi ,f̂ξ

[
L(τ)

]
+∇θi log q̃t(θ

i; xt) (17)

The first RHS term requires that we define the cost-likelihood function L. The SV-MPC framework
allows for different possible definitions for L. We will consider two in particular:

• Exponentiated Utility (EU): L(τ) = exp (−αC(Xt, Ut)) , where α > 0 (18)
• Probability of Low Cost (PLC): L(τ) = 1C≤Cmax(C(Xt, Ut)) (19)

It is generally assumed that the cost function C(Xt, Ut) is non-differentiable with respect to
the decision parameter θ, and that resulting expectations are difficult to evaluate analytically.
As such, the gradients can be estimated via Monte-Carlo sampling, where a set of N control
and state trajectory samples are drawn from the policy and the modeled dynamics: {τs}Ns=1 ∼
p(Xt, Ut|θ; ξ,xt), where τs = (Xs

t , U
s
t ). This leads to the following approximation:

∇θi logEπθi ,f̂ξ

[
L(τ)

]
=

Eπθi ,f̂ξ

[
L(τ)∇θi logπθi

]
Eπθi ,f̂ξ

[
L(τ)

] ≈
∑N
s=1 L(τs)∇θi logπθi(U

s
t )∑N

s=1 L(τs)
(20)

For a single particle (m = 1), the full gradient in (15) reduces to : φ∗(θ) = ∇pt(θ|Oτ ; ξ,xt).
SVGD then produces a local MAP estimate of the posterior distribution over θ. As a result, the
SV-MPC update step exhibits strong similarity to common MPC algorithms (such as MPPI [1] and
CEM [30]) depending on the chosen likelihood function, exhibiting equivalence under parameter
values and choice of prior. Discussion of these comparisons can be found in Appendix F.

A significant advantage of the SV-MPC formulation is the robustness to highly-peaked posterior
distributions. If particles are initialized poorly, or if the target posterior changes significantly
between time-steps, many particles may find themselves in regions of low-probability. Indeed,
this may occur frequently for likelihoods p(Oτ |θi; ξ,xt) with exponentiated cost (see Appendix F,
for example). However, the shared gradient terms in (15) allow these particles to overcome this
degeneracy quickly, while avoiding collapse due to the repulsive term (the reader may refer to
Figure 1. in [31] for an intuitive illustration of this phenomenon.) As a consequence, SV-MPC
avoids the problem of particle depletion often encountered in Sequential Monte Carlo methods [32].

Kernels for trajectories High-dimensional inference problems pose significant challenges for
SVGD as the repulsive force given by the derivative of the kernel with respect to the inputs
diminishes as the dimensionality increases [33]. Inspired by probabilistic graphical models and
the conditional independence assumptions encoded in Markov random fields, we tackle this issue
by devising a kernel that factorizes a high-dimensional input into a sum of kernels defined over
cliques of dimensions. This allows the exploitation of the Markov structure of the trajectories to
address the curse of dimensionality. For example, assume that the posterior over the parameters θ
satisfies the conditional independence relations encoded in a graph G = (V, E), with vertices V ,
and edges E such that p(θ) ∝

∏
d∈E ψd(θd)

∏
(dt)∈E ψdt(θd, θt), where ψd(θd) and ψdt(θd, θt) are

unary and pairwise potential functions respectively. We define the kernel over parameters as,

k(θ,θ′) =
∑
d∈V

k(θd, θd) +
∑

(d,t)∈E

k(θ(d,t), θ
′
(d,t)) (21)

The kernel is a sum of positive semi-definite kernels, so the result is a valid reproducing kernel
Hilbert space [34] but less sensitive to the curse of dimensionality. In this paper we adopt the smooth
RBF kernel; k(θ,θ′) = exp

{
−‖θ − θ′‖22/h

}
, where h is evaluated using the median heuristic on

the set of particles: h = med
(
{θi}

)2
/ logm.

Action Selection The variational inference procedure results in an approximation of the posterior
distribution over θ. Following this step, a decision must be made on θt, such that a control action
can be generated from the resulting policy πθt and executed on the real system. Here we outline
two possible methods for choosing an appropriate θt.
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Simulated Rollouts System

Figure 1: 7-DOF manipulation task. The SV-
MPC framework is capable of reasoning over multi-
modal distributions of trajectories in high-dimensional
spaces. Here, the controller iteratively explores the
posterior over joint-velocities by simulating trajectories
in parallel (green frame) in order to guide the system
(orange frame). Each particle-generated distribution
is shown by a unique coloring over the generated
state trajectories, as seen from a top-down view of the
workspace. The robot arm manages to reach the goal
(red), while avoiding poor local minima.

We can first consider the relative probabilistic
weight of the particles as an approximation to
their posterior probabilities:

wi =
p(Oτ |θi; ξ,xt) q̃t−1(θi)∑m
j=1 p(Oτ |θj ; ξ,xt) q̃t−1(θj)

(22)

≈ p(θi|Oτ ; ξ,xt). (23)

One strategy to selecting θt is to pick the
highest-weighted particle θt = θi∗ , which
corresponds to the approximate MAP solution:

i∗ = arg max
i

[wi] (24)

≈ arg max
i

p(θi|Oτ ; ξ,xt). (25)

An alternative approach is to randomly sample
from the posterior distribution, which can be
approximated by sampling from the set of
particles according to their weight wi. This can
be performed by drawing from the categorical
distribution over particle weights: i∗ ∼
Cat(wi).

Shifting the distribution The prior q̃t(θ; xt) is defined as the marginalized transition over
the approximate posterior distribution obtained from the previous iteration: q̃t(θ; xt) =∫
pt(θ|θt−1; xt)qt−1(θt−1)dθt−1, with the transition probability pt(θ|θt−1; xt) including a

dependence on the currently observed state xt for generality. This operation is akin to the prediction
step commonly found in Bayes filtering and sequential Monte-Carlo methods, and can be interpreted
as a probabilistic version of the shift operator defined in [2] which serves to bootstrap the previous
MPC solution to initialize the current iteration. Further details can be found in Appendix C.

Non-parametric SV-MPC In the setting where inference must be performed over open-loop
controls θt = Ut, we can define the cost-likelihood as a function of state: L = L(Xt). A cost on
control can be replaced by defining an additional prior factor p(θ), which can be combined with the
transition probability above. For further details, refer to Appendix G.

Trajectory optimization The variational inference framework defined by SV-MPC can
be modified to accommodate general motion planning problems common to many robotics
applications. This special case can be considered by (1) using the non-parametric formulation, (2)
assuming a stationary posterior distribution (no shifting), and (3) defining a deterministic dynamics
model f̄ such that state trajectory probabilities can be represented as p(X|θ) = δ(X − f̄(θ, x0)).
A prior over sequences p(θ) can be defined to encourage desired behavior such as smoothness [35].
Because individual particles are not guaranteed to produce a MAP estimate once the SVGD
optimization has converged, they can be subsequently refined by applying stochastic gradient
descent (SGD) using posterior gradients without kernelization. Selection of a feasible and optimal
plan can be generated by simply picking the best particle. The resulting algorithm, SV-TrajOpt, is
described in Algorithm 2, with the likelihood gradient derived in Appendix H.

6 Experiments
In the following section, apply SV-MPC to common robotics problems: navigation, manipulation
and locomotion. We end with an example of the SV-TrajOpt algorithm applied to a planar motion-
planning scenario. All control algorithms were implemented in PyTorch, with batched gradient
computation across particles and parallel generation of rollouts using either simulated or analytic
dynamical models. Additional experimental details and results can be found in the Appendix.

Planar Navigation We construct a 2D robot navigation task, where a holonomic point-robot must
reach a target location while avoiding obstacles (Figure 2). Hitting an obstacle will cause the agent
to "crash" and prevent any further movement. This added non-differentiability makes the problem
particularly challenging, but also suitable for sampling-based control schemes. The system exhibits
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Figure 2: Planar Navigation Task. The robot (orange dot) attempts to reach the goal location (red cross)
while avoiding obstacles. Each frame depicts the environment state at a particular time-step, along with the
distributions of sampled state-trajectory rollouts generated by the MPC controllers using the modeled dynamics.
Each trajectory color is associated with a single particle from SV-MPC. The multi-modal distribution of SV-
MPC is able to explore passages between obstacles and find shorter paths to the goal.

stochastic dynamics, and is defined as a double-integrator model with additive Gaussian noise. The
SV-MPC controller with exponentiated-utility (EU) is compared against MPPI (Figure 2) and CEM.
We provide additional quantitative results in (Appendix J).

Manipulation We demonstrate SV-MPC on a 7-DOF reaching task (Figure 1). Velocity-based
control commands are generated in the configuration space of a simulated robot manipulator, which
must reach a stationary goal in its work-space. We leverage the GPU-accelerated Isaac-Gym
library [36] for parallel computation of trajectory rollouts in simulation during MPC iterations.

A sampling-based SV-MPC controller is compared against MPPI and CEM for an open-loop,
constant-covariance Gaussian control distribution: πθ = N (Ut;θ,Σ). The obstacles and the target
are placed in order to demonstrate a local-minima trap: given a finiteH , the optimal control solution
is to move left. However, the opening between the obstacles in this direction is too narrow for the
robot to move through. To avoid getting stuck, a sampling-based control scheme must generate a
sequence which will move the robot in the other direction. For a uni-modal distribution, this may
have a very low-probability, and recovery will not occur. Increasing the sampling covariance would
mitigate this, but would require a larger amount of samples to reduce variance.
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Figure 3: Manipulation. Examples of end-effector Cartesian trajectories resulting from application of different
MPC algorithms on the Franka reaching experiment. The relative distance to the fixed target location is plotted
over the length of each episode. The dashed red line indicates the coordinates of the target. The sample-
averaged terminal cost for the final state CT (xT ) is evaluated over the 24 independent trials. With four particles
(m = 4), SV-MPC with Exponentiated utility likelihood manages to avoid bad local minima, despite higher-
variance gradients due to fewer samples used to evaluate gradients (ns = 32 vs. ns = 128).
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(a) Exponentiated Utility (EU) (b) Probability of Low-Cost (PLC)

Figure 4: Stochastic HalfCheetah. Comparisons of cumulative-reward distributions over 16 independent trials,
with mean and standard deviations shown. SV-MPC is capable of finding high-reward trajectories, using the
same total amount of samples as MPPI and CEM.

t = 0 10 100 + 50

Figure 5: Motion Planning. SV-TrajOpt is applied to a velocity-controlled planar robot with fully-
differentiable costs. Each blue state-trajectory results from a single particle control-sequence. Particles are
randomly initialized from the prior (t = 0), and are optimized until convergence (t = 10, 100). Independent
local MAP approximations are generated after 50 SGD iterations, with the lowest-cost particle shown in green.

Examples of trajectory executions are shown in Figure 3. The total number of generated control
samples is held constant across algorithms. Both MPPI and CEM tend towards the sub-optimal
local minimum, leading the robot to get stuck between two obstacles. Using a particle-based
representation of the posterior, SV-MPC can resolve multiple optima simultaneously, switching to
lower-cost modes around obstacles and successfully reaching the goal.

Stochastic Half-Cheetah To test our approach on a complex nonlinear system with discontinuous
dynamics, we consider an environment common in many Reinforcement Learning benchmarks: the
Half-Cheetah [37]. We use a stochastic version of the dynamics with additive noise in the control
space. The cumulative rewards over multiple trials are plotted in Figure 4.

Motion Planning We use the SV-TrajOpt algorithm to infer a distribution over optimal control
sequences for a planar motion planning problem on a point robot. The robot must find a velocity-
based control sequence which results in a low-cost, feasible path around a set of obstacles to reach
the goal. The occupancy map is fully-differentiable, allowing a gradient on obstacle cost to be
computed numerically. A ‘smoothness’ prior is defined over velocities as a multi-variate Gaussian
with a tri-diagonal precision matrix, which favors low-acceleration trajectories.

7 Conclusion

A novel formulation for Bayesian model predictive control is presented, where inference is
performed directly over the control parameters and inputs. An algorithm for approximate inference
is then proposed, where the posterior is represented as a set of particles and is optimized via SVGD.
In contrast to pure Monte-Carlo sampling methods, gradient-based information can be exploited to
improve particle efficiency, where many computationally-intensive operations can be run in parallel
using effective GPU implementation. The flexibility of the approach can accommodate different
cost transformations to modulate risk-seeking behavior, and can naturally be extended to trajectory
optimization problems. We compare against common MPC baselines, demonstrating improved
performance on a variety of control tasks.
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A Notation

The table below summarizes notation used throughout the paper.

Table 1: Notations and definitions
Notation Description

xt System state at time t
Xt State trajectory: sequence of length H + 1, from time t
ut Control input at time t
Ut Control trajectory: sequence of length H , from time t
τ State-control trajectory tuple, τ = (Xt, Ut)

f̂ξ(·, ·) Modeled system dynamics, parameterized by ξ
C(·, ·) Total cost for horizon H
πθt(·) Policy at time t parameterized by θt
θt Sequence of policy parameters or control inputs

πθt(·) Sequence of control policies
L(·) Cost-likelihood function
q(·) Approximate posterior distribution
φ(·) Perturbation direction or velocity field that decreases

the KL divergence between the particle distribution
and target distribution

φ̂(·) Approximated perturbation direction over particles
k(·, ·) Kernel specifying a reproducing kernel Hilbert space

B Algorithm

Algorithm 1: Stein Variational MPC

Input: Initial state x0, dynamics f̂ξ, policy π,
cost-likelihood L, prior p0(θ; ·), kernel k

Initialize q̃0(θ) = p0(θ; x0)

Sample {θi}mi=1 ∼ q̃0(θ)

for t = 0, 1, ..., T − 1 do
for i = 1, 2, ...,m do in parallel

∇θi log pt(θ
i|Oτ ; ξ,xt) = ∇θi logEπθi ,f̂ξ

[
L(τ)

]
+∇θi log q̃t(θ

i)

end
for i = 1, 2, ...,m do

∆θi ← 1
m

∑m
j=1 k(θj ,θi)∇θj log pt(θ

j |Oτ ; ξ,xt) +∇θjk(θj ,θi)

θi ← θi + ε∆θi

end
wi ← p(Oτ |θi; xt)q̃t(θi)

wi ← wi∑m
j=1 w

j

Pick θ∗ (using (22) or (24), for example)
Sample control: ut ∼ πθ∗

t
(xt)

Sample true dynamics: xt+1 ∼ f(xt,ut)

Shift particles: θ̃i = Φ(θi)

Update prior: q̃t+1(θ; xt+1) =
∑m
i=1 w

ipt(θ|θ̃i; xt+1)
end
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Algorithm 2: SV-TrajOpt
Input: Initial state x0, dynamics f , cost function C,

prior p0(θ), kernel k, term. condition Done(·)

Sample {θi}mi=1 ∼ p0(θ)

Set ∆θi = Inf ∀ i ∈ 1 : m

while Done({∆θi}) is False do
for i = 1, 2, ...,m do in parallel

Forward dynamics : Xi = X(f,θi,x0)

∇θi log p(θi|Oτ ; ξ) = −α∇θiC(Xi) +∇θi log p0(θi)

end
for i = 1, 2, ...,m do

∆θi ← 1
m

∑m
j=1 k(θj ,θi)∇θj log p(θj |Oτ ; ξ) +∇θjk(θj ,θi)

θi ← θi + ε∆θi

end
end
(Optional: SGD refinement)
for iter = 1, ..., N do

∆θi ← ∇θi log p(θi|Oτ ; ξ) ∀ i ∈ 1 : m

θi ← εr∆θi ∀ i ∈ 1 : m
end

θ∗ = arg maxθi log p(θi|Oτ ; ξ)

C Shift operation

As described in 5, the proposal distribution q is propagated after each round of MPC by
marginalizing over the previous solution:

q̃t+1(θ; xt+1) =

∫
pt(θ|θt; xt+1)qt(θt)dθt (26)

given a transition probability, pt(θ|θt−1; xt). This operation serves to approximate the prior at the
new iteration. Given the empirical distribution qt, we can simplify the expression above:

q̃t+1(θ; xt+1) =

m∑
i=1

∫
pt(θ|θt; xt+1) wiδθi(θt)dθt =

m∑
i=1

wipt(θ|θi; xt+1) (27)

resulting in a mixture of conditional probabilities.

In many open-loop MPC implementations [1, 2], it is assumed that the solution does not
change significantly between each round, given an accurate dynamics model and sufficiently
high controller frequency to resolve the dynamics and possible perturbations. This motivates a
common heuristic used to reduce the computational burden between timesteps, which is to shift the
control distribution πθt , forward-in-time by one step. That is, given an initial parameter sequence
θt = (θt, θt+1, ..., θt+H−1):

θ̃t+1 = Φ(θt) (28)

= (θt+1, θt+2, ..., θt+H−1, θ̃t+H−1) (29)

where the new parameter θ̃t+H−1 is chosen to reflect the expected final action. In the
implementation, we adopt a similar heuristic, where the empirical distribution is first shifted
deterministically according to:

θ̃i = Φ(θi) ∀ i ∈ 1 : m (30)
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and setting the resulting distribution as q̃t(θ) = qt(θ). The shifted particles, θ̃i, are then used in
the following iteration to approximate the posterior, and the prior is updated according to (27). The
shift operation can then be summarized by the following two sub-steps:

1. Shift particles: θ̃i = Φ(θi)

2. Update prior: q̃t+1(θ; xt+1) =
∑m
i=1 w

ipt(θ|θ̃i; xt+1)

D Variational Inference

In variational inference, a target distribution p(θ|Oτ ) is approximated by a candidate q∗(θ),
belonging to a specified family of distributions Q = {q(θ)}, by minimizing the KL-divergence:

q∗ = arg min
q∈Q

DKL (q(θ)||p(θ|Oτ )) (31)

The optimal distribution q∗ is also the solution to the following objective:

q∗ = arg max
q∈Q

Eq
[

log p(Oτ |θ)
]
−DKL (q(θ) || p(θ)) (32)

Proof 1:
q∗ = arg min

q∈Q
DKL (q(θ)||p(θ|Oτ )) (33)

= arg min
q∈Q

∫
log q(θ)dq(θ)−

∫
log p(θ|Oτ )dq(θ) (34)

= arg min
q∈Q

∫
log q(θ)dq(θ)−

∫
log p(Oτ |θ)dq(θ)−

∫
log p(θ)dq(θ) + logZ (35)

= arg min
q∈Q

∫
log q(θ)dq(θ)−

∫
log p(Oτ |θ)dq(θ)−

∫
log p(θ)dq(θ) (36)

= arg min
q∈Q

Eq
[

log q(θ)
]
− Eq

[
log p(Oτ |θ) + log p(θ)

]
(37)

= arg max
q∈Q

Eq
[

log p(Oτ |θ)
]
−DKL (q(θ) || p(θ)) (38)

where Z is the normalizing constant. The functional in the objective is also known as the variational
free energy Fq(θ) := Eq

[
log p(Oτ |θ)

]
−DKL (q(θ) || p(θ)).

An alternative derivation, which is relevant to the discussion in Appendix E, can be found by
deriving the lower-bound to the log marginal-likelihood:

Proof 2:

logEp
[
p(Oτ |θ)

]
= log

∫
p(Oτ |θ)p(θ)dθ (39)

= log

∫
p(Oτ |θ)p(θ)dθ (40)

= log

∫
p(Oτ |θ)

p(θ)

q(θ)
q(θ)dθ (41)

= logEq
[
p(Oτ |θ)

p(θ)

q(θ)

]
(42)

≥ Eq
[

log
p(Oτ |θ)p(θ)

q(θ)

]
(43)

= Eq
[

log p(Oτ |θ)
]
− Eq

[
log

p(θ)

q(θ)

]
(44)

= Eq
[

log p(Oτ |θ)
]
−DKL (q(θ) || p(θ)) (45)
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where (43) results from log-concavity and application of Jensen’s inequality. Equality is obtained
when q matches the posterior probability. In other words, provided that p(θ|Oτ ) ∈ Q, we have:

q∗(θ) =
p(Oτ |θ) p(θ)∫
p(Oτ |θ) p(θ)dθ

= p(θ|Oτ ) (46)

As such, we can define the minimization:

− logEp
[
p(Oτ |θ)

]
= min

q∈Q
−Eq

[
log p(Oτ |θ)

]
+DKL (q(θ) || p(θ)) (47)

E Connection to Path Integral Control

The equation derived in (47) is well-known in statistical thermodynamics, where the random variable
under consideration is the energy C(x) : Ωx 7→ R, a non-negative real-valued measurable property,
and x ∈ Rn is the state of the system. The Helmholtz free energy of C, with respect to probability
density p, is defined as the function :

− 1

α
logEp

[
exp (−αC(x))

]
, (48)

where α > 0 is the (inverse) temperature. The corresponding variational inequality, known as
the Donsker-Varadahn principle [38, 39], relates the free energy as the Legendre transform of the
entropy:

− 1

α
logEp

[
exp (−αC(x))

]
= min

q
− 1

α
Eq
[

log exp (−αC(x))
]

+
1

α
DKL (q(x) || p(x)) (49)

= min
q

Eq
[
C(x)

]
+

1

α
DKL (q(x) || p(x)) (50)

Following the same derivation presented in (39)-(47), the solution is then found to be the Gibbs
distribution:

q∗ =
exp (−αC(x)) p(x)∫
exp (−αC(x)) p(x)dx

. (51)

In the context of stochastic dynamics, the above is also applicable to random paths generated by
a Markov diffusion process [39]. This can then be extended to optimal control, by addressing the
KL-minimization problem between controlled and uncontrolled stochastic systems. The connection
was developed and explored for continuous-time dynamics in previous work, such as [27, 28]. Here,
the nonlinear-affine dynamics under consideration are subject to Brownian motion:

xt+1 = f̄(xt) +G(xt)ut +B(xt)wt, wt ∼ N (0,Σ) (52)
= f(xt,ut) (53)

for the discrete-time case. For a SOC expected-cost objective:

min
Ut

J(Xt) = min
Ut=(u0,...,uT )

Ef
[
cterm(xT ) +

T∑
t=0

ct(xt) +
1

2
u>t Rut

]
, (54)

the optimal control distribution could be derived by a change of measure using Girsanov’s theorem,
which was shown to satisfy the Hamilton-Jacobi-Bellman (HJB) equations for optimality. To solve
the HJB equations, an exponentiated form of the value function, the desirability-function, was
defined: Ψ(xt) = exp (−αV(xt)). By application of the Feynman-Kac lemma, the transformed
HJB partial differential equation can be solved as:

Ψ(xt) =

∫
exp (−αC(Xt)) pf (Xt; xt)dXt (55)

= Epf
[

exp (−αC(Xt))
]

(56)
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where pf denotes the passive dynamics i.e. the probability density of trajectories Xt, resulting from
the stochastic dynamics f(xt,ut) with ut = 0. Under the assumption that R = 1

αΣ−1, this can
then be used to then evaluate the optimal control law:

u∗t = −αΣG(xt)∇xV(xt) (57)
= ΣG(xt)∇x log Ψ(xt) (58)

= ΣG(xt)
∇xΨ

Ψ
. (59)

For receding-horizon control, we can borrow from [1] and consider a discrete-time case of Path-
Integral control for a nonlinear stochastic dynamical system:

xt+1 = f̄(xt,vt), vt ∼ p(vt|ut) (60)

with nominal deterministic dynamics f̄ , commanded control input ut, and stochastic perturbations
vt which are exhibited in the control input channel. The uncontrolled system is then realized when
ut = 0, and is controlled otherwise. Given a sequence of perturbations: Vt = (vt,vt+1, ...vt+H−1),
we can write the resulting state trajectory as Xt = F (xt, Vt), where F performs consecutive
application of the dynamics f̄ given xt and a sequence Vt. We can then consider probability
distributions directly over Vt, with p(Vt) for uncontrolled dynamics and q(Vt|Ut) for the controlled
system, with the sequence of control inputs given by Ut = (ut,ut+1, ...ut+H−1). A cost on state
C(Xt) is mapped to the random variable Vt by the convolution S = C ◦ F . Similarly to equations
(47) and (50) above, we then seek a solution to minimize the variational objective:

q∗ = arg min
q

DKL (q || q∗(Vt) ) (61)

= arg min
q

− 1

α
Eq
[

log exp (−αS(Vt))
]

+
1

α
DKL (q || p) (62)

= arg min
q

Eq
[
S(Vt)

]
+

1

α
DKL (q || p) (63)

where the optimal distribution is then known to be

q∗(Vt) =
exp (−αS(Vt)) p(Vt)∫

exp (−αS(Vt)) p(Vt)dVt
. (64)

Although we have the form of the optimal control distribution, an analytic solution is generally
intractable due to the partition function. The algorithm for Model Predictive Path Integral Control
(MPPI) [1, 3] proceeds by defining a surrogate cross-entropy minimization problem:

min
q∈Q

DKL (q∗(Vt) || q) (65)

for a tractable family of distributionsQ, typically fixed-covariance Gaussians with mean parameters
µt = Ut and an equivalent assumption on the controlled dynamics distribution.

In the SV-MPC framework, the original variational objective of Path Integral control can be
addressed, where

min
q∈Q

DKL (q || q∗(Vt) ) . (66)

We can apply the non-parametric Bayesian-MPC formulation (Setion 3) to solve for q∗(Vt) directly
over Vt, setting the inference parameter to be θ = Vt with a prior given by the passive dynamics
p(θ; xt) = p(Vt). The likelihood term p(Oτ |θ; ξ,xt) can be derived by using the exponentiated-
utility L(Xt) = exp (−αC(Xt)) and defining a dirac measure over state trajectories to denote the
probability density of Xt given θ:

p(Oτ |θ; ξ,xt) ∝
∫

exp (−αC(Xt)) δ(Xt − F (xt,θ))dXt (67)

= exp (−αC(F (xt,θ))) (68)
= exp (−αS(θ)) . (69)

where we drop ξ-notation for the dynamics parameters for simplicity.
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We then recover the Bayesian formulation:

q∗(θ) =
p(Oτ |θ; ξ,xt) p(θ; xt)∫
p(Oτ |θ; ξ,xt) p(θ; xt)dθ

(70)

=
exp (−αS(θ)) p(θ; xt)∫
exp (−αS(θ)) p(θ; xt)dθ

(71)

= p(θ|Oτ ; ξ,xt) (72)

Approximate inference on the posterior p(θ|Oτ ; ξ,xt) can then be performed using Algorithm 1,
where the optimal control action is approximated by:

u∗t = ΣG(xt)
∇xΨ

Ψ
= ΣG(xt)

Ep
[

exp(−αS(Vt))Vt

]
Ep
[

exp(−αS(Vt))
] (73)

≈ ΣG(xt)

∑m
i=1 exp(−αS(θi))θi∑m
i=1 exp(−αS(θi))

(74)

F Likelihood functions

Exponentiated Utility (EU) By picking the cost-likelihood to be: L(τ) = exp (−αC(Xt, Ut)),
we obtain the likelihood function

Eπθ,f̂ξ

[
L(τ)

]
= Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

]
. (75)

This is otherwise known as the Free-Energy of the cost function C(xt,ut) [27], as well as the "soft
maximum" or "risk-aware" loss. This yields the likelihood-gradient:

∇θ logEπθ,f̂ξ

[
L(τ)

]
= ∇θ logEπθ,f̂ξ

[
exp (−αC(Xt, Ut))

]
(76)

=
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))∇θ logπθ

]
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

] (77)

As α→∞, regions of high-cost are assigned lower probability, making the distribution of resulting
policies risk-averse. Conversely, as α → 0, high-cost regions have higher likelihood, making the
policy distributions more risk-seeking.

With this form of the gradient, we can choose a control policy as a sequence of Gaussian distributions
over open-loop controls with fixed covariance: given that πθt =

(
πθt , πθt+1 , ..., πθt+H−1

)
, we

have the instantaneous policy πθt = N (µt,Σt), our decision parameter is thus θt = µt =
(µt, µt+1, ...µt+H−1), where µt ∈ Rd, Σt ∈ Rd×d. Considering the SV-MPC step in (15) for a
single particle, we can derive the update for a parameter element h ∈ (t, t+ 1, ..., t+H − 1):

θ′h = θh + ε
(
∇θh log pt(Oτ |θ; ξ,xt) +∇θh log q̃t(θ)

)
(78)

= θh + ε
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))∇θh log πθh

]
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

] + ε∇θh log q̃t(θ) (79)

= θh + εΣ−1t

Eπθ,f̂ξ

[
exp (−αC(Xt, Ut)) (uh − θh)

]
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

] + ε∇θh log q̃t(θ) (80)

= (I − εΣ−1t ) θh + εΣ−1t

Eπθ,f̂ξ

[
exp (−αC(Xt, Ut)) uh

]
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

] + ε∇θh log q̃t(θ) (81)

where the gradient of the log-prior will depend on the particular choice of transition probability,
pt(θ|θ̃; xt+1), used in the shift operation (see Appendix C). The update reduces to that found in
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MPPI [1] if we consider the control distribution to be uncorrelated across dimensions (as is often
done in practice): Σt = σ2

t I . Setting the step-size to ε = σ2, and assuming a uniform prior on
controls, pt(θ|θ̃; xt+1) = U(θmin, θmax):

θ′h = (I − σ2
t σ
−2
t I) θh + σ2

t σ
−2
t I

Eπθ,f̂ξ

[
exp (−αC(Xt, Ut)) uh

]
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

] + 0 (82)

=
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut)) uh

]
Eπθ,f̂ξ

[
exp (−αC(Xt, Ut))

] , (83)

recovering the MPPI update rule.

Probability of Low Cost (PLC) Similarly to [2], we can incorporate a threshold-utility to
indicate preference for costs below a given threshold, using the indicator function: L(τ) =
1C≤Ct,max(C(Xt, Ut)). The likelihood then takes the form

Eπθ,f̂ξ

[
L(τ)

]
= Eπθ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))

]
. (84)

with the resulting gradient:

∇θ logEπθ,f̂ξ

[
L(τ)

]
=

Eπθ,f̂ξ

[
1C≤Ct,max

(C(Xt, Ut))∇θ logπθ

]
Eπθ,f̂ξ

[
1C≤Ct,max(C(Xt, Ut))

] (85)

The threshold parameter Ct,max is set adaptively as the largest cost of the top member in the elite
fraction of sampled trajectories. Using the same derivation for the case of Exponentiated Utility
likelihood, the choice of a Gaussian policy with a threshold-utilty reduces to the update rule for the
Cross Entropy Method [30]:

θ′h =
Eπθ,f̂ξ

[
1C≤Ct,max

(C(Xt, Ut))uh

]
Eπθ,f̂ξ

[
1C≤Ct,max

(C(Xt, Ut))
] . (86)

G Nonparametric Bayesian MPC

Inference can be performed directly over the posterior of control input sequences θ ,
(ut,ut+1, ...,ut+H−1). Assuming the likelihood gradient in the Bayesian MPC setting can be
derived for differentiable dynamics:

∇θ logEf̂ξ
[
L(Xt)

]
=

Ef̂ξ
[
L(Xt)∇θ log p(Xt|θ; ξ,xt)

]
Ef̂ξ
[
L(Xt)

] (87)

Similarly to the parametric formulation, the form of the cost-likelihood L will result in a particular
update rule. The gradient can generally be evaluated by approximating the expectations with Monte
Carlo sampling of state trajectories given the controlled stochastic dynamics., and evaluating the
gradients on sampled trajectories. Under certain conditions, however, it may be evaluated in closed
form. Such is the case for a Linear-Quadratic-Gaussian (LQG) system, for example [27].

H Motion Planning

A special case can be considered for deterministic dynamics. We can define the stochastic
dynamics using a dirac measure on the space of trajectories: p(Xt|θ; ξ,xt) = δ(Xt −Xt), where
Xt = F (θ, ξ,xt), and F performs consecutive application of the deterministic dynamics f . Setting
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L(Xt,θt) = exp(−αC(Xt,θt)), the gradient then reduces to :

∇θ logEf̂ξ
[
L(Xt,θ)

]
=
∇θ

∫
exp (−αC(Xt,θ)) δ(Xt −Xt)dXt∫

exp (−αC(Xt,θ)) δ(Xt −Xt)dXt

(88)

=
∇θ exp

(
−αC(Xt,θ)

)
exp

(
−αC(Xt,θ)

) (89)

=
−α exp

(
−αC(Xt,θ)

)
∇θC(Xt,θ)

exp
(
−αC(Xt,θ)

) (90)

= −α∇θC(Xt,θ) (91)

The gradient can then be evaluated in a straightforward manner via back-propagation on the cost
function, through the dynamics.

I Complexity

The implementation of SV-MPC requires the computation of the kernel Gram-matrix
K(θi, θj) ∀ i, j ∈ (1, ...,m) for the SVGD update. This requires an inner-product operation for all
particle pairs, resulting in a computational complexity ofO(m2hd) (where m : number of particles,
h : horizon, d : control dimension). However, by exploiting structured kernels for trajectories, the
scaling with respect to the horizon can be removed by parallel computation of kernel factors. This
results in a O(m2 + k) operation, where k is the cost of a kernel factor evaluation. In practice
a relatively low order of particles is required: m << 1 × 103. The core bottleneck is typically
the generation of rollout trajectories from control samples during each iteration of MPC, which can
be performed in parallel but is linear in time with respect to the horizon h. As with most MPC
applications, the horizon length, number of samples, etc. can be varied to balance accuracy with
runtime complexity, depending on the constraints of the system.

J Additional Results

Planar Navigation Table 6, we include quantitative summaries of performance across control
types. The performance of the SV-MPC controller improves with increasing particle number.

Figure 6: Statistics for planar navigation task over 25 trials (4x4 obstacle grid)

Controller Num.
of
particles

Avg.
cost of
success
(×103)

Success
rate (%)

32 20.7 96
SV-MPC 12 21.8 96

6 25.6 84
MPPI — 26.5 64
CEM — 25.4 64

K Experimental Details

The environment and controller parameters used in the experiments are summarized in tables 2 and
3, respectively. Note for Table 3: the utility function parameter, such as α and elite fraction, share
the same values as those used by SV-MPC for either EU or PLC likelihood.

Planar navigation The SV-MPC controller with exponentiated-utility (EU) is constructed with
a set of 6 to 32 particles, where the gradient of each particle is estimated via Monte-Carlo sampling
of control and state trajectories. At each round, the best-performing particle is chosen to generate
the action using (24).
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For state xt = (xt, ẋt) and control ut = ẍt, where xt, ẋt, ẍt are the 2D position, velocity and
acceleration, respectively, and the xgoal the target 2D goal position, we define the instantaneous and
terminal costs (with respect to (1)):

c(xt,ut) = 0.5(xt − xgoal)>(xt − xgoal) + 0.25ẋ>t ẋt + 0.2ẍ>t ẍt (92)

cterm(xt) = 1000(xt − xgoal)>(xt − xgoal) + 0.1ẋ>t ẋt (93)

Manipulation This provides the ability to efficiently compute highly-resolved geometric
constraints between the robot and obstacles, eliminating the need for coarsely-defined heuristics
for collision detection (such as signed-distance fields [35]).
Although the dynamics are deterministic, the problem remains challenging since the posterior
probability distribution implies a nonlinear mapping (via inverse kinematics) from the work-space
to the sampling space.

The cost-function consists of a cost on cartesian distance-to-goal from the end-effector, as well as
a penalty on control. For state xt = (et, ėt) and control ut = q̇t, where et, ėt, are the cartesian
end-effector positions and velocities, respectively, q̇ the joint velocities, and the egoal the target 3D
goal position, we define the instantaneous and terminal costs (with respect to (1)):

c(xt,ut) = 1(et − egoal)>(et − egoal) + 0.25ė>t ėt + 0.1q̇>t q̇t (94)

cterm(xt) = 5000(et − egoal)>(et − egoal) + 0.1ė>t ėt (95)

Stochastic HalfCheetah We modify the cost function to reward forward velocity only if the agent
is forward-facing, as done in [22], along with a control penalty. Without this alteration, progress can
be made fairly easily by applying torque commands in a single direction, and ‘cart-wheeling’ the
system. For instantaneous forward velocity vt and body angle β,

c(xt,ut) = 0.1u>t ut −
vt
2

(1 + sgn(cosβ)) (96)

Motion Planning The dynamics consist of a deterministic, velocity controlled single-integrator
model on the 2D position: xt+1 = xt + ut∆t. The initial set of particles is drawn from a multi-
variate Gaussian prior: θi ∼ N (0,Σ). A smooth obstacle cost-map is generated using a bi-modal
mixture of Gaussians, with the probability of collision is given by pobs(xt). The cost function is
then given by:

c(xt) = 1× 105 pobs(xt) (97)

cterm(xt) = 1000(xt − xgoal)>(xt − xgoal) (98)

Table 2: Environment Parameters
Experiment Episode

length
Trials state

space
(xt ∈)

control
space
(ut ∈)

control
limits

time-
step
(∆t)

dyn. noise
σ2
dyn

Planar Nav. 300 25 R4 R2 [−50, 50] 0.015 0.1
Manipulation 150 24 R14 R7 [−1, 1] 0.067 —
Stoch.
HalfCheetah

300 16 R18 R6 [−1, 1] 0.05 0.25
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Table 3: Experiment Controller Settings.
Planar Nav. Manipulation Stoch.

HalfCheetah
Planning Horizon (H) 64 64 30
Warm-start iterations 30 25 20
Optimization iterations per timestep 1 1 5
Control variance (σ2) 100 0.25 1

SV-MPC

num. particles (m) 6, 12, 32 4 5
num. ctrl. samples per particle 8 32 32
step-size (ε) 10 0.1 1
cost-likelihood (L(·)) EU EU EU, PLC

MPPI num. control samples 32 128 160
inverse-temperature (α) 1× 10−3 0.1 1

CEM num. control samples 32 128 160
elite fraction 0.1 0.1 0.1
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