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Abstract

Machine learning techniques for system identification and time series modeling
often phrase the problem as the optimization of a loss function over a single time-
step prediction. However, in many applications, the learned model is recursively
applied in order to make a multiple-step prediction, resulting in compounding
prediction errors. We present DATA AS DEMONSTRATOR [15], an approach that
reuses training data to make a no-regret learner robust to errors made during multi-
step prediction. We present results on the task of linear system identification ap-
plied to a simulated system and to a real world dataset.

1 Introduction

As robotic technology becomes more complex and is progressively integrated into natural and hu-
man environments, it becomes difficult to robustly characterize the robot dynamics a priori with
simple analytic models. As a result, machine learning is an increasingly important tool: models of
noisy, complicated dynamics can be learned directly from a robot’s interaction with its environment.

Most existing work has focused on learning forward models, which predict the next state of a dy-
namical system given the current state and an action, and inverse models, which predict the action
required to advance a dynamical system from the current state to a desired future state. Many popular
learning-based approaches have been used to learn forward and inverse models. Examples include
Support Vector Regression [10], Gaussian process regression [16, 7], Nadaraya-Watson kernel re-
gression [2], Gaussian mixture models [6], and Kernel PCA [12]. However, virtually all of these
approaches optimize a single-step criterion. This is despite the fact that in many robotics problems,
such as forecasting and open-loop control, the ultimate goal is to recursively predict the next T -steps
into the future. A straightforward idea is to apply single-step prediction models T times in sequence,
however, this approach is particularly susceptible to error accumulation over time.

The prevalence of single-step modeling approaches seems to be a consequence of the difficulty in
directly optimizing multiple-step prediction error. Consider a multi-step criterion for fitting a simple
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linear dynamical system model over a time horizon T :
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Even this squared-loss objective is difficult to optimize in two ways: it is non-convex in A, and
though differentiable, the matrix power derivatives are non-trivial. In comparison, the standard
single-step squared loss used in supervised learning,
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= arg min
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t
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is considerably more appealing to solve as it has an easy, closed form solution. This scenario arises
for loss functions other than the squared loss example above. To contend with this problem, Abbeel
et al. propose a generalization of (Eq. 1) coined the “lagged error” criterion, which penalizes devia-
tions during forward simulation. However, this objective is also non-linear and iterative optimization
is used to find a local optimum to the multi-step error [1] .

If the predictive model is differentiable, one can apply “backpropagation-through-time” for learn-
ing dynamical systems and time series models [17, 9]. Unfortunately, such gradient methods are
limited in the model classes they can consider and tend to a suffer from a “gradient collapse” and
ill-conditioning [3], where the gradient decreases exponentially in the prediction horizon T . Finally,
to our knowledge, no formal guarantees have been provided for any such optimization of multi-
step predictive error. Perhaps these considerations make it preferable to use the latest advances in
machine learning for solving the single-step prediction problem.

Motivated by these problems, we detail a new meta-algorithm DATA AS DEMONSTRATOR that can
improve the multi-step prediction ability of single-step learned models. Through a reduction to
imitation learning, we establish a strong performance guarantee on the relation between training
error and the multi-step prediction error for our algorithm. We apply DATA AS DEMONSTRATOR
to two important problems: learning recursive forward models and learning partially observable
linear dynamical systems. In addition to providing strong theoretical guarantees we demonstrate the
practical applicability of our algorithm on simulated and real data.

2 Problem Formulation

We consider the problem of modeling a discrete-time dynamical system characterized by a time-
indexed state x

t

generated from stationary dynamics,

x
t+1 = f(x

t

) + "
t

(3)

Our goal is to learn a model cM given K sample trajectories ⇠ 2 ⌅ of {x0, x1, . . . , xTk} generated
by the system (Eq. 3). As motivated in the introduction, we learn a forward prediction model by
minimizing a loss function over the sequential steps in each trajectory. To do so, we create a dataset
D of input-target pairs {(x

t

, x
t+1)}i

and optimize for a learned model:

cM = arg min

M2�

X

i

`
M

({(x
t

, x
t+1)}i

) (4)

for some regression loss function ` and class of models �. For multiple-step prediction and simula-
tion with the learned model cM , we follow the simple two-step procedure:

Step 1: x̂
t+1 =

cM (x̂
t

)

Step 2: Return to Step 1 with x̂
t

 x̂
t+1

In the supervised learning setting, we would expect to achieve error linear in the number of predic-
tions – the time horizon for multi-step prediction. However, this ignores the feedback effect of using
the learner’s output in order to make future predictions, breaking the train-test i.i.d. assumption
common to supervised learning. In practice, this can result in cascading errors that quickly add up.
For example, if a learned linear model is unstable (largest eigenvalue is greater than 1), a prediction
error ✏ at the first time step can cause exponentially increasing error. We are able to upper bound the
multi-step prediction error under a couple of “nice” assumptions about the learned model:
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(a) Forward simulation of learned model (gray) in-
troduces error at each prediction step compared to
the true time-series (red)
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(b) Data provides demonstration of corrections re-
quired to return back to proper prediction

Figure 1: In typical time-series systems, realized states of the true system are a small subset or
even low-dimensional manifold of all possible states. (1a) Cascading prediction error from forward
simulation with a learned model will often result in predicted infeasible states. (1b) Our algorithm,
Data as Demonstrator (DAD), generates synthetic examples for the learner to ensure that prediction
returns to typical states.

Theorem 1. Let

cM be learned model with bounded single-step prediction error

kcM(x
t

)� x
t+1k  ✏. Also let

cM be Lipshitz continuous with constant L > 1 under the

metric k·k. Then, kcM(x̂
T

)� x
T+1k 2 O (exp(T log(L))✏)

Proof. From the Lipshitz continuous property, bounded error assumption, and the triangle
inequality, we can show that kcM(x̂

T

)� cM(x
T

)k  LkcM(x̂
T�1)� cM(x

T�1)k+ L✏. Ap-
plying the same process, we eventually get kcM(x̂

T

)� cM(x
T

)k 
P

T

t=1 Lt✏. Using the
bounded error assumption along with another application of triangle inequality, we arrive at
kcM(x̂

T

)� x
T+1k 

P
T

t=0 Lt✏ 2 O (exp(T log(L))✏).

That is, the error can be exponentially bad in the time horizon. In the following sections, we motivate
and develop an algorithm which can achieve regret linear in the prediction horizon.

3 DATA AS DEMONSTRATOR

Since the multi-step prediction error increases due to a mismatch between the training and test
(prediction) distributions, it would be convenient if we could interactively collect new data and
aggregate it into the training dataset. This is precisely the process suggested in Dataset Aggregation
(DAgger) introduced in [13]. Unfortunately, collecting new data can be very difficult in practice.
First, it can be expensive or dangerous to maneuver a physical system into the required states (e.g.
an inverted helicopter). Second, there is no guarantee that predicted states are feasible for the true
system. (e.g. predicted pendulum’s Euclidean coordinates could be off of the constraint circle). This
situation is illustrated in Figure 1a.

The main insight of this work is that instead of collecting new data from the true system, we syn-
thetically generate correction examples for the learner to use. Since the given training trajectories
are time-indexed, they provide a correction for each predicted timestep when simulating from the
points along the training trajectories, as depicted in Figure 1b. This idea motivates our algorithm
(Alg. 1), DATA AS DEMONSTRATOR (DAD).

3.1 Reduction to imitation learning

DATA AS DEMONSTRATOR forward simulates a learned model, collecting data on the encountered
prediction (‘test’) time distribution by simulating from the starting point of training trajectories. The
next model is trained from input-target pairs created by pointing the ‘test’ time prediction to the
correct next time-indexed state along the trajectory. By iterating and retraining a new model on the
aggregate dataset, DAD can be viewed as a Follow-The-Leader algorithm.

Since we are applying corrections from the dataset, we can also interpret DAD as a simplified
scenario of interactive imitation learning. Let the expert be the training data which “demonstrates”
expert actions by specifying at each point in time the correct state for the next time step. The learned
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Algorithm 1 DATA AS DEMONSTRATOR (DAD)
Input:

B Number of iterations N , set {⇠
k

} of K trajectories of time lengths {T
k

}.
B No-regret learning procedure LEARN
B Corresponding PREDICT procedure for multi-step prediction that takes an initial state, model,
and number of time steps.

Output: Model cM
1: Initialize aggregate data set D  {(x

t

, x
t+1)} of (T

k

� 1) input-target pairs from each trajec-
tory ⇠

k

2: Train initial model M0  LEARNER(D)
3: for n = 1, . . . , N do
4: for k = 1, . . . , K do
5: (bx1, . . . , bxT

) PREDICT(⇠
k

(0), M
n

, T
k

)

6: D0  {(bx1, ⇠k

(2)), . . . , (bx
Tk�1, ⇠k

(T
k

))}
7: D  D [D0

8: end for
9: M

n

 LEARN(D)

10: end for
11: return M

n

with lowest error on validation trajectories

time-series model M is equivalent to the state dependent action policy ⇡̂. The state dynamics simply
pass on the predictions from the learned model as the input for the next state.

This reduction to the interactive imitation learning setting allows us to avail ourselves of the theo-
retical guarantees for DAgger [13]. Notationally, let a ground truth trajectory from the underlying
system be ⇠ = {x0, x1, . . .}, and let ˆ⇠ = {x0, x̂1, x̂2, . . .} denote the trajectory induced by starting
at x0 from the true trajectory and iteratively applying the model M as described in the two-step for-
ward prediction procedure. Let P

M

:= P
M

(

ˆ⇠, ⇠) denote the distribution of the time-synchronized
pairs (x̂

t

, x
t

) from the predicted states and the true system’s trajectory. Let ✏
N

be the true loss
of the best model in hindsight, defined as ✏

N

= min

M2�
1
N

P
N

i=1 Ex⇠PMi
[`

M

(x)]. Finally, let
cM = arg min

M2M1:N
E

x⇠PM [`
M

(x)] be the model returned by DAD that performed best on its
own induced distribution of states.
Theorem 2. Given a bounded single-step prediction (regression) loss ` and associated no-regret

learning procedure LEARN, DAD has found a model

cM 2 M1:N as N ! 1, such that

E
x⇠PcM

⇥
`c
M

(x)

⇤
 ✏

N

+ o(1).

Specifically, DAD returns model

cM for which this bound holds.

Proof. We setup the imitation learning framework as described earlier: learned policy ⇡̂ =

cM and
degenerate state dynamics that rely on the policy (learned model) to solely transition the state. By
this reduction to imitation imitation, the result follows from [13].

Intuitively, these results tell us that we either fail to find a model because the generation of synthetic
training points creates conflicting inputs for the learner when our new data-points overlap or we
guarantee good performance after a certain number of iterations.

4 Learning Linear Dynamical Systems for Accurate Multistep Prediction

For many dynamical system modeling problems, it is often sensible to assume that each observa-
tion is correlated with an underlying latent state that is evolving over time. In the case where the
state, actions, and observations, are real-valued, the state update is linear, and the noise terms are
assumed to be Gaussian, the resulting model is called a stochastic linear dynamical system (LDS).
The evolution an LDS can be described by the following two equations:

x
t+1 = Ax

t

+ Bu
t

+ w
t

w
t

⇠ N (0, Q) (5)
y

t

= Cx
t

+ Du
t

+ v
t

v
t

⇠ N (0, R) (6)
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(a) Cartpole Simulation Dataset
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(b) Slotcar Dataset # 1
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(c) Slotcar Dataset # 2

Figure 2: RMSE vs Prediction horizon. We show up to a 500 step prediction horizon for the Cartpole
and Slotcar #2. Additionally, we notice in Figure 2c, there are time horizons in which the baseline
Subspace Id. performs better. However, in the long horizon, we achieve better performance with
Subspace identification followed with DAD.

Time is indexed by the discrete variable t, x
t

denotes latent states in Rn, y
t

the observations in Rm,
u

t

the exogenous input in Rl, and the parameters of the system are the dynamics model A 2 Rn⇥n,
the input model B 2 Rn⇥l, the output model C 2 Rm⇥n, and the direct-feedthrough model D 2
Rm⇥l. The variables w

t

and v
t

describe zero-mean normally distributed process and observation
noise respectively, with covariance matrices Q 2 Rn⇥n and R 2 Rm⇥m.

Learning a linear dynamical system from data (linear system identification) involves finding the
parameters ✓ = {A, B, C, D, Q, R} that explain the observed data. Linear system identification
is a well-studied subject, and there are several different approaches to finding the parameters ✓. A
common approach is to search for the parameters that maximize the likelihood of the observed data
through iterative techniques such as expectation maximization (EM). An alternative approach, pop-
ular in the controls community, is to use subspace identification methods to compute a statistically
consistent solution in closed form [11].

The standard algorithms for linear system identification, like EM and subspace identification, only
consider single-step prediction error when learning the dynamics models A. As a result, the solu-
tions found by these methods may make very poor multistep predictions or even be unstable due
to sampling constraints, modeling errors, and measurement noise [5]. This can cause serious prob-
lems when predicting and simulating from a learned LDS [14, 4]. To combat these problems, we
apply DATA AS DEMONSTRATOR (Alg. 1) during linear system identification to improve the dy-
namics model A initially learned by the traditional approach of minimizing single-step squared loss
on adjacent estimated states.

5 Results

We present preliminary results of DATA AS DEMONSTRATOR for the task of subspace identification
on a simulated cartpole dataset and on a real dataset consisting of a tracked slot car racing around
a racetrack [8]. The cartpole example was constructed using Simulink with white noise added to
the control input. The cartpole’s position, angle, and respective time derivatives were used as the
observations. For the slotcar, we take as observations y the filtered track position parameter 2 [0, 1]

provided by an overhead camera.

We measure performance of system identification on a filtering task interleaved with forward simu-
lation. After initial purely filtering steps to initialize the filter to a reasonable state, we introduce a
forward simulation after each subsequent predict-and-update step. The multiple-step prediction er-
ror is measured as the root mean squared error (RMSE) e

k

between the prediction ˆ⇠ and the ground
truth trajectory ⇠, computed as ek =

r
1
T

PT
t=1

���⇠̂k(t) � ⇠(t)
���
2

2
for all time horizons T  T

max

.

We show how RMSE increases versus the prediction horizon for Subspace Identification [4] com-
pared to Subspace Identification augmented with DATA AS DEMONSTRATOR in Figure 2. We show
results from two slotcar runs. For these experiments we choose to only learn improvements on the
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T = 50 T = 150 T = 300

System SS Id. + DAD SS Id. + DAD SS Id. + DAD
Cartpole 33.5e0 24.3e0 82.3e0 65.6e0 222.9e0 165.4e0

Slotcar #1 12.5e-3 12.0e-3 43.5e-5 20.8e-3 540.6e-3 29.3e-3
Slotcar #2 7.3e-3 6.8e-3 7.8e-3 7.2e-3 8.7e-3 7.9e-3

Table 1: RMSE at various prediction horizons for Subspace Identification method and for Subspace
Identification with DATA AS DEMONSTRATOR on the Slotcar Datasets. Using DAD on these datsets
improves upon the learned model from Subspace Identification for the listed prediction horizons.

learned dynamics matrix, A, keeping the input (controls) matrix B fixed from the initial learning
since the control inputs u are fixed and do not have a distribution change as a result of recursive
prediction during forward simulation.

We see improvement by using subspace identification in conjunction with DAD for the cart pole and
both slot car trials. We also notice for Slotcar #1 (Fig. 2b), that DATA AS DEMONSTRATOR was
able to find a stable model that better reflects the system that generated the data, whereas subspace
identification alone found an unstable model that makes very poor long-range predictions. In this
case, the baseline subspace identification’s learned A has a top eigenvalue (max |�|) of 1.0122.
Utilizing DAD, the maximum eigenvalue dropped to 0.9986. Overall, we noticed that our meta-
algorithm pushed the maximum eigenvalue closer to the stability threshold of 1, which results in
better accuracy during the simulations. Results using a different learning algorithm, Random Fourier
Feature regression, are presented in the original DATA AS DEMONSTRATOR paper on a variety of
other benchmarks, including video textures [15]. We do not reproduce them here for brevity.

6 Conclusion

DATA AS DEMONSTRATOR is a meta-algorithm for improving the multiple step prediction capability
of a learner in a data-efficient fashion. Using only the training data, DAD synthesizes examples to al-
leviate the train-test distribution difference that hinders simulation using models trained to minimize
the single-step error. In this work, we applied this algorithm to the context of subspace identification
and showed promising results on a simulated cartpole and on a real world slotcar dataset. We hope
to continue investigating how this algorithm can be used in other system identification scenarios.
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