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• The benefits of GP-based approaches and incremental smoothing are combined.
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a b s t r a c t

Recent work on simultaneous trajectory estimation and mapping (STEAM) for mobile robots has used
Gaussian processes (GPs) to efficiently represent the robot’s trajectory through its environment. GPs have
several advantages over discrete-time trajectory representations: they can represent a continuous-time
trajectory, elegantly handle asynchronous and sparse measurements, and allow the robot to query the
trajectory to recover its estimated position at any time of interest. Amajor drawback of the GP approach to
STEAM is that it is formulated as a batch trajectory estimationproblem. In this paperweprovide the critical
extensions necessary to transform the existing GP-based batch algorithm for STEAM into an extremely
efficient incremental algorithm. In particular, we are able to vastly speed up the solution time through
efficient variable reordering and incremental sparse updates, which we believe will greatly increase the
practicality of Gaussian process methods for robot mapping and localization. Finally, we demonstrate the
approach and its advantages on both synthetic and real datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction & related work

Simultaneously recovering the location of a robot and a map of
its environment from sensor readings is a fundamental challenge
in robotics [1–3]. Well-known approaches to this problem, such as
square root smoothing and mapping (SAM) [4], have focused on
regression-based methods that exploit the sparse structure of the
problem to efficiently compute a solution. The main weakness of
the original SAM algorithm was that it was a batch method: all of
the data must be collected before a solution can be found. For a
robot traversing an environment, the inability to update an esti-
mate of its trajectory online is a significant drawback. In response
to this weakness, Kaess et al. [5] developed a critical extension to
the batch SAM algorithm, iSAM, that overcomes this problem by
incrementally computing a solution. The main drawback of iSAM,

* Corresponding author.
E-mail address: xinyan.yan@cc.gatech.edu (X. Yan).

was that the approach required costly periodic batch steps for
variable reordering to maintain sparsity and relinearization. This
approachwas extended in iSAM2.0 [6], which employs an efficient
data structure called the Bayes tree [7] to perform incremental
variable reordering and just-in-time relinearization, thereby elim-
inating the bottleneck caused by batch variable reordering and re-
linearization. The iSAM 2.0 algorithm and its extensions arewidely
considered to be state-of-the-art in robot trajectory estimation and
mapping.

The majority of previous approaches to trajectory estimation
and mapping, including the smoothing-based SAM family of algo-
rithms, have formulated the problem in discrete time [1–4,6,8,9].
However, discrete-time representations are restrictive: they are
not easily extended to trajectories with irregularly spaced way-
points or asynchronously sampled measurements. A continuous-
time formulation of the SAM problem where measurements
constrain the trajectory at any point in time, would elegantly
contend with these difficulties. Viewed from this perspective, the
robot trajectory is a function x(t), that maps any time t to a robot
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state. The problem of estimating this function alongwith landmark
locations has been dubbed simultaneous trajectory estimation and
mapping (STEAM) [10].

Tong et al. [11] proposed a Gaussian process (GP) regression
approach to solving the STEAM problem. While their approach
was able to accuratelymodel and interpolate asynchronous data to
recover a trajectory and landmark estimate, it suffered fromsignifi-
cant computational challenges: naiveGaussian process approaches
to regression have notoriously high space and time complexity.
Additionally, Tong et al.’s approach is a batch method, so updating
the solution necessitates saving all of the data and completely re-
solving the problem. In order to combat the computational burden,
Tong et al.’s approach was extended in Barfoot et al. [10] to take
advantage of the sparse structure inherent in the STEAM problem.
The resulting algorithm significantly speeds up solution time and
can be viewed as a continuous-time analog of Dellaert’s original
square-root SAM algorithm [4]. Unfortunately, like SAM, Barfoot
et al.’s GP-based algorithm remains a batch algorithm, which is
a disadvantage for robots that need to continually update the
estimate of their trajectory and environment.

In this work, we provide the critical extensions necessary to
transform the existing Gaussian process-based approach to solving
the STEAM problem into an extremely efficient incremental ap-
proach. Our algorithm elegantly combines the benefits of Gaussian
processes and iSAM 2.0. Like the GP regression approaches to
STEAM, our approach can model continuous trajectories, handle
asynchronous measurements, and naturally interpolate states to
speed up computation and reduce storage requirements, and, like
iSAM 2.0, our approach uses a Bayes tree to efficiently calcu-
late a maximum a posteriori (MAP) estimate of the GP trajectory
while performing incremental factorization, variable reordering,
and just-in-time relinearization. The result is an online GP-based
solution to the STEAM problem that remains computationally effi-
cient while scaling up to large datasets.

The present paper is an extension of the work presented
in [12,13]. As a further contribution, in this manuscript we elabo-
rate more on variable re-ordering that is key to making both batch
and incremental GP-regression computationally more efficient,
and we study the performance of the proposed approach in an
additional real-world dataset. Furthermore, we release an efficient
implementation of the approach developed herein as open source
code.1

2. Batch trajectory estimation & mapping as Gaussian process
regression

We begin by describing how the simultaneous trajectory es-
timation and mapping (STEAM) problem can be formulated in
terms of Gaussian process regression. Following Tong et al. [11]
and Barfoot et al. [10], we represent robot trajectories as functions
of time t sampled from a Gaussian process:

x(t) ∼ GP(µ(t),K(t, t ′)), t0 < t, t ′. (1)

Here, x(t) is the continuous-time trajectory of the robot through
state-space, represented by aGaussian processwithmeanµ(t) and
covariance K(t, t ′) functions.

We next define a finite set of measurements:

yi = hi(θi)+ ni, ni ∼ N (0,Ri), i = 1, 2, . . . ,N. (2)

The measurement yi can be any linear or nonlinear functions of a
set of related variables θi plus some Gaussian noise ni. The related
variables for a range measurement are the robot state at the cor-
responding measurement time x(ti) and the associated landmark

1 Please check out the code at https://github.com/XinyanGT/online-gpslam-
code.

location ℓj. We assume the total number of measurements is N ,
and the number of trajectory states at measurement times isM .

Based on the definition of Gaussian processes, any finite collec-
tion of robot states has a joint Gaussian distribution [14]. So the
robot states at measurement times are normally distributed with
mean µ and covariance K.

x ∼ N (µ,K), x = [x⊺1 . . . x⊺M ]
⊺, xi = x(ti)

µ = [µ
⊺
1 . . . µ

⊺
M ]

⊺, µi = µ(ti), Kij = K(ti, tj).
(3)

Note that any point along the continuous-time trajectory can be
estimated from the Gaussian process model. Therefore, the trajec-
tory does not need to be discretized and robot trajectory states
do not need to be evenly spaced in time, which is an advantage
of the Gaussian process approach over discrete-time approaches
(e.g. Dellaert’s square-root SAM [4]).

The landmarks ℓ which represent the map are assumed to
conform to a joint Gaussian distribution with mean d and covari-
ance W (Eq. (4)). The prior distribution of the combined state θ
that consists of robot trajectory states at measurement times and
landmarks is, therefore, a joint Gaussian distribution (Eq. (5)).

ℓ ∼ N (d,W ), ℓ = [ℓ
⊺
1 ℓ

⊺
2 . . . ℓ

⊺
O]

⊺ (4)

θ ∼ N (η,P), η = [µ⊺ d⊺
]
⊺, P =

[
K

W

]
. (5)

To solve the STEAM problem, given the prior distribution of the
combined state and the likelihood of measurements, we compute
the maximum a posteriori (MAP) estimate of the combined state
conditioned on measurements via Bayes’ rule:

θ∗ ≜ θMAP = argmax
θ

p(θ|y) = argmax
θ

p(θ)p(y|θ)
p(y)

= argmax
θ

p(θ)p(y|θ) = argmin
θ

(− log p(θ)− log p(y|θ))

= argmin
θ

(
∥θ − η∥2P + ∥h(θ)− y∥2R

)
(6)

where the norms are Mahalanobis norms defined as: ∥e∥2Σ =
e⊺Σ−1e, and h(θ) and R are the mean and covariance of the mea-
surements collected, respectively:

h(θ) = [h1(θ1)⊺ h2(θ2)⊺ . . . hN (θN )⊺]⊺ (7)

R = diag(R1,R2, . . . ,RN ). (8)

Because both covariance matrices P and R are positive definite,
the objective in Eq. (6) corresponds to a least squares problem.
Consequently, if some of the measurement functions hi(·) are non-
linear, this becomes a nonlinear least squares problem, in which
case iterative methods including Gauss–Newton and Levenberg–
Marquardt [15] can be utilized; in each iteration, an optimal update
is computed given a linearized problem at the current estimate. A
linearization of a measurement function at current state estimate
θ̄i can be accomplished by a first-order Taylor expansion:

hi
(
θ̄i + δθi

)
≈ hi(θ̄i)+

∂hi

∂θi

⏐⏐⏐⏐
θ̄i

δθi. (9)

Combining Eq. (9) with Eq. (6), the optimal increment δθ∗ at the
current combined state estimate θ̄ is

δθ∗=argmin
δθ

(
∥θ̄+δθ−η∥

2
P + ∥h(θ̄)+Hδθ−y∥2R

)
(10)

H = diag(H1,H2, . . . ,HN ), Hi =
∂hi

∂θi

⏐⏐⏐⏐
θ̄i

(11)

where H is the measurement Jacobian matrix. To solve the linear
least squares problem in Eq. (10), we take the derivative with

https://github.com/XinyanGT/online-gpslam-code
https://github.com/XinyanGT/online-gpslam-code
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respect to δθ, and set it to zero, which gives us δθ∗ embedded in
a set of linear equations

(P−1+H⊺R−1H)  
I

δθ∗ =P−1(η− θ̄)+H⊺R−1(y−h̄)  
b

(12)

with covariance

cov(δθ∗, δθ∗) = I−1. (13)

The positive definite matrix P−1 + H⊺R−1H is the a posteriori
information matrix, which we label I . To solve this set of linear
equations for δθ∗, we do not actually have to calculate the inverse
I−1. Instead, factorization-based methods can provide a fast, nu-
merically stable solution. For example, δθ∗ can be found by first
performing a Cholesky factorization LL⊺

= I , and then solving
Ld = b and L⊺δθ∗ = d by back substitution. At each iteration we
perform a batch state estimation update θ̄ ← θ̄ + δθ∗ and repeat
the process until convergence.

IfI is dense, the time complexity of a Cholesky factorization and
back substitution areO(n3) andO(n2) respectively,whereI ∈ Rn×n

[16]. However, if I has sparse structure, then the solution can be
foundmuch faster. For example, for a narrowly bandedmatrix, the
computation time is O(n) instead of O(n3) [16]. Fortunately, we can
guarantee sparsity for the STEAM problem (see Section 2.2 below).

2.1. State interpolation

An advantage of the Gaussian process representation of the
robot trajectory is that any trajectory state can be interpolated
from other states by computing the posterior mean [11]:

x̄(t) = µ(t)+K(t)K−1(x̄− µ), (14)

with

x̄ = [x̄⊺1 . . . x̄⊺M ]
⊺ and

K(t) = [K(t, t1) . . . K(t, tM )]. (15)

By utilizing interpolation, we can reduce the number of robot
trajectory states that we need to estimate in the optimization
procedure [11]. For simplicity, assume θi, the set of the related
variables of the ith measurement according to the model (Eq. (2)),
is x(τ ). Then, after interpolation, Eq. (9) becomes:

hi
(
θ̄i + δθi

)
= hi (x̄(τ )+ δx(τ ))

≈ hi(x̄(τ ))+
∂hi

∂x(τ )
·

∂x(τ )
∂x

⏐⏐⏐⏐
x̄
δx

= hi
(
µ(τ )+K(τ )K−1(x̄−µ)

)
+HiK(τ )K−1δx. (16)

By employing Eq. (16) during optimization, we can make use of
measurement i without explicitly estimating the trajectory states
that it relates to. We exploit this advantage to greatly speed up the
solution to the STEAM problem in practice (Section 5).

2.2. Sparse Gaussian process regression

The efficiency of theGaussian processGauss–Newton algorithm
presented in Section 2 is heavily dependent on the choice of kernel.
It is well-known that if the information matrix I is sparse, then
it is possible to very efficiently compute the solution to Eq. (12)
[4]. Barfoot et al. suggest a kernel matrix with a sparse inverse
that is well-suited to the simultaneous trajectory estimation and
mapping problem [10]. In particular, Barfoot et al. show thatK−1 is
exactly block-tridiagonal when the GP is assumed to be generated
by linear, time-varying (LTV) stochastic differential equation (SDE)

which we describe here:

ẋ(t) = A(t)x(t)+ v(t)+ F (t)w(t), (17)

w(t) ∼ GP(0, Qcδ(t − t ′)) t0 < t, t ′ (18)

where x(t) is trajectory, v(t) is known exogenous input, w(t) is
process noise, and F (t) is time-varying systemmatrix. The process
noise w(t) is modeled by a Gaussian process, and δ(·) is the Dirac
delta function. (See [10] for details). We consider a specific case of
this model in the experimental results in Section 5.1. Because the
mean function µ(t) is an integral of the known exogenous input
v(t), the assumption of zero v(t) leads to Gaussian process with
zero mean µ(t).

Assuming the GP is generated by Eq. (17), the measurements
are landmark and odometry measurements, and the variables are
ordered in XL ordering,2 the sparse information matrix becomes

I =
[
Ixx Ixℓ
I⊺

xℓ Iℓℓ

]
(19)

where Ixx is block-tridiagonal and Iℓℓ is block-diagonal. Ixℓ’s
density depends on the frequency of landmarkmeasurements, and
how they are taken. See Fig. 1(a) for an example.

When the GP is generated by LTV SDE,K(τ )K−1 in Eq. (14) has a
specific sparsity pattern—only two column blocks that correspond
to trajectory states at ti−1 and ti are nonzero (ti−1 < τ < ti) [10]:

K(τ )K−1 =
[
0 . . . 0 Λ(τ ) Ψ(τ ) 0 . . . 0

]
(20)

Λ(τ ) = Φ(τ , ti−1)− QτΦ(ti, τ )⊺Q−1i Φ(ti, ti−1)
Ψ(τ ) = QτΦ(ti, τ )⊺Q−1i

Φ(τ , s) is the state transition matrix from s to τ . Qτ is the integral
of Qc , the covariance of the process noisew(t) (Eq. (17)):

Qτ =

∫ τ

ti−1

Φ(τ , s)F (s)QcF (s)⊺Φ(τ , s)⊺ds. (21)

And Qi is the integral from ti−1 to t .
Consequently, based on Eqs. (14) and (20), x̄(τ ) is an affine

function of only two nearby states x̄i−1 and x̄i (the current estimate
of the states at ti−1 and ti, ti−1 <τ < ti):

x̄(τ ) = µ(τ )+
[
Λ(τ ) Ψ(τ )

] ([
x̄i−1
x̄i

]
−

[
µi−1
µi

])
. (22)

Thus, it only takes O(1) time to query any x̄(τ ) using Eq. (22).
Moreover, because interpolation of a state is only determined by
the two nearby states, measurement interpolation in Eq. (16) can
be simplified to:

hk
(
θ̄k + δθk

)
= hk (x̄(τ )+ δx(τ ))

≈ hk(x̄(τ ))+
∂hk

∂x(τ )
·

∂x(τ )
∂x

⏐⏐⏐⏐
x̄
δx

= hk(x̄(τ ))+Hk
[
Λ(τ ) Ψ(τ )

] [
δxi−1
δxi

]
(23)

with x̄(τ ) defined in Eq. (22).

3. Batch GP-regression with variable reordering

Previous work on batch continuous-time trajectory estimation
as sparse Gaussian process regression [10,11] assumes that the
informationmatrixI is sparse (Eq. (19)) and applies standard block

2 XL ordering is an ordering where process variables come before landmarks
variables.
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(a) XL ordering.

(b) SYMAMD ordering.

Fig. 1. Sparse informationmatrices. The informationmatrixI with XL ordering (a),
and SYMAMDordering (b). Both sparsematrices have the same number of non-zero
elements, yet the second matrix can be factored much more efficiently due to the
heuristic ordering of the matrix columns. (See Table 1.) For illustration, only 200
trajectory states are shown here.

elimination to factor and solve Eq. (12). Despite the sparsity of I ,
for large numbers of landmarks this process can be very inefficient.
Inspired by square root SAM [4], which uses variable reordering
for efficient Cholesky factorization in a discrete-time context, we
show that factorization-time can be dramatically improved by
matrix column reordering in the sparse Gaussian process context
as well.

It is reasonable to base our approach on SAM because the
information matrix and factor graph of the sparse GP [10] has
structure similar to the SAM formulations of the problem [4,5],
and the intuitions from previous discrete-time approaches apply
here. If the Cholesky decompositions are performed naively, fill-in
can occur, where entries that are zero in the information matrix
become non-zero in the Cholesky factor. This occurs because the
Cholesky factor of a sparse matrix is guaranteed to be sparse
for some variable orderings, but not all variable orderings [17].
Therefore, we want to find a good variable ordering so that the
Cholesky factor is sparse.

Although finding the optimal ordering for a symmetric positive
definite matrix is NP-complete [18], good heuristics do exist. One
such heuristic is Symmetric Approximate Minimum Degree Per-
mutation (SYMAMD), which is a variant of Column Approximate
Minimum Degree Ordering (COLAMD) [19] on a positive definite
matrix [19]. Specifically, matrix A is constructed such that the
sparsity pattern of A⊺A is the same as the information matrix I .
Then COLAMD is applied to A. SYMAMD produces a reasonable

Table 1
Cost of Cholesky factorization with different ordering methods including ordering
time.

XL SYMAMD Block SYMAMD

nnza 1817k (100%) 192k (10.6%) 176k (9.7%)
Time (s) 0.9677 (100%) 0.0274 (2.83%) 0.0175 (1.81%)

a The number of non-zero elements.

ordering for the Cholesky factorization in practice, but, in general,
does not guarantee the sparsity of the resultant Cholesky factor.
Alternative methods, for example, (1) utilizing ordering algorithm
designed for symmetric matrices, e.g. AMDBAR [20], or (2) directly
providing COLAMD A based on the definition of I in Eq. (12)), are
worthy of further investigation. The computation complexity of
COLAMD on A is the same as the sparse matrix multiplication of
A and the U in A’s LU factorization. In practice, it is much faster
than the factorization.

To demonstrate the benefits of variable reordering, we con-
structed a synthetic example and compared different approaches.
The example, which is explained in detail in Section 5.1, consists
of 1500 time steps with trajectory states, xi = [pi ṗi]

⊺, pi =

[xi yi θi]
⊺, and with odometry and range measurements. The

total number of landmarks is 298. The structure of the information
matrixI and Cholesky factorL, with andwithout variable reorder-
ing, are compared in Figs. 1 and 2. Although variable reordering
does not change the sparsity of the information matrix I (Fig. 1),
it dramatically increases the sparsity of the Cholesky factor L
(Fig. 2). Table 1 demonstrates this clear benefit of reordering. The
Cholesky factor after SYMAMD ordering contains 10.6% non-zeros
of XL ordering, and takes 2.83% of the time, which are significant
improvements in both time and space complexity.

We also experimented with block SYMAMD [4], which exploits
domain knowledge to group together variables belonging to a
particular trajectory state x(ti) or landmark location ℓj before per-
forming SYMAMD. Empiricallywe found that this further improves
performance.

It is straightforward to incorporate variable reorderingmethods
like SYMAMD and block SYMAMD into the batch GP-Regression
algorithm from Section 2: given a new batch of data, directly
update the sparse informationmatrix I , reorder the variables with
(block) SYMAMD, and then recompute the Cholesky factorL on the
way to solving for δθ in Eq. (12).

In most STEAM problems, we are interested in estimating the
robot’s trajectory as it traverses the environment. In Alg. 1, we
accomplish this by repeatedly executing the batch algorithm with
variable reordering. Although this approach seems like it should
be very costly, with variable reordering it is actually quite efficient.
Building and factoring the sparse informationmatrix ismuch faster
than the linearization step required for a single iteration of the
Gauss–Newton algorithm. Since the computational bottleneck is
not the Cholesky decomposition, but rather the relinearization of
the measurement model, we suggest only periodic Gauss–Newton
iterations.

4. The Bayes tree data structure for fast incremental updates to
sparse Gaussian process regression

Despite the efficiency of periodic batch updates, Alg. 1 is still
repeatedly executing a batch algorithm that requires reordering
and refactoring I , and periodically relinearizing the measurement
function for all of the estimated states each time new data is
collected. Here we provide the extensions necessary to avoid these
costly steps and turn the naive batch algorithm into an efficient,
truly incremental, algorithm. The key idea is to perform just-in-
time relinearization and to efficiently update an existing sparse
factorization instead of re-calculating one from scratch.
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Algorithm 1 Periodic Batch Sparse GP Regression
while collecting data do

1. Get measurement results belonging to this period, y ← [y, ynew]⊺

2. Initial guess for the newly encountered states, θ̄← [θ̄, θ̄new]
⊺

3. Build the measurement Jacobian H , and then I and b required in Eq. (12)
4. Find an ordering p for I , and reorder Ip

p
←− I , bp

p
←− b

5. Solve Ipδθ
∗

p = bp using Cholesky factorization

6. Recover the solution δθ∗
r
←− δθ∗p by inverse ordering r = p−1

7. Update estimate θ̄← θ̄ + δθ∗

end while

(a) XL ordering.

(b) SYMAMD ordering.

Fig. 2. The Cholesky factors L of I. In (a), L is computed with XL ordering, which
exhibits fill-in. In (b),L is computedwith SYMAMD ordering, which is more sparse.
For illustration, only 200 states are shown here.

4.1. The Bayes tree data structure

We base our approach on iSAM 2.0 proposed by Kaess et al.
[6], which was designed to efficiently solve a nonlinear estima-
tion problem in an incremental and real-time manner by directly
operating on the factor graph representation of the SAM problem.
The core technology behind iSAM 2.0 is the Bayes tree data struc-
ture which allows for incremental variable reordering and fluid
relinearization [7]. As demonstrated by Kaess et al. [6], the Bayes
tree provides a dramatic speedup compared to the periodic batch
method, while only incurring a negligible loss in accuracy. We ap-
ply the same data structure to sparse Gaussian process regression
in the context of the STEAMproblem, thereby eliminating the need
for periodic batch computation.

The Bayes tree data structure captures the formal equivalence
between the sparse QR factorization in linear algebra and the
inference in graphical models, translating abstract updates to a
matrix factorization into intuitive edits to a graph. Here we give a
brief introduction of Bayes trees (see [7] for details), and how they
help solve the sparse Gaussian process regression incrementally.

A Bayes tree is constructed from a Bayes net, which is itself
constructed from a factor graph. A factor graph is a bipartite
graph G = (θ,F, E), representing the factorization of a function
(Eq. (24)). θ = {θ1, . . . , θm} are variables, F = {f1, . . . , fn} are
factors (functions of variables), and E are the edges that connect
these two types of nodes. eij ∈ E if and only if θj ∈ θi and fi(·) is a
function of θi.

f (θ) =
∏
i

fi(θi). (24)

In the context of localization and mapping, a factor graph encodes
the complex probability estimation problem in a graphical model.
It represents the joint density of the variables consisting of both
trajectory and mapping, and factors correspond to the soft con-
straints imposed by the measurements and priors. If we assume
that the priors are Gaussian, measurements have Gaussian noise,
andmeasurement functions are linear or linearized, as in Section 2,
the joint density becomes a product of Gaussian distributions:

f (θ) ∝ exp
{
−

1
2

∑
∥Aiθi − bi∥

2
2

}
= exp

{
−

1
2
∥Aθ − b∥22

}
. (25)

Here Ai and bi are derived from factor fi(·). A is a square-root infor-
mationmatrix, with I = A⊺A [4], so the QR factor R of A is equal to
the transpose of the Cholesky factor L of I . Maximizing the joint
density is equivalent to the least-square problem in Eq. (10).

A Gaussian process generated from linear, time-varying (LTV)
stochastic differential equations (SDE), as discussed in Section 2.2,
has a block-tridiagonal inverse kernel matrix K−1 [10]. In other
words, the resulting Gaussian process prior factors only connect
consecutive pairs of states. This leads to a sparse Factor graph
(Fig. 3). The Gaussian process prior fGP (·) between xi−1 and xi is
defined as:

fGP (xi−1, xi) ∝ exp
{
−

1
2
∥Φ(ti, ti−1)xi−1 + vi − xi∥2Qi

}
(26)

where Φ(ti, ti−1) is the state transition matrix, Qi is the integral of
the covariance of the process noise (Eq. (21)), and vi is the integral
of the exogenous input v(t) (Eq. (17)):

vi =
∫ ti

ti−1

Φ(ti, s)v(s)ds. (27)

An illustrative sparse factor graph example including theGP factors
is presented in Fig. 3(a). Note that although the Gaussian process
representation of the trajectory is continuous in time, to impose
this prior knowledge onlyM−1 factors connecting adjacent states
are required, whereM is the total number of states [10].
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Fig. 3. The effect of interpolation andwithout interpolation. (a)Measurements are fully utilized. (b)Missing state, using interpolatedmeasurements. (c) Missing state, ignore
measurements. (d) Missing state, using sparse interpolated measurements.

The key of just-in-time relinearization and fluid variable re-
ordering is to identify the portion of a factor graph impacted by
a new or modified factor. When adding a new measurement, a
prior for a newvariable, or relinearizing a previousmeasurement, a
factor graphwill change accordingly. However,mostmodifications
only have local effects. For example, in a pose graph optimization
setting [21], due to the fact that relative pose measurements are
measurements on the two most recently accessed variables, they
only affect the top of the Bayes tree, leaving branches of the tree
downstream untouched [6]. Therefore, the time complexity of
adding eachmeasurement factor isO(1), although the effect of loop
constraints is dependent on the ordering.

Exploiting this observation is the foundation for efficient in-
cremental updates. Identifying the impacted portion is difficult
to achieve directly from a factor graph, but in a Bayes tree, it
can be efficiently identified as directly affected nodes and their
ascendants in the tree. To obtain a Bayes tree from a factor graph,
the factor graph is first converted to a Bayes net through the itera-
tive elimination algorithm related to Gaussian elimination. In each
step, one variable θi is eliminated from the joint density f (θi, si)
and removed from the factor graph, resulting in a new conditional
P(θi|si) and a new factor f (si), satisfying f (θi, si) = P(θi|si)f (si). The
joint density f (θi, si) is the product of the factors adjacent to θi,
and si is the set of variables that are connected to these factors,
excluding θi. The new conditional is added to the Bayes net, and
the new factor is added back to the factor graph.

The unnormalized joint density f (θi, si) is Gaussian, due to
Eq. (25):

f (θi, si) ∝ exp
{
−

1
2
∥aθi + Assi − bi∥

2
2

}
(28)

where a, As and bi correspond to the factors that are currently
adjacent to θi. These factors can be the factors included in the
original factor graph, or the factors induced by the elimination
process. The conditional P(θi|si) is obtained by evaluating Eq. (28)
with a given si:

P(θi|si) ∝ exp
{
−

1
2
(θi + r⊺si − d)2

}
(29)

where r = (a†As)⊺, d = a†bi, and a†
= (a⊺a)−1a⊺. f (si) can

be further computed by substituting θi = d − r⊺si into Eq. (28).
This elimination step is equivalent to one step of Gram–Schmidt.
Thus the new conditional P(θi|si) specifies one row in the R factor

of the QR factorization of A. The sequence of the variables to be
eliminated is selected to reduce fill-in in R, just as in the case of
matrix column reordering. Analogous to the variable reordering in
Section 3 for reducing fill-in in L, the sequence of the variables
to be eliminated here influences fill-in in R. The joint density f (θ)
represented by the Bayes net is maximized by assigning d − r⊺si
to θi, due to Eq. (29), starting from the variable that is eliminated
last. This procedure is equivalent to the back-substitution in linear
algebra. The Bayes net is further transformed into a directed tree
graphical model—the Bayes tree. To accomplish this, conditionals
belonging to a clique in the Bayes net are grouped together into
one node in the Bayes tree. This is performed in reverse elimination
order.

When a factor is modified or added to the Bayes tree, the
impacted portion of the Bayes tree is re-interpreted as a factor
graph, the change is incorporated to the graph, and the graph is
eliminated with a new ordering. During elimination, information
only flows upward in the Bayes tree, from leaves to the root, so only
the ascendants of the nodes that contain the variables involved in
the factor are influenced. Additional details of the Bayes tree can
be found in Kaess et al. [7]. In particular, a simple diagrammatic
treatment can be found in Fig. 6 of [7].

In summary, the Bayes tree can be used to perform fast in-
cremental updates to the Gaussian process representation of the
continuous-time trajectory. As we demonstrate in the experimen-
tal results, this can greatly increase the efficiency of Barfoot et al.’s
batch sparse GP algorithmwhen the trajectory andmap need to be
updated online.

Despite the interpretation of the trajectory as a Gaussian pro-
cess, the approach described above is algorithmically identical to
iSAM2.0 when the states associated with each measurement are
explicitly estimated. In Section 4.2 below, we extend our incre-
mental algorithm to use Gaussian process interpolation within
the Bayes tree. By interpolating missing states, we can handle
asynchronous measurements and even remove states in order to
speed computation. In Sections 5.1 and 5.2 we show that this
results in a significant speedup over iSAM2.0.

4.2. Faster updates through interpolation

To handle asynchronous measurements or to further reduce
computation time, we take advantage of Gaussian process state
interpolation, described in Section 2.1, within our incremental
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Fig. 4. Synthetic dataset: Ground truth, dead reckoning path, and the estimates are
shown. State and landmark estimates obtained from BTGP approach are very close
to ground truth.

algorithm. This allows us to reduce the total number of estimated
states, while still using all of the measurements, including those
that involve interpolated states. By only estimating a small frac-
tion of the states along the trajectory, we realize a large speedup
relative to a naive application of the Bayes tree (see Section 5). This
is an advantage of continuous-time GP-based methods compared
to discrete-time methods like iSAM 2.0.

To use Gaussian process interpolation within our incremen-
tal algorithms, we add a new type of factors that correspond to
missing states (states to be interpolated). We start by observing
that, from Eq. (2), the measurement factor fM(·) derived from the
measurement hk(·) is:

fM(θk) ∝ exp
{
−

1
2
∥hk(θ̄k + δθk)− yk∥

2
Rk

}
. (30)

Without loss of generality, we assume that x(τ ) is the set of vari-
ables related to the measurement and the factor, with ti−1 < τ <

ti, so f m(·) is a unitary factor of x(τ )

fM(x(τ )) ∝ exp
{
−

1
2
∥hk (x̄(τ )+ δx(τ ))− yk∥2Rk

}
. (31)

After linearizing the factor through Eq. (9), we arrive at:

fL(x(τ )) ∝ exp
{
−

1
2
∥hk (x̄(τ ))+ Hkδx(τ )− yk∥2Rk

}
. (32)

If x(τ ) is missing, then this factor cannot be added to the factor
graph directly, because amissing state implies that it should not be
estimated explicitly. Instead of creating a new state, we interpolate
the state and utilize the linearized measurement function after
interpolation (Eq. (16)) :

fI(x) ∝ exp
{
−

1
2
∥hk (x̄(τ ))+ HkK(τ )K−1δx− yk∥

2
Rk

}
. (33)

We apply the interpolation equations for the sparse GP (Eqs. (20)
and (22)), so that the factor becomes a function of the two nearby

Fig. 5. Synthetic dataset: Comparison of the computation time of three approaches PB, PBVR, and BTGP. Themodifiers /1 and /10 indicate frequency of estimate updates—the
number of range measurements between updates. For example: BTGP/1 updates the estimate after 1 new range measurement using BTGP. Likewise BTGP/10 updates the
estimate after 10 new range measurements using BTGP. Due to the large number of landmarks, 298, variable reordering dramatically improves the performance.
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Fig. 6. Synthetic dataset: Trade-off between computation time and accuracy if BTGP makes use of interpolation. The y-axis measures the RMSE of distance errors of the
estimated trajectory states and total computation time with increasing amounts of interpolation. The x-axis measures the time step difference between two estimated
(non-interpolated) states. The results indicate that interpolating∼90% of the states (i.e. estimating only∼10% of the states) while running BTGP can result in a 33% reduction
in computation time over iSAM 2.0 without sacrificing accuracy.

states (in contrast to the missing state):

fS(xi−1, xi)

∝ exp
{
−

1
2
∥hk(x̄(τ ))+Hk

(
Λ(τ )δxi−1 +Ψ(τ )δxi

)
−yk∥

2

Rk

}
(34)

where x̄(τ) is specified in Eq. (22). The effect of interpolation
and without interpolation on the factor graph is presented in
Fig. 3.

A factor graph augmented with the factors associated with
measurements at missing states has several advantages: (1) We
can avoid estimating a missing state at time t explicitly, but still
make use of a measurement at time t . This allows our algorithm
to naturally handle asynchronous measurements. (2) We can also
reduce the size of the Bayes tree and the associated matrices by
skipping states, which results in a reduction of computation time.
Empirically, we show in Sections 5.1 and 5.2 that skipping large
numbers of states can reduce computation time by almost 70%
with only a small reduction in accuracy. For example, in Section 5.2,
we show that for the Autonomous Lawnmower dataset, interpo-
lating 4 missing states instead of directly estimating them reduces
computation time by 68% with a 20% increase in an already small
RMSE.

Interpolation enables extreme flexibility in howmeasurements
can be incorporated into the trajectory estimation problem. When
a new measurement arrives, it can be thrown away, it can be
directly incorporated as a new state, or a factor can be added
corresponding to a missing/interpolated state. Even after the de-
cision has been made, it can be changed via edits to the Bayes
tree. The incurred expense is dependent on the tree structure.
Different strategies can be applied based on the current uncer-
tainty in estimation (Eq. (13)), computing resources available, and

Fig. 7. The Autonomous Lawnmower dataset: Ground truth, dead reckoning path
and estimates are shown. The range measurements are sparse, noisy, and asyn-
chronous. Ground truth and the estimates of path and landmarks obtained from
BTGP are very close.

required estimation accuracy. Research on designing strategies
that balance the trade-off for specific applications are left for future
work.

The full incremental algorithm is described in Algorithm 2.
In particular, when a measurement related to a missing state
is received, the variables necessary to interpolate the state are
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Fig. 8. Autonomous Lawnmower dataset: Comparison of the computation time of PB, PBVR, and BTGP. As in Fig. 5, /1 and /10 are modifiers—the number of range
measurements between updates, and no interpolation is used by BTGP. The ‘gap’ in the upper graph is due to a long stretch around timestep 5000 with no range
measurements. Due to the low number of landmarks, variable reordering does not help The incremental BTGP approach dramatically reduces computation time.

Algorithm 2 Incremental Sparse GP Regression visa the Bayes tree with Gaussian Process Priors (BTGP)
Set the sets of affected variables, variables involved in new factors, and relinearized variables to empty sets, θaff = θnf = θrl = ∅.
while collecting data do

1. Collect measurements, store as new factors. Set θnf to the set of variables involved in the new factors. If x(τ ) ∈ θnf is a missing state,
replace it by nearby states (Eq. (22)); If x(τ ) ∈ θnf is a new state to estimate, a GP prior (Eq. (26)) is stored, and θnf = θnf ∪ x(τ ).
2. For all θi ∈ θaff = θrl ∪ θnf , remove the corresponding cliques and ascendants up to the root of the Bayes tree.
3. Relinearize the factors required to create the removed part using interpolation if missing states are involved (Eq. (23)).
4. Add the cached marginal factors from the orphaned sub-trees of the removed cliques and create a factor graph.
5. Eliminate the factor graph by a new variable ordering, create a Bayes tree, and attach back orphaned sub-trees.
6. Partially update estimate from the root to leaves, and stop when updates to variables are below a threshold.
7. Collect variables, for which the difference between the current estimate and the previous linearization point is above a threshold,
into θrl.

end while

identified. Since the sparse GP has a LTV SDE prior, each interpo-
lated state is only a function of two nearby states (see Eq. (22)).
These nearby states are therefore included into the set of variables
θnf related to the new factor (step 1). In the case that the GP
relies on a different kernel matrix, the corresponding states used
for interpolation can be determined from Eq. (14). Linearization
of factors that involve missing states (step 3) is performed by
incorporating state interpolation via Eq. (16).

5. Experimental results

We evaluate the performance of our incremental sparse GP
regression algorithm for solving the STEAM problem on synthetic
and real-data experiments and compare our approach to the state-
of-the-art. In particular, we evaluate how variable reordering can

dramatically speed up the batch solution to the sparse GP re-
gression problem, and how, by utilizing the Bayes tree and in-
terpolation for incremental updates, our algorithm can yield even
greater gains in the online trajectory estimation scenario. We
compare:

• PB: Periodic batch (described in Section 2). This is the state-
of-the-art algorithm presented in Barfoot et al. [10] (XL
variable ordering), which is periodically executed as data is
received.
• PBVR: Periodic batch with variable reordering (described in

Section 3). Variable reordering is applied to achieve efficient
matrix factorization.
• BTGP: The proposed approach—Bayes tree with Gaussian

process prior factors (described in Section 4).



X. Yan et al. / Robotics and Autonomous Systems 87 (2017) 120–132 129

Fig. 9. Autonomous Lawnmower dataset: Trade-off between computation time and accuracy if BTGP makes use of interpolation. The y-axis measures the RMSE of distance
errors and total computation time with increasing amounts of interpolation. The x-axis measures the time step difference between two estimated (non-interpolated) states.
The results indicate that interpolating ∼80% of the states within BTGP results in only an 8 cm increase in RSME while reducing the overall computation time by 68% over
iSAM 2.0.

If the GP is only used to estimate the state at measurement
times, the proposed approach offers little beyond a reinterpreta-
tion of the standard discrete-time iSAM 2.0 algorithm. Therefore,
we also compare ourGP-based algorithm,which leverages interpo-
lation, to the standard Bayes tree approach used in iSAM 2.0. We
show that by interpolating large fractions of the trajectory during
optimization, the GP allows us to realize significant performance
gains over iSAM 2.0 with minimal loss in accuracy. For these
experiments we compare:

• without interpolation: BTGP without interpolation at a se-
ries of lower temporal resolutions. The lower the resolution,
the fewer the states to be estimated. Without interpolation
BTGP is algorithmically identical to iSAM 2.0 with coarse
discretization of the trajectory. Measurements between two
estimated states are simply ignored.
• with interpolation: BTGP with interpolation at a series of

lower resolutions. In contrast to the above case, measure-
ments between estimated states are fully utilized by inter-
polating missing states at measurement times (described in
Section 4.2).
• finest estimate: The baseline. BTGP at the finest resolution,

estimating all states at measurement times. When mea-
surements are synchronous with evenly-spaced waypoints
and no interpolation is used, BTGP is identical to iSAM 2.0
applied to the full dataset with all measurements.

All algorithms are implemented with the same C++ library,
GTSAM 3.2,3 to make the comparison fair and meaningful.

3 https://collab.cc.gatech.edu/borg/gtsam/.

Table 2
Summary of the experimental datasets.

# time
steps

# odo.
m.

# landmark
m.

# landmarks Travel
dist. (km)

Synthetic 1500 1500 1500 298 0.2
Auto. Mower 9658 9658 3529 4 1.9
Victoria Park 6969 6969 3640 151 3.5

Evaluation is performed on three datasets summarized in Table 2.
We first evaluate performance in a synthetic dataset (Section 5.1),
analyzing estimation errors with respect to ground truth data.
Results using real-world datasets are thenpresented in Sections 5.2
and 5.3.

5.1. Synthetic SLAM exploration task

This dataset consists of an exploration task with 1500 time
steps. Each time step contains a trajectory state xi = [p

⊺
i ṗ⊺

i ]
⊺,

pi = [xi yi θi]
⊺, an odometry measurement, and a range mea-

surement related to a nearby landmark. The total number of land-
marks is 298. The trajectory is randomly sampled from a Gaussian
process generated from white noise acceleration p̈(t) = w(t), i.e.
constant velocity, and with zero mean.

ẋ(t) = Ax(t)+ Fw(t) (35)

x(t) =
[
p(t)
ṗ(t)

]
, p(t) =

[x(t)
y(t)
θ (t)

]
, A =

[
0 I
0 0

]
,

F =
[
0
I

]
, w(t) ∼ GP(0,Qcδ(t − t ′)). (36)

https://collab.cc.gatech.edu/borg/gtsam/
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Fig. 10. Victoria Park dataset: Dead reckoning and estimated path obtained from
BTGP approach.

Note that velocity ṗ(t) must to be included in trajectory state to
represent the motion in LTV SDE form [10]. This Gaussian process
representation of trajectory is also applied the other two datasets.
The odometry and range measurements with Gaussian noise are
specified in Eqs. (37) and (38) respectively.

yO(pi) =
[
ẋi cos θi + ẏi sin θi

θ̇i

]
+ nO (37)

yR(pi, ℓj) =
[

xi yi
]⊺
− ℓj


2 + nR (38)

where odometry measurements yO(·) consists of the robot-
oriented velocity and heading angle velocity with Gaussian noise,
and range measurements yR(·) is the distance between the robot
and a specific landmark ℓj at ti with Gaussian noise. The estimation
results are shown in Fig. 4).

We compare the computation time of the three approaches
(PB, PBVR and BTGP) in Fig. 5. The incremental Gaussian process
regression (BTGP) offers significant improvements in computation
time compared to the batch approaches (PBVR and PB). In Fig. 6,
we demonstrate that BTGP can further increase speed over a naive
application of the Bayes tree (e.g. iSAM 2.0) without sacrificing
much accuracy by leveraging interpolation. To illustrate the trade-
off between the accuracy and time efficiency due to interpolation,
we plot RMSE of distance errors and the total computation time
by varying the time step difference (the rate of interpolation)
between estimated states. To further speed up our method while
maintaining accuracy, itmay be possible to dynamically specify the
number of interpolated states between two estimated states, fully
exploiting the flexibility provided by interpolation. This is left for
future work.

5.2. The Autonomous Lawnmower

The second experiment evaluates our approach on real data
from a freely available range-only SLAM dataset collected from an
autonomous lawn-mowing robot [22]. The ‘‘Plaza’’ dataset con-
sists of odometer data and range data to stationary landmarks
collected via time-of-flight radio nodes. (Additional details on the
experimental setup can be found in [22].) Ground truth paths are

Fig. 11. Victoria Park dataset: Comparison of the computation time of three approaches PB, PBVR, and BTGP. As in Figs. 5 and 8, the modifiers /1 and /10 indicate frequency
of state updates. Since many landmarks are involved, PBVR dramatically improves performance, compared to PB. The incremental BTGP algorithm improves performance
even further. Unlike in previous datasets, we did not evaluate the trade-off between interpolation and accuracy for Victoria Park, since we do not have access to ground truth
and cannot evaluate the effect on accuracy. However, like previous datasets, interpolation can greatly increase the speed of BTGP.
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computed from GPS readings and have 2 cm accuracy according
to [22]. The environment, including the locations of the landmarks
and the ground truth paths, are shown in Fig. 7. The robot traveled
1.9 km, occupied 9658 poses, and received 3529 range measure-
ments, while following a typical path generated during mowing.
The dataset has sparse range measurements, but contains odom-
etry measurements at each time step. The results of incremental
BTGP are shown in Fig. 7 and demonstrate that we are able to
estimate the robot’s trajectory and map with a very high degree of
accuracy.

As in Section 5.1, performance of three approaches—periodic
batch relinearization (PB), periodic batch relinearizationwith vari-
able reordering (PBVR) and incremental Bayes tree (BTGP) are
compared in Fig. 8. In this dataset, the number of landmarks is
4, which is extremely small relative to the number of trajectory
states, so there is no performance gain from reordering. However,
the Bayes tree-based approach dramatically outperforms the other
two approaches. As the problem size increases, there is negligible
increase in computation time, even for close to 10,000 trajectory
states.

In Fig. 9, the results of interpolation at different levels of
resolutions are presented, which indicate a significant reduction
in computation time can be achieved with minor sacrifice in
accuracy.

5.3. Victoria park

The third experiment evaluates our approach on the Victoria
Park dataset [23], which consists of range-bearing measurements
to landmarks, and speed and steering odometry measurements
(see Fig. 10). The data was collected from a vehicle equipped with
a laser sensor driving through the Sydney’s Victoria Park. The
environment contains a high number of trees as landmarks. The
vehicle traveled∼3.5 km in 26 min. After repeated measurements,
taken when the vehicle is stationary, are dropped, the dataset
consists of 6969 time steps and 3640 range-bearingmeasurements
relative to 151 landmarks. The bearingmeasurement is specified in
Eq. (39), as the relative angle from vehicle heading to the landmark
direction with Gaussian noise nB:

yB(pi, ℓj) = atan2
(
yℓj − yi, xℓj − xi

)
− θi + nB (39)

where ℓj = [xℓj yℓj]
⊺ is the location of landmark j, and pi is

defined the same as in Section 5.1. The results, shown in Fig. 11,
further demonstrate the advantages of BTGP. Variable reordering
drastically reduces computation time when used within batch op-
timization (PBVR), and even further in the incremental algorithm
(BTGP).

6. Conclusion

We have introduced an incremental sparse Gaussian process
regression algorithm for computing the solution to the continuous-
time simultaneous trajectory estimation and mapping (STEAM)
problem. The proposed algorithm elegantly combines the benefits
of Gaussian process-based approaches to STEAM while simulta-
neously employing state-of-the-art innovations from incremental
discrete-time algorithms for smoothing and mapping. Our empir-
ical results show that by parameterizing trajectories with a small
number of states and utilizing Gaussian process interpolation, our
algorithm can realize large gains in speed over iSAM 2.0 with
very little loss in accuracy (e.g. reducing computation time by 68%
while increasing RMSE by only 25% (8 cm) on the Autonomous
Lawnmower Dataset) .
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