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Abstract— Continuous-time trajectories are useful for rea-
soning about robot motion in a wide range of tasks. Sparse
Gaussian processes (GPs) can be used as a non-parametric
representation for trajectory distributions that enables fast
trajectory optimization by sparse GP regression. However, most
previous approaches that utilize sparse GPs for trajectory
optimization are limited by the fact that the robot state is
represented in vector space. In this paper, we first extend
previous works to consider the state on general matrix Lie
groups by applying a constant-velocity prior and defining locally
linear GPs. Next, we discuss how sparse GPs on Lie groups
provide a unified continuous-time framework for trajectory op-
timization for solving a number of robotics problems including
state estimation and motion planning. Finally, we demonstrate
and evaluate our approach on several different estimation
and motion planning tasks with both synthetic and real-world
experiments.

I. INTRODUCTION

Consider the problem of simultaneous localization and
mapping (SLAM) [1], [2]. Solving this problem is a fun-
damental capability for autonomous mobile robots that must
explore and plan in previously unseen environments. While
SLAM is a well-studied area of robotics, the majority of ex-
isting SLAM algorithms rely on discrete-time representations
of robot trajectories. Although discrete-time representations
are sufficient for many tasks, they are often difficult to use
in several important scenarios, including: (1) when sensors
measure the environment continuously, for example spinning
LIDAR or rolling-shutter cameras produce measurements
that may be distorted by the robot’s self-motion; and (2)
when sensor measurements arrive asynchronously.

While heuristics are often employed to overcome these
challenges, a theoretically sound framework for handling
continuous motion and/or measurements can result in better
accuracy. Unlike trajectory representations that are densely
parameterized with discrete states at frequent, regular time
intervals, continuous-time representations are often sparsely
parameterized, but contain mechanisms that allow the trajec-
tory to be queried to recover the robot state at any time of
interest. Several popular continuous-time trajectory represen-
tations include linear interpolation [3], [4], [5], splines [6],
[7], [9], [10], [11], and hierarchical wavelets [12].

This paper focuses on an alternative probabilistic, non-
parametric representation for trajectories based on Gaus-
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Fig. 1: Some experiments we evaluated the proposed GPs on
Lie groups, from up to down left to right: 2D planar local-
ization using CMU range-only dataset [13]; 3D monocular
visual-inertial SLAM; Full-body planning of PR2 robot in
simulation; Full-body planning of Vector robot in real-world.

sian processes (GPs). Tong et al. [14], [15] showed that
simultaneous trajectory estimation and mapping (STEAM),
the continuous-time extension of SLAM, can be reduced
to GP regression. By placing various GP priors on robot
trajectories, this approach can solve different types of trajec-
tory estimation problems. However, if standard kernels, such
as the squared exponential kernel, are used, the method is
prohibitively expensive with time and space complexity that
scales polynomially with the number of parameters.

Maintaining sparsity in SLAM problems has been well-
studied [2], [17], and it is the key to scalable optimiza-
tion in many modern SLAM algorithms. In the context of
continuous-time SLAM, Barfoot et al. [18] shows that by
applying a linear time-varying stochastic differential equation
(LTV-SDE) prior on trajectories, the inverse kernel matrices
used during optimization are exactly sparse, leading to ef-
ficient GP regression that can solve SLAM problems. This
approach is further extended to nonlinear SDEs [19] and
incremental settings [20].

Other areas of robotics have recently benefited from these
techniques as well. For example, recent work in motion
planning [21], [22], [23] takes advantage of sparse and in-
cremental GP regression to speed up trajectory optimization,
leading to very efficient motion planning algorithms.

A major drawback of all of these GP-based approaches
is that they only reason about trajectories where system
states evolve in a vector space, which may not be a valid



assumption for many systems. For example, typical vector-
valued representations for rotation of a 3D rigid-body either
exhibit singularities (Euler angles) or impose extra nonlinear
constraints (quaternions).

Trajectories in many robotics applications can be defined
on more general Lie groups, rather than simple vector spaces.
For example, rotation of a 3D rigid body is the special
orthogonal group SO(3), transformation of a 3D rigid body
is the special Euclidean group SE(3), and state estimated
from a monocular camera with scale drift information is the
similarity group Sim(3) [24], [25].

Sparse GP regression for STEAM [18] has been extended
to SE(3) by Anderson et al. [26]. Anderson et al. select
constant body-frame velocity prior as GP prior, which is
physically motivated by inertia, meanwhile generated by
local LTV-SDEs. In this paper, we further extend sparse GP
regression to general Lie groups, enabling more applications
of sparse GPs: rotation estimation on SO(3), monocular
visual SLAM on Sim(3), and applications other than state
estimation, like motion planning on Lie groups.

Along with our technical contributions, we, for the first
time, provide a novel insight that Gaussian processes on Lie
groups can be viewed as a unified tool for reasoning about
continuous-time trajectories in various robotics applications,
including state estimation and motion planning, since they
share the same GP continuous-time trajectory representation,
the same factor graph problem structure, and the same
maximum a posteriori probabilistic inference framework.

Our specific contributions include:
• Extending sparse GPs [18], [26] to general matrix Lie

groups.
• A new perspective that views sparse GP regression on

Lie groups as a unified trajectory optimization tool that
can be used to reason about, and sometimes simultane-
ously solve, a variety of robotics tasks.

• Extensive experimental evaluations on different types of
real-world robotics problems, showcasing the effective-
ness of reasoning about trajectories with sparse GPs on
Lie groups.

II. PRELIMINARIES

We begin by formulating continuous-time trajectory esti-
mation problems as GP regression, review how a sparse GP
prior can be defined on vector spaces, and finally give a very
brief review of Lie group fundamentals. For a full treatment
the readers are encouraged to refer [18] for GP regression
as trajectory estimation and [27] for Lie group theory.

A. Problem Definition

We consider the problem of continuous-time trajectory
estimation, in which a continuous-time system state x(t)
is estimated from observations [14]. The system model is
described as

x(t) ∼ GP(µ(t),K(t, t′)) (1)
zi = hi(x(ti)) + ni,ni ∼ N (0,Σi), (2)

where x(t) is represented by a GP with mean function µ(t)
and covariance function K(t, t′). Measurements zi at time
ti are obtained by the (generally nonlinear) discrete-time
measurement function hi in Eq. (2) and assumed to be
corrupted by zero-mean Gaussian noise with covariance Σi.

B. Maximum a Posteriori Estimation

GP regression is performed by maximum a posteriori
(MAP) inference, where the most likely trajectory is the
mode (and also the mean) of the posterior distribution i.e. the
GP in Eq. (1) conditioned on the measurements. The MAP
estimate of the trajectory can be computed through Gaussian
process Gauss-Newton (GPGN) [14]. To define the objective
function, we assume that there are M observations and
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The MAP estimation objective can then be written as

x∗ = argmax
x

{
1

2
‖ x− µ ‖2K +

1

2
‖ h(x)− z ‖2Σ

}
, (3)

where ‖‖Σ is Mahalanobis distance defined as ‖ x ‖2Σ
.
=

x>Σ−1x. MAP estimation is thus formulated as a nonlinear
least squares optimization problem.

We use a Gauss-Newton approach to solve the nonlinear
least squares problem. By linearizing the measurement func-
tion hi around a linearization point xi, we obtain

hi(xi + δxi) ≈ hi(xi) + Hiδxi,Hi
.
=
∂hi
∂x

∣∣∣
xi
, (4)

in which Hi is the Jacobian matrix of the measurement
function (2) at linearization point xi. By defining H

.
=

diag(H1, . . . ,HM ), we can generate a linearized least
squares problem around the linearization points x

δx∗ = argmax
δx

{
1

2
‖ x+δx−µ ‖2K +

1

2
‖ h(x)+Hδx−z ‖2Σ

}
.

(5)
The GPGN algorithm starts from some initial guess of x,
and then at each iteration, the optimal perturbation δx∗ is
found by solving the linear system

(K−1 + H>Σ−1H)δx∗ = K−1(µ− x) + H>Σ−1(z− h)
(6)

and updating the solution x← x+ δx∗ until convergence.
The information matrix K−1 in Eq. (6) encodes the GP

prior information, and H>Σ−1H represents information
from measurements. H>Σ−1H is block-wise sparse in most
SLAM problems [2], but K−1 is not usually sparse for most
commonly used kernels. Next, we define GP priors with
sparse structure that can be exploited to efficiently solve the
nonlinear least squares problem above.



C. Sparse GP Priors on Vector Space

We now describe a class of exactly sparse GP priors on
vector space for trajectory estimation proposed in Barfoot
et al. [18]. Here GP priors are considered on vector-valued
system states x(t) ∈ RN generated by linear time-varying
stochastic differential equations (LTV-SDEs)

ẋ(t) = A(t)x(t) + u(t) + F(t)w(t), (7)

where u(t) is the known system control input, w(t) is white
process noise, and both A(t) and F(t) are time-varying
system matrices. The white process noise is represented by

w(t) ∼ GP(0,QCδ(t− t′)), (8)

where QC is the power-spectral density matrix, which is a
hyperparameter [19], and δ(t−t′) is the Dirac delta function.
The mean and covariance of the LTV-SDE generated GP are

µ(t) = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)u(s)ds (9)

K(t, t′) = Φ(t, t0)K0Φ(t′, t0)>

+

∫ min(t,t′)

t0

Φ(t, s)F(s)QCF(s)>Φ(t′, s)>ds (10)

where µ0 is the initial mean value of first state, K0 is the
covariance of first state, and Φ(t, s) is transition matrix. If
the system is generated by the LTV-SDE in Eq. (7), the
inverse covariance matrix K−1 is block-tridiagonal [18].

A commonly used GP prior is the constant-velocity prior,
which is derived from our understanding of the physical
properties of robotic systems. In most robots, large accelera-
tion implies extreme force, which may be harmful if directly
applied to the system. Therefore, acceleration should be kept
to a minimum, to the extent possible.

The constant-velocity GP prior is generated by a LTV-SDE
with white noise on the acceleration and has been used in
trajectory estimation [14], [18]

p̈(t) = w(t), (11)

where p(t) is the N -dimensional vector-valued position (or
pose) variable of trajectory. To convert this prior into the
LTV-SDE form of Eq. (7), a Markov system state variable
is declared

x(t)
.
=

[
p(t)
ṗ(t)

]
. (12)

The prior in Eq. (11) then can easily be converted into a
LTV-SDE in Eq. (7) by defining

A(t) =

[
0 I
0 0

]
, u(t) = 0, F(t) =

[
0
I

]
. (13)

D. Lie Group Basics

A group is an algebraic structure {G, ◦} consisting of
a set of elements G and an operator ◦. We limit our
discussion on matrix Lie groups, whose elements are square,
invertible matrices, and ◦ is matrix multiplication. Every
N -dimensional matrix Lie group G has an associated Lie
algebra g [27, p.16]. The Lie algebra g coincides with the

local tangent space to the manifold of G. The exponential
map exp : g → G and logarithm map log : G → g
define the mapping between the Lie group and Lie algebra
respectively [27, p.18]. G also has an associated hat operator
∧ : RN → g and vee operator ∨ : g → RN that converts
elements in local coordinates RN to the Lie algebra g and
vice versa [27, p.20]. The vector space RN is just a trivial
Lie group, where exp, log, ∧ and ∨ are all identity.

III. SPARSE GP PRIORS ON LIE GROUPS

This section summarizes how GP priors are defined on Lie
groups. For more details, readers are encouraged to read the
author’s technical report [28].

A. Constant Body-Frame Velocity Prior

We use T ∈ G to represent an object in Lie group G,
so the continuous-time trajectory is written as T (t), and
trajectory measurements are observed at times t1, . . . , tM ,
the associated states are T1, . . . , TM . To estimate T (t), we
first define the Markov system state by appending the state
with velocity

x(t)
.
= {T (t),$(t)}, (14)

where $(t) is the ‘body-frame velocity’ variable1 defined

$(t)
.
= (T (t)−1Ṫ (t))∨. (15)

The ∨ operator can be always applied to T (t)−1Ṫ (t) since
∀T ∈ G, T−1Ṫ ∈ g [27, p.20].

Similar to Eq. (11), we can define the constant ‘body-
frame velocity’ prior on Lie groups as

$̇(t) = w(t), w(t) ∼ GP(0,QCδ(t− t′)), (16)

but this is a nonlinear SDE, which does not match the LTV-
SDE defined by Eq. (7).

B. Locally Linear Constant-Velocity GP Priors

To define a LTV-SDE which can leverage the constant-
velocity GP prior, we linearize the Lie group manifold
around each Ti, and define both a local GP and LTV-SDE
on the linear tangent space. We first define a local GP for
any time t on trajectory which meets ti ≤ t ≤ ti+1,

T (t) = Ti exp(ξi(t)
∧), ξi(t) ∼ N (0,K(ti, t)). (17)

the local pose variable ξi(t) ∈ RN around Ti is defined by

ξi(t)
.
= log(T−1i T (t))∨. (18)

The local LTV-SDE that represents constant-velocity infor-
mation is

ξ̈i(t) = w(t), w(t) ∼ GP(0,QCδ(t− t′)). (19)

If we define the local Markov system state

γi(t)
.
=

[
ξi(i)

ξ̇i(t)

]
, (20)

1In SO(3) and SE(3), $(t) is the body-frame velocity (see [29, p.52]
and [29, p.55]), so we just define and call $(t) the ‘body-frame velocity’
for general Lie groups.



the local LTV-SDE is rewritten as

γ̇i(t) =
d

dt

[
ξi(t)

ξ̇i(t)

]
=

[
ξ̇i(t)
w(t)

]
. (21)

To prove the equivalence between the nonlinear SDE in
Eq. (16) and the local LTV-SDE in Eq. (19), we first look
at equation [27, p.26]

T (t)−1Ṫ (t) =
(J r(ξi(t))ξ̇i(t)

)∧
, (22)

where J r is the right Jacobian of G. With Eq. (15) we have

ξ̇i(t) = J r(ξi(t))
−1$(t). (23)

If the small time interval assumption between any ti and
ti+1 is satisfied, we have small enough ξi(t) with a good
approximation of right Jacobian J r(ξi(t)) ≈ I and

ξ̇i(t) ≈$(t). (24)

So we have proved that the LTV-SDE in Eq. (19) and (21)
is a good approximation of constant ‘body-frame velocity’
prior defined by Eq. (16).

Both the local GP and LTV-SDE are defined on the tangent
space, so they should only be applied around the current
linearization point Ti. But if all ti and ti+1 pairs have a
small enough interval, the GP and LTV-SDE can be defined
in a piecewise manner, and every point on the trajectory can
be converted to a local variable ξi(t) based on its nearby
estimated state Ti.

Note that, although we assume that time intervals between
all ti and ti+1 are small to prove LTV-SDE in Eq. (19) is a
good approximation of constant ‘body-frame velocity’ prior
by Eq. (16), this assumption does not need to be satisfied to
make the above LTV-SDE a valid GP prior. So we can still
use the proposed sparse GP when trajectory time intervals are
large, although the actual GP prior applied is less accurate
compared to the true constant ‘body-frame velocity’ prior.

Note that a special case of the above theory to SE(3), was
proposed in previous work [26], from which our extension
to general matrix Lie groups is inspired.

C. A Factor Graph Perspective

Once the local GP and constant-velocity LTV-SDE are
defined, we can write down the cost function Jgp used to
incorporate information about the GP prior into the nonlinear
least squares optimization in Eq. (3). As discussed, the GP
prior cost function has the generic form

Jgp =
1

2
‖ µ− x ‖2K, (25)

but if the trajectory is generated by a constant-velocity LTV-
SDE in Eq. (21), the GP prior cost can be specified as [18]

Jgp =
∑
i

1

2
e>i Q−1i ei, (26)

ei = Φ(ti+1, ti)γi(ti)− γi(ti+1), (27)

where Qi is the covariance matrix [18]

Φ(t, s) =

[
1 (t− s)1
0 1

]
,Qi =

[
1
3
∆t3iQC

1
2
∆t2iQC

1
2
∆t2iQC ∆tiQC

]
, (28)

J0 = 1
2e
>
0 K−10 e0,

e0 = x0 − µ0

Ji =
1
2e
>
i Q−1i ei,

ei = Φ(ti+1, ti)γi(ti)− γi(ti+1)

x0

x1
xi

xi+1

Fig. 2: An example factor graph, showing states (triangles)
and factors (black boxes). GP prior factors connect consec-
utive states, and define the prior information on first state.

where ∆ti = ti+1 − ti.
Since the GP prior cost Jgp has been written as a sum

of squared cost terms, and each cost term is only related
to nearby (local) Markov states, we can represent the least
squares problem by factor graph models. In factor graphs
the system states are represented by variable factors, and
the cost terms are represented by cost factors. An example
factor graph is shown in Fig. 2. By converting nonlinear
least squares problems into factor graphs, we can take ad-
vantage of factor graph inference tools to solve the problems
efficiently. Additional information about the relationship
between factor graphs and sparse GP and SLAM problems
can be found in [2], [18], [19], [20]

D. Querying the Trajectory

One of the advantages of representing the continuous-time
trajectory as a GP is that we have the ability to query the state
of the robot at any time along the trajectory. For constant-
velocity GP priors, the system state x(τ), ti ≤ τ ≤ ti+1 can
be estimated by two nearby states x(ti) and x(ti+1) [18],
which allows efficient O(1) interpolation. We first calculate
the mean value of local state γ̂i(τ)

γ̂i(τ) = Λ(τ)γ̂i(ti) + Ψ(τ)γ̂i(ti+1), (29)
where

Λ(τ) = Φ(τ, ti)−QτΦ(τ, ti)
>Q−1i+1Φ(ti+1, ti), (30)

Ψ(τ) = QτΦ(τ, ti)
>Q−1i+1. (31)

Once we have the mean value of local state γ̂i(τ), the mean
value of the full state x̂(τ) = {T̂ (τ), $̂(τ)} is

T̂ (τ) = T̂i exp
((

Λ1(τ)γ̂i(ti) + Ψ1(τ)γ̂i(ti+1)
)∧)

, (32)

$̂(τ) = J r

(
ξ̂i(τ)

)−1(
Λ2(τ)γ̂i(ti) + Ψ2(τ)γ̂i(ti+1)

)
, (33)

where

Λ(τ) =

[
Λ1(τ)
Λ2(τ)

]
, Ψ(τ) =

[
Ψ1(τ)
Ψ2(τ)

]
,

γ̂i(ti) =

[
0

$̂(ti)

]
, γ̂i(ti+1) =

[
ξ̂i(ti+1)

J r(ξ̂i(ti+1))−1$̂(ti+1)

]
,

ξ̂i(τ) = log(T̂−1i T̂ (τ))∨, ξ̂i(ti+1) = log(T̂−1i T̂i+1)∨,

E. Fusion of Asynchronous Measurements

Continuous-time trajectory interpolation affords GP-based
trajectory estimation methods several advantages over
discrete-time localization algorithms. In addition to providing
a method for querying the trajectory at any time of interest,
GP interpolation can be used to reduce the number of states
needed to represent the robot’s trajectory, and elegantly
handle asynchronous measurements.



x(ti+1)x(ti)
x(τ)

(a) Meausurement
x(ti+1)x(ti)

x(τ)

(b) Interpolated Factor

Fig. 3: (a) Measurement at time τ , dashed line indicates
it’s not an actual factor. (b) The interpolated factor encodes
measurement at time τ .

Assume there is a measurement zτ of state x(τ) available
at an arbitrary time τ, ti ≤ τ ≤ ti+1, with measurement
function hτ and corresponding covariance Στ . The measure-
ment cost can be incorporated as a ‘virtual unary factor’ in
the graph and is given by

Jτ (x(τ)) =
1

2
‖ zτ − hτ (x(τ)) ‖2Στ . (34)

Since system state x(τ) is not explicitly available for op-
timization, we perform trajectory interpolation between xi
and xi+1 by Eq. (32) – (33), and rewrite the cost in terms
of the interpolated mean value x̂(τ)

Jτ (xi,xi+1) =
1

2
‖ zτ − hτ (x̂(τ)) ‖2Στ . (35)

Because the measurement cost is represented by xi and xi+1,
a binary ‘interpolated’ factor can be added to the factor
graph, and xi and xi+1 are optimized without explicitly
adding an additional state. The factor graph illustration is
shown in Fig. 3.

IV. GPS AS A UNIFIED TRAJECTORY REPRESENTATION

Estimation: As noted in the introduction, the SLAM com-
munity has been using continuous-time trajectory representa-
tions for many years to naturally handle asynchronous mea-
surements and continuous-time sensors like rolling shutter
camera or laser scanner. Compared to standard continuous-
time trajectory representations like splines, using sparse GPs
in SLAM [18], [26], [20] has several special advantages:
• A GP represents a trajectory distribution, so the mean

trajectory of interest naturally has a notion of associated
uncertainty.

• The sparse GP prior does not break the inherent sparsity
underlying SLAM problems, and aligns well with their
factor graph structure (shown in Fig. 4(a)).

• The sparse factor graph structure allows for the use of
efficient incremental inference tools, like iSAM2 [30],
to enable online incremental GP regression [20].

• The constant velocity prior [26] has physical meaning.
Planning: Recent work in motion planning has used sparse
GPs for fast trajectory interpolation [21] and then later, GP
regression to solve trajectory optimization problems [22]. For
motion planning, sparse GPs provide the following benefits:
• Structure exploiting inference can be performed on

factor graphs (shown in Fig. 4(b)) as a direct result
of using a sparse GP prior, yielding efficient motion
planning algorithms.

• The number of states to optimize can be significantly
reduced by parameterizing the trajectory with a few

(a) Estimation [18], [26], [20]

(b) Planning [22]

(c) STEAP [31]

Fig. 4: Factor graphs comparing GP-based approaches for
reasoning about continuous-time trajectories. White circles
are states of the trajectories, diamonds are landmarks; black
circles are GP prior factors, and squares are measurement
factors. Gray circles indicate the states at the current time.

support states and using O(1)-time GP interpolation,
further improving efficiency.

• The factor graph structure also allows for incremental
inference tools [30] to speed up the solution to incre-
mental problems including online replanning.

It is evident from Fig. 4(a) and (b) that both estimation
and planning share a similar factor graph structure in which
the GP prior is defined as in Fig. 2. Both problems can
be solved via MAP estimation on factor graphs. The funda-
mental difference is that the estimation graph is backward-
looking while the planning graph is forward-looking. When
an autonomous robot needs to perform these two tasks at
the same time, a logical idea is to combine these two factor
graph as a single one, and performing MAP estimation on
the combined graph. This removes redundancy and allows for
solving the two problems simultaneously. The factor graph
for this technique, called “simultaneous trajectory estimation
and planning” (STEAP) [31], is shown in Fig. 4(c). The
information flow between the estimation and planning sub-
graphs enhances the overall quality of the solution and the
factor graph structure allows the use of incremental inference
tools, like iSAM2 [30]. Thus, STEAP can naturally solve
closed-loop online replanning and yield a fast solution to
trajectory estimation.

Estimation, planning, or STEAP can be derived from a
common framework by simply changing the factors or the
‘current state’ designation. A unifying theme is the use
of a sparse GP prior to represent trajectory distributions
and MAP inference, i.e. GP regression, to find the optimal
trajectory. Sparse GPs not only provide efficiency and model
uncertainty, but also help bridge the gap between various
robotics problems, allowing them to be combined and solved
simultaneously. In the next section, we provide experimental
results using our extension to sparse GPs on Lie groups for
estimation and planning tasks that cannot be solved well by
using states defined in vector space.

V. EXPERIMENTAL RESULTS

We evaluated our framework on three different trajectory
estimation tasks on SE(2), SO(3) and Sim(3), and one
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Fig. 5: Planar SLAM results on the Plaza1/2 datasets [13],
with odometry-only and ground truth trajectories.

TABLE I: Planar SLAM comparison, Linear and SE(2).

Plaza1 Plaza2
Linear SE(2) Linear SE(2)

Position RMS (m) 0.252 0.238 0.523 0.152
Rotation RMS (deg) 2.822 2.508 1.952 0.981
Landmark RMS (m) 0.053 0.026 0.479 0.029

Optimization Time (s) 1.998 2.107 0.832 0.888

planning task on SE(2)×RN . We have open sourced the C++
code for our library that implements GPs on Lie groups,
building on the GTSAM library2 for both estimation3 and
planning4. Trajectory estimation on SE(3) (a special case of
our general Lie group formulation) has been reported in [26],
and planning on vector space (a trivial Lie group) has been
reported in [21], [22], so we do not repeat those evaluations.

A. SE(2): 2D Planar Range-Only SLAM

We conducted experiments on two range-only 2D SLAM
problems to evaluate the proposed GP approach on SE(2).
The datasets are Plaza1 and Plaza2 from Djugash et al. [13].
Both datasets were collected by a lawn mower equipped with
a gyroscope and wheel encoders to measure odometry, and a
radio node measuring ranges of four fixed beacons. Ground
truth beacon positions and robot trajectories were measured
by RTK-GPS. Fig. 5 shows the results, including ground-
truth trajectories and landmark positions, and odometry-only
dead reckoning trajectories. We plot trajectory error and
trajectory distribution (shown by 3σ variance) estimated for
Plaza1 dataset in Fig. 6. In the middle of the Plaza1 dataset,
the robot loses range measurements to all beacons. From
the estimated trajectory distribution we see the uncertainty
increases in response to this missing data.

The performance of our approach on SE(2) is compared
with the naı̈ve sparse linear GP prior [18], which uses
canonical coordinates x(t) = [x(t), y(t), θ(t)]> ∈ R3 as
system state. The accuracy and efficiency of both approaches
are evaluated by root mean square (RMS) error and opti-
mization time respectively. Table I shows the comparison
results. Both trajectory and landmark estimation accuracies
are improved by our Lie group approach. Since both of
approaches share the same sparse factor graph representation,
there is no significant difference of efficiency between these
two approaches.

2https://bitbucket.org/gtborg/gtsam
3https://github.com/gtrll/gpslam
4https://github.com/gtrll/gpmp2
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Fig. 6: Trajectory error and 3σ variance estimated of Plaza1
dataset. Green lines are states with range measurements, and
red segments are states without range measurements.
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Fig. 7: Attitude estimation errors by proposed approach of
IMU dataset, compared with gyroscope-only results, and
estimated gyroscope bias by proposed approach.

B. SO(3): 3D Attitude Estimation of IMU

To evaluate our GP approach on SO(3), we designed an
attitude estimation experiment using an inertial measurement
unit (IMU). We collected an IMU dataset using a low-cost
Pixhawk autopilot, which has a 3-axis accelerometer and a
3-axis gyroscope. Both acceleration and angular rates were
collected asynchronously, as angular rate was available at
166Hz but acceleration was available at 40Hz. Ground truth
attitude was collected by an Optitrack motion capture system.

A major advantage of using continuous-time trajectory
representations is that estimation with asynchronous sensors
can be accomplished simply. We implemented a batch at-
titude estimation approach with pre-integrated IMU factors
[32] containing gyroscope measurements, and GP interpo-
lated acceleration factors which compare acceleration mea-
surements against gravity. After optimization, attitudes are
estimated at the gyroscope time stamps. Since the accelerom-
eter does not provide yaw angle information with respect to
the world frame, only pitch and roll angles are estimated and
compared with ground truth.

Fig. 7 shows the estimated pitch and roll angle errors from
the IMU dataset, compared with gyroscope-only estimation,
and compared with motion capture ground truth. The results
show that both estimated pitch and roll angles are better
aligned with ground truth, since the gyroscope drift from
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Fig. 8: Scale drift aware monocular SLAM results. (a)
Google Map c© view of the map with path highlighted; (b)
shows open loop VO results, with the loop closure marked
in red; (c)-(e) are SE(3) and Sim(3) results, and (f) shows
scale estimations of Sim(3) approaches.

bias is compensated for by fusing asynchronous acceleration
measurements and sensor bias is also estimated. The exis-
tence of the few peaks in roll angle error plot are due to
singularity caused by the Euler angle representation.

C. Sim(3): Scale Drift Aware Monocular SLAM

The transformation of a 3D rigid body is represented by
SE(3), and most 3D SLAM approaches consider trajecto-
ries on SE(3). In monocular visual SLAM, camera motion
and scene structure are recovered up to scale, due to the
projective nature of a single camera. Although the scale
of monocular visual SLAM is locally consistent, the scale
estimate suffers from drift due to the lack of an anchor.
Several approaches [24], [25] have been proposed to solve
this issue by estimating the trajectory on Similarity group
Sim(3) [24], which is defined by

S =

[
sR t
0> 1

]
,R ∈ SO(3), (36)

where s is the estimated local scale.
We implemented sparse GPs on Sim(3) and conducted

monocular visual SLAM experiments to show how GPs help
with estimation on Sim(3). We built a hand-held monocular
camera with an IMU, and collected a forward looking
outdoor dataset as shown in Fig. 8(a). The camera and IMU
readings are also collected asynchronously, similar to the

IMU dataset. We used a visual odometry (VO) algorithm,
similar to [33], but without IMU and GPS measurements.
The VO result is illustrated in Fig. 8(b). We can clearly see
the scale drift since the path is no longer a closed loop.
We received a loop closure measurement marked in red (in
Fig. 8(b)) which includes relative scale information [24].

We implemented and tested three methods for comparison:
a 6-DOF SE(3) pose graph, a 7-DOF Sim(3) pose graph [24],
and a 7-DOF Sim(3) pose graph with GP and IMU factors.
All results are shown in Fig. 8. We can see that, compared
to the ground truth map, the estimated 6-DOF pose graph
is distorted due to scale drift; the 7-DOF Sim(3) pose graph
is better but still distorted; and our 7-DOF Sim(3) on GP
with IMU approach achieves the best result. Although a
“ground truth” GPS dataset was collected, we don’t report a
quantitative evaluation using it for two reasons: (1) results are
up to scale, so there is no direct way to compare these results
with a GPS path with an associated metric scale, (2) the GPS
noise is larger than the noise in our estimated trajectory.

To understand why the 7-DOF approach with GPs beats
the one without GPs, we plot the estimated local scale for
both approaches in Fig. 8(f). Although the loop closure
gives relative scale information at the start and end of the
estimation, there is no other information given in the middle
of the trajectory, so the 7-DOF Sim(3) pose graph assumes
the scale drift changes at a near-constant rate during the
whole length of the trajectory. But that’s not the case in the
dataset. With the help from GP interpolation, asynchronous
IMU measurements provide more information about how
relative scale drifts in the middle of the trajectory, and we can
see in Fig. 8(f) that our Sim(3) approach, which uses GPs
and IMU, gives scale estimation of non-constant changing
rate, leading to better SLAM results.

D. SE(2)×RN : Mobile Manipulator Planning

To evaluate our framework on motion planning applica-
tions, we extended the Gaussian process motion planner 2
(GPMP2) [22] to general Lie groups from vector space.
We set up a planning benchmark for mobile manipulators
(a robot body mounted on a mobile base) with a state
space SE(2)×RN , where the state space of the robot arm
or upper body is RN and the mobile base is SE(2) (the base
has planar motion). We used TrajOpt [34] PR2 full-body
planning dataset for our benchmark, and set up 36 full body
planning problems for the PR2 robot. The state space of the
PR2 is SE(2)×R15, 18 degrees of freedom (DOF), where 3
DOF is for the SE(2) 2D mobile base, 1 DOF for the torso
vertical linear actuator, and 7 DOF each for the two arms.

We compared Lie group enabled GPMP2 with Tra-
jOpt [34], a state-of-the-art trajectory optimizer. We ran
both GPMP2 and TrajOpt with straight-line initializations in
configuration space. As discussed in Sec. IV, a major benefit
of using GPs in trajectory optimization is that the number of
states optimized is reduced through GP interpolation, so we
setup two GPMP2 benchmarks for comparison: one where
GPMP2 is run with all 61 states to be optimized and no GP
interpolation, called GPMP2 noint; and one where GPMP2



TABLE II: Full body planning benchmark results.

GPMP2 int GPMP2 noint TrajOpt
Success rate (%) 72.22 63.89 50

Average runtime (s) 0.24 0.28 0.92
Maximum runtime (s) 0.48 0.55 1.45

Fig. 9: Two example PR2 trajectories planned by GPMP2.

is run with 11 states to be optimized and collision cost is
evaluated with 5 interpolated states between each optimized
state pair (equaling 61 overall states), called GPMP2 int.

Benchmark results are shown in Table II, and two example
trajectories planned by GPMP2 are shown in Fig. 9. Anal-
ogous to the results reported in [22] using vector space (on
robots with the base fixed), GPMP2 on Lie group SE(2)×R15

is faster compared to TrajOpt. The sparsity of the Lie
group-based GP prior maintains GPMP2’s superior runtime
performance. We can see how GP interpolation increases
GPMP2’s performance by comparing results of GPMP2 int
and GPMP2 noint: with GP interpolation both success rate
and speed improve.

VI. CONCLUSION

We present sparse GPs on Lie groups as a framework
for reasoning about continuous-time trajectory distributions.
We show that this representation is a general tool that can
be utilized for various robotics tasks, including estimation
and planning. Finally, we perform extensive experimental
evaluations to show that our proposed framework works well
in various estimation and planning tasks, particularly when a
vector space representation of the robot state is inappropriate.
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