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Abstract
Many machine learning tasks, such as learning with invariance and policy evalua-
tion in reinforcement learning, can be characterized as problems of learning from
conditional distributions. In such problems, each sample x itself is associated with
a conditional distribution p(z|x) represented by samples {zi}Mi=1, and the goal is to
learn a function f that links these conditional distributions to target values y. These
learning problems become very challenging when we only have limited samples or
in the extreme case only one sample from each conditional distribution.
To address these challenges, we propose a novel approach which employs a new
min-max reformulation of the learning from conditional distribution problem.
With such new reformulation, we only need to deal with the joint distribution
p(z, x). We also design an efficient learning algorithm, Embedding-SGD, and
establish theoretical sample complexity for such problems. Empirical experiments
demonstrate the advantages of our algorithm.

1 Introduction
We address the problem of learning from conditional distributions where the goal is to learn a function
that links conditional distributions to target variables. Specifically, we are provided input samples
{xi}Ni=1 ∈ XN and their corresponding responses {yi}Ni=1 ∈ YN . For each x ∈ X , there is an
associated conditional distribution p(z|x) : Z × X → R. However, we cannot access the entire
conditional distributions {p(z|xi)}Ni=1 directly; rather, we only observe a limited number of samples
or in the extreme case only one sample from each conditional distribution p(z|x). The task is to
learn a function f which links the conditional distribution p(z|x) to target y ∈ Y by minimizing the
expected loss:

min
f∈F

L(f) = Ex,y
[
`
(
y,Ez|x [f(z, x)]

)]
(1)

where ` : Y × Y → R is a convex loss function. The function space F can be very general, but
we focus on the case when F is a reproducing kernel Hilbert space (RKHS) in main text, namely,
F = {f : Z × X → R | f(z, x) = 〈f, ψ(z, x)〉} where ψ(z, x) is a suitably chosen (nonlinear)
feature map 1.

The problem of learning from conditional distributions appears in many different tasks. For example:
Learning with invariance. The goal of invariance learning is to estimate a function which minimizes
the expected risk while at the same time preserving consistency over a group of operations g =
{gj}∞j=1. [10] shows that this can be accomplished by solving the following optimization problem

min
f∈H̃

Ex,y[`(y,Ez|x∼µ(g(x))[〈f, ψ(z)〉H̃])] + (ν/2)‖f‖2H̃ (2)

where H̃ is the RKHS corresponding to kernel k̃ with implicit feature map ψ(·), ν > 0 is the
regularization parameter, and µ(g(x)) stands for some normalized Haar measure. Obviously, the
above optimization (2) is a special case of (1).

1Please refer the full version [2] for the extension to arbitrary function approximators, e.g., random features
and neural networks.
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Policy evaluation in reinforcement learning. Policy evaluation is a fundamental task in reinforce-
ment learning. Given a policy π(a|s) which is a distribution over action condition on state s, the
goal is to estimate the value function V π(·) over the state space. V π(s) is the fixed point of the
Bellman equation V π(s) = Es′|a,s[R(s, a) + γV π(s′)], where R(s, a) is the reward and γ ∈ (0, 1)
is the discount factor. Therefore, the value function can be estimated from data by minimizing the
mean-square Bellman error [1, 16]:

min
V π

Es,a
[(
R(s, a)− Es′|a,s [V π(s)− γV π(s′)]

)2]
. (3)

Restrict the policy to lie in some RKHS, this optimization is clearly a special case of (1) by viewing
((s, a), R(s, a), s′) as (x, y, z) in (1). Due to the online nature of MDPs, we usually observe only
one successor state s′ sample from the conditional distribution given s, a.

Despite the prevalence of learning problems in the form of (1), solving such problem remains very
challenging for two reasons: (i) we often have limited samples or in the extreme case only one sample
from each conditional distribution p(z|x), making it difficult to accurately estimate the conditional
expectation. (ii) the conditional expectation is nested inside the loss function, making the problem
quite different from the traditional stochastic optimization setting. As far as we known, very few
results have been established in this domain.

To address the above challenges, we propose a novel approach called dual kernel embedding. The
key idea is to reformulate (1) into a saddle point problem by utilizing the Fenchel duality of the loss
function. We observe that with smooth loss function and continuous conditional distributions, the
dual variables form a continuous function of x and y. Therefore, we can parameterize it as a function
in some RKHS induced by any universal kernel, where the information about p(x) and p(z|x) can
be aggregated via a kernel embedding of the joint distribution p(x, z). Furthermore, we propose an
efficient algorithm based on stochastic approximation to solve the resulted saddle point problem
over RKHS spaces and establish finite-sample analysis. Compared to existing approaches, e.g.,
stochastic average appproximation (SAA) and learning with kernel embedding [18], an advantage of
the proposed method is that it requires only one sample from each conditional distribution. Under mild
conditions, the overall sample complexity reduces to O(1/ε2) in contrast to the O(1/ε4) complexity
required by SAA or kernel conditional embedding [15, 4, 5].

2 Dual Embedding Framework
In this section, we propose a novel and sample-efficient framework to solve problem (1).We start by
introducing the interchangeability principle, which plays a fundamental role in our method. Due to
space limit, please refer [2] for the complete proof.
Lemma 1 (interchangeability principle) Let ξ be a random variable on Ξ and assume for any
ξ ∈ Ξ, function g(·, ξ) : R→ (−∞,+∞) is a proper and upper semicontinuous concave function.
Then Eξ[max

u∈R
g(u, ξ)] = max

u(·)∈G(Ξ)
Eξ[g(u(ξ), ξ)].

where G(Ξ) = {u(·) : Ξ→ R} is the entire space of functions defined on support Ξ.
The result implies that one can replace the expected value of point-wise optima by the optimum value
over a function space. More general results of interchange between maximization and integration can
be found in [13, Chapter 14] and [14, Chapter 7].
2.1 Saddle Point Reformulation
Let the loss function `y(·) := `(y, ·) in (1) be a proper, convex and lower semicontinuous for any
y. We denote `∗y(·) as the convex conjugate; hence `y(v) = maxu{uv − `∗y(u)}, which is also a
proper, convex and lower semicontinuous function. Using the Fenchel duality, we can reformulate
problem (1) as

min
f∈F

Exy
[

max
u∈R

[
Ez|x[f(z, x)] · u− `∗y(u)

]]
, (4)

Note that by the concavity and upper-semicontinuity of −`∗y(·), for any given pair (x, y), the corre-
sponding maximizer of the inner function always exists. Based on the interchangeability principle
stated in Lemma 1, we can further rewrite (4) as

min
f∈F

max
u(·)∈G(Ξ)

Φ(f, u) := Ezxy[f(z, x) · u(x, y)]− Exy[`∗y(u(x, y))], (5)

where Ξ = X × Y and G(Ξ) = {u(·) : Ξ → R} is the entire function space on Ξ. We emphasize
that the max-operator in (4) and (5) have different meanings: the one in (4) is taking over a single
variable, while the other one in (5) is over all possible function u(·) ∈ G(Ξ).
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Now that we have eliminated the nested expectation in the problem of interest, and converted it into a
stochastic saddle point problem with an additional dual function space to optimize over. By definition,
Φ(f, u) is always concave in u for any fixed f . Since f(z, x) = 〈f, ψ(z, x)〉, Φ(f, u) is also convex
in f for any fixed u. Our reformulation (5) is indeed a convex-concave saddle point problem.

2.2 Dual Continuation
Although the reformulation in (5) gives us more structure of the problem, it is not yet tractable in
general. This is because the dual function u(·) can be an arbitrary function which we do not know
how to represent. In the following, we will introduce a tractable representation for (5).

First, we will define the function u∗(·) : Ξ = X ×Y → R as the optimal dual function if for any pair
(x, y) ∈ Ξ,

u∗(x, y) ∈ argmaxu∈R
{
u · Ez|x[f(z, x)]− `∗y(u)

}
.

Note the optimal dual function is well-defined since the optimal set is nonempty. Furthermore,
u∗(x, y) is related to the conditional distribution via u∗(x, y) ∈ ∂`y(Ez|x[f(z, x)]) [6]. Depending
on the property of the loss function `y(v), we can further derive that:
Proposition 1 Suppose both f(z, x) and p(z|x) are continuous in x for any z,

(1) (Discrete case) If the loss function `y(v) is continuously differentiable in v for any y ∈ Y ,
then u∗(x, y) is unique and continuous in x for any y ∈ Y;

(2) (Continuous case) If the loss function `y(v) is continuously differentiable in (v, y), then
u∗(x, y) is unique and continuous in (x, y) on X × Y .

The fact that the optimal dual function is a continuous function has important consequences. As we
mentioned earlier, the space of dual functions can be arbitrary and difficult to represent. Now we can
simply restrict the parametrization to the space of continuous functions, which is tractable and still
contains the global optimum of the optimization problem in (5).

2.3 Kernel Embedding
For the sake of simplicity, we focus on the case when Y is a continuous set, and thus, under
Proposition 1, the optimal dual function is indeed continuous in (x, y) ∈ Ξ = X × Y . Therefore, we
lose nothing by restricting the dual function space G(Ξ) to be continuous function space on Ξ. Recall
that with the universal kernel, we can approximate any continuous function with arbitrarily small
error. Thus we approximate the dual space G(Ξ) by the bounded RKHSHδ induced by a universal
kernel k((x, y), (x′, y′)) = 〈φ(x, y), φ(x′, y′)〉H, implying u(x, y) = 〈u, φ(x, y)〉H. Note that Hδ
is a subspace of the continuous function space, and hence is a subspace of the dual space G(Ξ). We
denote the inner product in F as 〈·, ·〉F to distinguish the dual RKHSHδ .
We can rewrite the saddle point problem in (5) as

min
f∈F

max
u∈Hδ

Φ(f, u) = Exyz
[
〈f, ψ(z, x)〉F · 〈u, φ(x, y)〉H−`∗y(〈u, φ(x, y)〉H)

]
. (6)

This new formulation based on dual kernel embedding allows us to efficient represent the dual
function and get away from the fundamental difficulty with insufficient sampling from the conditional
distribution. There is no need to access either the conditional distribution p(z|x), the conditional
expectation Ez|x [·], or the conditional embedding operator Uz|x anymore, therefore, reducing both
the statistical and computational complexity.
2.4 Sample-Efficient Algorithm
The algorithm is summarized in Algorithm 1. At each iteration, the algorithm performs a projected
gradient step both for the primal variable f and dual variable u based on the unbiased stochastic
gradient. The proposed algorithm avoids the need for overwhelmingly large sample sizes from the
conditional distributions when estimating the gradient. At each iteration, only one sample from the
conditional distribution is required in our algorithm!
Theorem 1 If f(z, x) is uniformly bounded and `∗y(v) is uniformly Lipschitz continuous in v for any
y, and the kernel function and Ez,x[‖f(z, x)‖22], Ez,x[‖ψ(z, x)‖2F ], Ey[‖∇`∗y(u)‖22] are bounded,
denote f∗ be the optimal solution to (1), we have

E[L(f̄t)− L(f∗)] 6 O
(
δ3/2

√
t

+ E(δ)

)
. (7)

There is clearly a delicate trade-off between the optimization error and approximation error. Using
large δ will increase the optimization error but decrease the approximation error. When δ is moderately
large (which is expected in the situation when the optimal dual function has small magnitude), our
dual kernel embedding algorithm can achieve an overall O(1/ε2) sample complexity when solving
learning problems in the form of (1).
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Algorithm 1 Embedding-SGD for Optimization (6)
Input: p(x, y), p(z|x), ψ(z, x), φ(x, y), {γi > 0}ti=1

1: for i = 1, . . . , t do
2: Sample (xi, yi) ∼ p(x, y) and zi ∼ p(z|x).
3: fi+1 = ΠF (fi − γiψ(zi, xi)ui(xi, yi)).
4: ui+1 = ΠHδ(ui + γi[fi(zi, xi)−∇`∗yi(ui(xi, yi))]φ(xi, yi))
5: end for

Output: f̄t =
∑t
i=1 γifi∑t
i=1 γi

, ūt =
∑t
i=1 γiui∑t
i=1 γi

3 Experiments
We test the proposed algorithm for two applications, i.e., learning with invariant representation and
policy evaluation.

3.1 Experiments on Invariance Learning
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Figure 1: Invariance learning.

We test the proposed algorithm for learning with invariance task
on QuantumMachine 5-fold dataset for atomization energy pre-
diction. We compare the proposed algorithm with SGD with
virtual samples technique [11, 8] and SGD with finite sample av-
erage for inner expectation (SGD-SAA). We use Gaussian kernel
in all tasks. We follow [9] that the data points are represented
by Coulomb matrices, and the virtual samples are generated by
random permutation. To demonstrate the sample-efficiency of
our algorithm, 10 virtual samples are generated for each datum
in training phase. The average results are shown in Figure 1(b).
The proposed algorithm achieves a significant better solution,
while SGD-SAA and SGD with virtual samples stuck in inferi-
or solutions due to the inaccurate inner expectation estimation and optimizing indirect objective,
respectively.

3.2 Experiments on Policy Evaluation
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Figure 2: Policy evaluation.

We compare the proposed algorithm to several prevailing algorithms for policy evaluation, including
gradient-TD2 (GTD2) [17, 7], residual gradient (RG) [1] and kernel MDP [5] in terms of mean square
Bellman error [3]. It should point out that kernel MDP is not an online algorithm, since it requires
to visit the entire dataset when estimating the embedding and inner expectation in each iteration.
We conduct experiments for policy evaluation on several benchmark datasets, including navigation,
cart-pole swing up and PUMA-560 manipulation. We use Gaussian kernel in the nonparametric
algorithms, i.e., kernel MDP and Embedding SGD, while we test random Fourier features [12] for
the parametric competitors, i.e., GTD2 and RG. Results are averaged over 10 independent trials.

In all experiments, the proposed algorithm performs consistently better than the competitors. The
advantages of proposed algorithm mainly come from three aspects: i), it utilizes more flexible dual
function space, rather than the constrained space in GTD2; ii), it directly optimizes the MSBE,
rather than its surrogate as in GTD2 and RG; iii), it directly targets on value function estimation and
forms an one-shot algorithm, rather than a two-stage procedure in kernel MDP including estimating
conditional kernel embedding as an intermediate step.
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