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Hidden Markov Models (HMMs)

Sequence of observations: Y = [y1 y2 y3 . . . yτ ]

x1 x2 x3 xτ

yτy3y2y1

. . .

Popular for modeling:
biological sequences, speech, etc.

Assume a hidden variable that explains the observations: X = [x1 x2 x3 . . . xτ ]

Hidden variable is discrete and Markovian



Previous Work

[Hsu, Kakade, Zhang, 2008]

• A closed-form spectral algorithm for identifying HMMs

• Proved sample complexity bounds

Would like to learn a HMM from sequences of observations

A popular approach is Expectation-Maximization (Baum-Welch)

• Finds a maximum-likelihood solution

• Suffers from local minima

An interesting alternative approach:
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Previous Work

STACS - [Siddiqi,Gordon,Moore 2008]

Would like to learn a HMM from sequences of observations

A popular approach is Expectation-Maximization (Baum-Welch)

• Tries to find a maximum-likelihood solution

• Suffers from local maxima

• Impractical (data & computation) for large hidden state spaces

Many attempts to reduce local maxima, e.g.

These techniques have not eliminated the problem

Best-first Model Merging - [Stolcke & Omohundro 1994]



Previous Work

[Hsu, Kakade, Zhang, 2008]

• A closed-form spectral algorithm for identifying HMMs

• Consistent, finite sample bounds 

• No local optima, but small loss in statistical efficiency

An interesting alternative approach:



Today

This work:

• Generalize spectral learning algorithm to larger class of models

• Supply tighter finite sample bounds

• Apply algorithm to high dimensional data
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Overview

Reduced-Rank Hidden Markov Models

Hidden Markov Models

In particular we introduce a new model:

Predictive State Representations

consistent learning with 
finite sample bounds

for fixed latent dimensionk
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HMM Definition

: number of discrete states
: number of discrete observations

:            column-stochastic transition matrix

:           column stochastic observation matrix

m

n

T m×m

T

m×m

Ti,j = Pr [xt+1 = i | xt = j]

Oi,j = Pr [yt = i | xt = j]
O n×m

O

n×m

:          prior distribution over statesπ

π

πi = Pr[x1 = i]

m× 1

m× 1



Observable Operators
[Schützenberger, 1961; Jaeger, 2000]
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For each                       , define an             matrixy ∈ {1, . . . , n} m×m
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Observable Operators
[Schützenberger, 1961; Jaeger, 2000]

. . .T

O

. . . xt

yt
Ayt

Ay = Pr[xt+1 | xt] Pr[y | xt]
observation likelihood

For each                       , define an             matrixy ∈ {1, . . . , n} m×m

transition probability

[Ay]i,j ≡ Pr[xt+1 = i ∧ yt = y | xt]]

Ay = Tdiag(Oy,·)
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Inference in HMMs

Inference in an HMM is:   O(τm2)

=
∑

xτ+1

Pr[xτ+1 | xτ ] Pr[yτ | xτ ] . . .
∑

x3

Pr[x3 | x2] Pr[y2 | x2]
∑

x2

Pr[x2 | x1] Pr[y1 | x1] Pr[x1]

Pr[y1, y2, . . . , yτ ]

1T
mTdiag(Oyτ,·) . . . Tdiag(Oy2,·)Tdiag(Oy1,·)π

1T
mAyτ . . . Ay2Ay1π



Problems with HMMs

• HMMs that model smoothly evolving systems require a very large 
number of discrete states

• Inference and learning for such models is hard
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Reduced-Rank Hidden Markov Models

Idea: Even if we have a very large number of discrete states,
sometimes distribution lies in a real-valued subspace

We can take advantage of this fact to perform 
efficient inference and learning



Reduced-Rank Hidden Markov Models

T

m×m

R
k ×m

m× k

S

=

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM) 
with a low-rank transition matrix

: column-stochastic with factors    and   T R S

: column-stochastic           observation matrix          n×mO

: distribution over initial states with factors    and   π

π R

m× k

= k × 1

m× 1

πl

πlR
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Reduced-Rank Hidden Markov Models

T

m×m

R
k ×m

m× k

S

=

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM) 
with a low-rank transition matrix

Parameters:
: column-stochastic with factors    and   T R S

: column-stochastic           observation matrix          n×mO

: prior distribution over states with factors    and   π

π R

m× k

= k × 1

m× 1

πl

πlR
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Oy,·

R
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k ×m

k × k
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Inference in RR-HMMs

1T
mTdiag(Oyτ ,·) . . . Tdiag(Oy3,·)Tdiag(Oy2,·)Tdiag(Oy1,·)π

can be expressed as
Pr [y1, y2, y3, . . . , yτ ]

1T
mRSdiag(Oyτ ,·) . . . RSdiag(Oy3,·)RSdiag(Oy2,·)RSdiag(Oy1,·)Rπl

ρTWyτ . . . Wy3Wy2Wy1πl

where

Wy ≡ Sdiag(Oy,·)R

=
Oy,·

R
S

Wy

m× km×m
k ×m

k × k
Inference in a RR-HMM is only:   O(τk2)
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Spectral Learning for HMM Parameters
[Hsu, Kakade, Zhang, 2008]

1. Define

2. Matrices can be factor into HMM parameters

3. Assume a    s.t.            is invertible
    
    Then:

[P2,1]i,j ≡ Pr[y2 = i, y1 = j]

[P3,y,1]i,j ≡ Pr[y3 = i, y2 = y, y1 = j]

Idea: Recover observable HMM parameters from probabilities
of doubles and triples of observations

P3,y,1 = OAyTdiag(π)OT

P2,1 = OTdiag(π)OT

Ay ≡ Tdiag(Oy, ·)

U (UTO)

(UTP3,y,1)(UTP2,1)† = (UTO)Ay(UTO)−1

similarity transform of the true HMM parameter      Ay
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Spectral Learning for HMM Parameters
[Hsu, Kakade, Zhang, 2008]

The algorithm:

1. Look at triples of observations                 in the data
    estimate frequencies:        and

2. Compute SVD of        to find a matrix of the top
    singular vectors

3. Find observable operators 

〈y1, y2, y3〉
P̂2,1 P̂3,y,1

P̂2,1

Û

B̂y = (ÛTP̂3,y,1)(ÛTP̂2,1)†

m



Spectral Learning for HMM Parameters

Pros and Cons

Transformed parameters allow HMM inference! 
(other terms cancel)

Can prove finite sample error bounds

Inference in large HMMs is still expensive

Error bounds vacuous if     is low rank.T

However: 
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Spectral Learning for RR-HMMs

P2,1 = OTdiag(π)OT

= ORSdiag(π)OT

The rank of        and          depends on     and    R S

R
S

O
O

P2,1 =

Column space of covariance matrices is same as 

Thin SVD         splits       “inside”        

Can use              instead of  

UV T P2,1 RS

OR

(UTOR) (UTO)

diag(π)

P2,1 P3,y,1
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Spectral Learning for RR-HMMs

P2,1 = OTdiag(π)OT

= ORSdiag(π)OT

R
S

O
O

P2,1 =
diag(π)

The rank of        and          depends on     and    R SP2,1 P3,y,1

Column space of       and          is same as 

Thin SVD         splits       “inside”        UV T P2,1 RS

ORP2,1 P3,y,1

P2,1 U
V T

=



Spectral Learning for RR-HMMs

We can show that:
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This is a similarity transform of the RR-HMM parameter
Can estimate other parameters up to a linear transform as well 

Wy

These parameters allow accurate RR-HMM inference 
(other terms cancel)

Learning and inference are independent of m

By ≡
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Spectral Learning for RR-HMMs

We can show that:

(UTP3,y,1)(UTP2,1)† = (UTOR)Wy(UTOR)−1

This is a similarity transform of the RR-HMM parameter
Can estimate other parameters up to a linear transform as well 

Wy

Parameters allow accurate RR-HMM inference 
(other terms cancel)

Learning and inference are independent of m

A   -dimensional RR-HMM is considerably more expressive 
than a   -state HMM (example in paper, and see 
experiments below)

k
k

By ≡
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Proof Intuition

1. Bound # samples needed to estimate        and     
using standard tail inequality bounds

2. Bound resulting parameter estimation error by 
analyzing how errors in        affect its SVD

3. Propagate bound to error in joint probabilities 
computed using estimated parameters

P2,1

P2,1

P3,y,1



Additional Extensions

1.  Model systems that require sequences of observations to
     disambiguate state 

2. Use Kernel Density Estimation for continuous observations

3. Use features computed from observations

See paper for how to:
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Experimental Results

Statistical Consistency:
See paper for an assessment of consistency on a toy problem

Clock Pendulum Video Texture:
Learning a smoothly evolving system

Mobile Robot Vision:
Assess long range prediction accuracy
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Experimental Results
Mobile Robot Vision 

Goal: Predict future 
observations after 

initial tracking.



Experimental Results
Mobile Robot Vision 
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Conclusion

• Introduced the RR-HMM: a model with many of the benefits of a 
large-state-space HMM, but without the associated inefficiency 
during inference and learning

• Supplied a spectral learning algorithm and finite sample bounds 
for the RR-HMM

• Successfully applied the RR-HMM to high dimensional data

Summary:
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• Hilbert Space Embeddings of Hidden Markov Models (ICML-2010)
  [L. Song, B. Boots, S. M. Siddiqi, G. Gordon, A. Smola]

• Closing the Learning-Planning Loop with Predictive State Representations 
(RSS-2010)  [B. Boots, S. M. Siddiqi, G. Gordon]

• Introduced the RR-HMM: a model with many of the benefits of a 
large-state-space HMM, but without the associated inefficiency 
during inference and learning.

• Supplied a spectral learning algorithm and finite sample bounds 
for the RR-HMM

• Successfully applied the RR-HMM to high dimensional data



Thank you!






