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Abstract

Recently, significant progress has been made
developing kernel mean expressions for
Bayesian inference. An important success
in this domain is the nonparametric kernel
Bayes’ filter (nKB-filter), which can be used
for sequential inference in state space models.
We expand upon this work by introducing a
smoothing algorithm, the nonparametric ker-
nel Bayes’ smoother (nKB-smoother) which
relies on kernel Bayesian inference through
the kernel sum rule and kernel Bayes’ rule.
We derive the smoothing equations, analyze
the computational cost, and show smoothing
consistency. We summarize the algorithm,
which is simple to implement, requiring only
matrix multiplications and the output of the
nKB-filter. Finally, we report experimental
results that compare the nKB-smoother to
previous parametric and nonparametric ap-
proaches to Bayesian filtering and smoothing.
In the supplementary materials, we show that
the combination of the nKB-filter and the
nKB-smoother allows marginal kernel mean
computation, which gives an alternative to
kernel belief propagation.

1 Introduction

Many problems considered in machine learning and
robotics, as well as the biological and natural sciences
involve inferring the latent state of a dynamical sys-
tem, so state space model, from sequences of obser-
vations. When uncertainty in state space models is
Gaussian or multinomial, well-known algorithms for
efficient inference exist. Examples include the Kalman
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filter and the Kalman smoother for linear Gaussian
systems [15, 22] and the forward-backward algorithm
for HMMs [2]. However, in many application domains,
probability distributions are difficult to characterize
analytically, and parametric algorithms may not be
appropriate.

To combat this problem, nonparametric methods have
been developed for representing and reasoning about
probability distributions. Of particular interest are
Hilbert space embeddings, which represent probabil-
ity distributions as expectations in a reproducing ker-
nel Hilbert space (RKHS) [24]. This embedding ap-
proach has several benefits over previous nonparamet-
ric methods: (i) closeness and similarity in the set of
probability distributions is introduced via the RKHS
norm, which is useful for various machine learning al-
gorithms [12, 11, 9, 20, 30]; and (ii) estimation is rel-
atively easy compared to nonparametric density esti-
mation, which can be problematic when the domain is
high-dimensional or structured.

In particular, the kernel mean map [24], defined as an
expectation of feature functions that map data to an
RKHS, can provide a unique embedding of a prob-
ability distribution in an RKHS. If the mapping be-
tween probability distributions and the RKHS is one-
to-one, the positive definite kernel is called character-
istic [8, 29]. It is known that typical kernels used in
machine learning, for example Gaussian and Laplacian
kernels, are characteristic.

Recently, significant progress has been made devel-
oping kernel mean expressions for Bayesian infer-
ence [28]. Kernelized versions of well-known proba-
bilistic operations, have been implemented for kernel
mean representations including the kernel sum rule
(KSR) [25, 26, 27], kernel chain rule [25], kernel prod-
uct rule [25], and kernel Bayes’ rule (KBR) [10]. These
methods allow nonparametric inference, by performing
nonparametric estimation of conditional probability
distributions in the supervised learning setting.1 Since

1More precisely, conditional kernel means, which rep-
resent conditional probability distributions in RKHS, are
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they are nonparametric, we call these methods non-
parametric kernel Bayesian inference, nonparametric
KSR (nKSR), nonparametric KBR (nKBR), and so
on, in this paper.

Various nonparametric kernel Bayesian algorithms
have been developed by combining the operations. Ex-
amples include the nonparametric kernel Bayes’ fil-
ter (nKB-filter) on discrete-time time-invariant state
space models [10] and the Semiparametric kernel
Monte-Carlo filter (KMC-filter) [16], as well as meth-
ods for dynamical system modeling and reinforcement
learning applications [14, 21, 23, 4, 3, 5].

Although the nKB-filter has been developed previ-
ously for discrete-time time-invariant state space mod-
els, the corresponding smoothing algorithm was un-
known. In this paper we present the nonparamet-
ric kernel Bayes’ smoother (nKB-smoother) on state
space models.2 The nKB-smoother is applied to the
output of the nKB-filter and sequentially estimates
kernel means of the smoothing distributions. Like the
nKB-filter, the nKB-smoother employs matrix mul-
tiplications (involving Gram matrices) to output the
smoothing kernel means.

The nKB-smoother has several advantages over para-
metric smoothing algorithms: the nKB-smoother can
be applied to any domain with hidden states and mea-
surements, such as images, graphs, strings, and docu-
ments that are not easily modeled in a Euclidean space
R

d, provided that a similarity is defined on the domain
by a positive definite kernel. And, the nKB-smoother
provides kernel mean smoothing in the setting where
transition and measurement distributions are both
nonparametrically learned as regressions. Hence, the
nKB-smoother is effective when the transition and/or
measurement distributions are complicated and do not
conform to simple probabilistic models.

Gaussian process (GP) regression has been used for
nonparametric filtering and smoothing [17, 6, 7], and
has some of the benefits of our approach. However,
while GP models can work well if error has a uni-
modal distribution, they work much less well when
error has a multimodal distribution. Previous exper-
iments have shown that the kernel mean approach is
superior than GP-based approaches if noises are multi-
modal [19, 18], and our experiments confirm that this
is true for smoothing as well.

Although the nKB-smoother requires training data
consisting of hidden states, this is inevitable for non-
parametric learning of both of transition and measure-

nonparametirically estimated from a sample.
2This paper focuses on discrete-time time-invariant

state space models. We just call them state space mod-
els.

ment processes as regressions. The same assumption
is made in the nKB-filter [10] and the GP-based fil-
ter/smoother [17, 6, 7].

Finally, in our supplementary material, we show how
to extend the nKB-filter and the nKB-smoother to
general tree graphs.

2 Preliminaries: Nonparametric

Kernel Bayesian Inference

In this section, we introduce notation used throughout
the remainder of the paper.

Positive-definite (p.d.) kernel: Let X be a
nonempty set. A symmetric function k : X × X → R

is called a positive-definite kernel if for ∀n ∈ N and
∀x1, . . . , xn ∈ X , n × n matrix G = (k(xi, xj))ij ,
i, j ∈ {1, . . . , n} is positive-semidefinite. The positive-
semidefinite matrix G is called a Gram matrix. The
function k(·, x) as a function of (·) is called the feature
function of x ∈ X .

Reproducing kernel Hilbert space (RKHS): For
any positive-definite kernel k, there exists a unique
reproducing kernel Hilbert space (RKHS) H [Moore-
Aronszajn Theorem]. The RKHS H associated with
kernel k on a set X is the Hilbert space consisting
of functions f : X → R, which satisfies the fol-
lowing: (i) k(·, x) ∈ H for any x ∈ X , (ii) span
H0 := Span{k(·, x)|x ∈ X} is dense in H, i.e., H = H0,
and (iii) there is the reproducing property

f(x) = 〈f, k(·, x)〉H, ∀f ∈ H, ∀x ∈ X ,

where 〈·, ·〉H denotes the inner product of H. We write
a triplet (X , k,H) to denote the RKHS H generated
by a positive-definite kernel k on a domain X .

The Kernel mean & characteristic kernel: Let P
be the set of probability distributions on a measurable
space (X ,BX ). Let EX∼P [f(X)] :=

∫

X
f(x)dP (x) be

the expectation of a measurable function f : X → R

w.r.t. a probability distribution P ∈ P of a random
variable X . The kernel mean of P ∈ P in RKHS
H associated with a measurable and bounded3 p.d.
kernel k is the RKHS element:

mP := EX∼P [k(·, X)] ∈ H. (1)

We also use the notation mX for random variable X .
The kernel mean defines a mapping P → H; P 7→ mP .
If the mapping is injective (one-to-one), the p.d. kernel
k is called characteristic [9, 29]4. If k is characteris-
tic, mP uniquely specifies the probability distribution

3A positive-definite kernel k is bounded if
supx∈X k(x, x) < ∞.

4Characteristic kernel is an analogy of the characteris-

tic function EX∼P [e
√−1θT X ]. Similar to the fact that a

characteristic function uniquely specifies a probability dis-
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P and mP gives a representation of P in the RKHS
H. This is true even when P is complex-shaped, the
RKHS function mP is smooth, and estimation of mP

is relatively easier. Kernel Bayesian inference infers
the representation mP of P in H, where P implies a
predictive distribution, posterior distribution, and so
on. The kernel mean mP has the following expectation
property:

〈mP , f〉H = EX∼P [f(X)], ∀f ∈ H. (2)

This property implies that if we have an estimator m̂P

ofmP , EX∼P [f(X)] is estimated by RKHS inner prod-
uct between m̂P and f . Having defined the kernel
mean, we now proceed to nonparametric estimation of
the kernel mean mP .

Nonparametric kernel mean estimation: If we
have n data Dn := {X1, . . . , Xn} in X , we define a
finite-dimensional span HDn

:= Span{k(·, x)|x ∈ Dn}.
We estimate mP by an element m̂P =

∑n
i=1 wik(·, Xi)

inHDn
. If dataDn are drawn i.i.d. from P , thenmP is

estimated by its sample mean m̂P = 1
n

∑n
i=1 k(·, Xi),

so that weights w := (w1, . . . , wn)
⊤ are uniform wi =

1
n . If Dn are not drawn i.i.d. from P , then the
weights w are non-uniform. Weights w should be ap-
propriately set so that the estimator m̂P is consistent

||m̂P − mP ||H
p
→ 0 as n → ∞. Nonparametric kernel

Bayesian inference aims at computation of appropri-
ate weights w expressing m̂P , where P implies a pre-
dictive distribution, posterior distribution, and so on.
Given weights w expressing m̂P , the expectation of
any RKHS function f ∈ H can be estimated from (2):

EX∼P [f(X)] ≈ 〈m̂P , f〉H

=

n
∑

i=1

wif(X̃i) =: ÊX∼P [f(X)]. (3)

The Kernel sum rule (KSR) & Kernel Bayes’
rule (KBR): The kernel sum rule (KSR) executes the
sum rule in RKHSs in the kernel mean form. Kernel
Bayes’ rule (KBR) executes Bayes’ rule in RKHSs in
the kernel mean form. The details are as follows.

Let (X ,BX ) and (Y,BY) be measurable spaces and
let (X,Y ) be a random variable on X × Y with a
joint probability distribution PX×Y . Let PX be the
marginal of PX×Y on X and PY|x be the conditional
distribution given x ∈ X . We write PY|X := {PY|x|x ∈
X}. Let Π be another probability distribution on X
and let QX×Y be the joint probability distribution
given by PY|X and Π. Let QY be the marginal of
QX×Y on Y and let QX|y be the conditional distribu-
tion of QX×Y given y ∈ Y. For ease of explanation,
we assume that they have probability density func-

tribution P by the inverse Fourier transform, characteristic
kernel k allows kernel mean mP to uniquely specify a prob-
ability distribution P .

tions (pdf) p(x, y), p(x), p(y|x), π(x), q(x, y), q(y),
and q(x|y), respectively.5 The sum rule is defined by
marginalization q(y) =

∫

X
p(y|x)π(x)dx. Bayes’ rule

is defined by q(x|y) = p(y|x)π(x)/q(y) with the likeli-
hood p(y|x) of observation y and prior π(x).

Let (X , kX ,HX ) and (Y, kY ,HY) be RKHSs. KSR is
the computation of the marginal kernel mean mQY :=
EY ∼QY [kY(·, Y )] given an input kernel mean mΠ :=
EX∼Π[kX (·, X)]. KBR is the computation of the pos-
terior kernel mean mQX|y

:= EX∼QX|y
[kX (·, X)] given

y and a prior kernel mean mΠ. Nonparametric al-
gorithms for fulfilling KSR and KBR have been pro-
posed, which we call nonparametric KSR (nKSR) [25]
and nonparametric KBR (nKBR) [10], respectively.

The nKSR algorithm is obtained by a function-valued
kernel ridge regression [13]. Let {(Xi, Yi)}

n
i=1 be a

joint sample drawn i.i.d from PX×Y . Suppose that
Π is the delta distribution Π = δX̃ on a point

X̃ ∈ X , i.e., mΠ = kX (·, X̃). Then the condi-
tional kernel mean mPY|X̃

(= mQY ) is estimated by

m̂PY|X̃
=
∑n

i=1 wikY(·, Yi), where w = (w1, . . . , wn)
⊤

is the kernel ridge regression weights w = (GX +
nǫnIn)

−1kX (X̃). Here GX = (kX (Xi, Xj))ij ∈ R
n×n

is the Gram matrix, εn is the regularization constant,
and kX (X̃) := (kX (X̃,X1), . . . , kX (X̃,Xn))

⊤ ∈ R
n.

For a general input kernel mean estimator m̂Π :=
∑l

i=1 γikX (·, X̃i), output m̂QY is estimated by the
weighted sum, i.e., weights w are

w = (GX + nεnIn)
−1GXX̃γ =: M (nKSR)γ. (4)

Here GXX̃ = (kX (Xi, X̃j))ij ∈ R
n×l is the kernel ma-

trix among data {Xi}
n
i=1 and {X̃i}

l
i=1. Thus, the

nKSR is fulfilled by multiplying the nKSR matrix
M (nKSR) with input weights γ.

The nKBR algorithm [10] is obtained by the function-
valued kernel ridge regression (nKSR) twice, i.e.,
regression Y on X with prior kernel mean mΠ

and regression X on Y with an input observation
y. Specifically, the nKBR estimates the poste-
rior kernel mean m̂QX|y

:=
∑n

i=1 w̃ikX (·, Xi) given

an estimator m̂Π :=
∑l

i=1 γikX (·, X̃i) and obser-
vation y ∈ Y. This is obtained by a ma-
trix multiplication w̃ = M (nKBR)(m̂Π)kY(y), where
kY(y) := (kY(y, Y1), . . . , kY(y, Yn))

⊤ ∈ R
n and

M (nKBR)(m̂Π) ∈ R
n×n is the nKBR matrix depend-

ing on m̂Π. The nKBR matrix is given by

M (nKBR)(m̂Π)

= diag(w)GY ((diag(w)GY )
2 + δnIn)

−1diag(w) (5)

where diag(w) ∈ R
n×n is the diagonal matrix of the

5The existence of pdfs is not necessary in the kernel
Bayesian inference. Even if P is not absolutely continuous,
mP is a smooth RKHS function.
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nKSR weights (4), GY is the Gram matrix of (GY )ij =
kY(Yi, Yj), and δn is a regularization constant.

Consistency of estimators m̂QY and m̂QX|y
when the

nKSR and nKBR matrices are used, is proved in Fuku-
mizu et al. [10], Song et al. [28].

3 Kernel Bayesian Smoothing

We propose a new addition to existing tools for non-
parametric Bayesian inference: the nonparametric ker-
nel Bayes’ smoother (nKB-smoother).

3.1 Nonparametric Learning for State Space
Models

The goal is to first learn the RKHS representation of
the transition and measurement processes of a very
general class of state space models and then to infer
the hidden states. Let X , Z be the domains of hid-
den states and observations, respectively. We consider
discrete-time time-invariant models with the following
properties.

• Transition Process: The transition of a hidden
state x ∈ X to the next x′ ∈ X is a general time-
invariant conditional distribution PX ′|X .6 Impor-
tantly, we do not make classic assumptions about
the distribution PX ′|X , e.g. that it has density, is
an additive noise model xt+1 = f(xt)+ ςs, or that
the domain is restricted to Euclidean space R

d.
Instead, we define an RKHS (X , kX ,HX ) on the
domain X . Given transition data {(X̃i, X̃

′
i)}

l
i=1

7

we nonparametrically learn the conditional kernel
mean of PX ′|X from the data.

• Measurement Process: The observation of z ∈
Z given the hidden state x ∈ X is a general time-
invariant conditional distribution PZ|X . Again,
we do not assume that PZ|X has a density, is an
additive noise model z = g(x)+ ςo, or the domain
X and Z are restricted to Euclidean spaces. We
again define RKHSs (X , kX ,HX ) and (Z, kZ ,HZ)
on the domains X and Z, respectively. We as-
sume data {(Xi, Zi)}

n
i=1 and nonparametrically

learn the conditional kernel mean of PZ|X from
the data.

In some applications, data {(X̃i, X̃
′
i)}

l
i=1 and

{(Xi, Zi)}
n
i=1 may be obtained from a single trajec-

tory, i.e., data have the restriction X̃ ′
i = X̃i+1 (i =

6We use notation X ′ for the domain of the next state.
In fact, X ′=X .

7We use hidden state data for nonparametric learning of
PX ′|X and PZ|X . The same setting is put in Gaussian pro-
cess approach to state space models. See also introduction
about this assumption.

Filtering Smoothing

Figure 1: (Upper Left) Forward inference of the kernel
mean (6) in the nKB-filter. (Upper Right) Backward
inference of the kernel mean (7) in the nKB-smoother.
(Lower two figures) Snapshots of filtering and smooth-
ing results on the same variable xt. Time-evolution
of filtering and smoothing kernel means is visualized
in the supplementary video (see also Fig. 4 in the
supplementary material). A kernel mean (an RKHS
function) is plotted as a cyan curve. Small blue and
red bars indicate positive and negative weights of a
kernel mean, respectively. The filtering estimation is
bi-modal, but smoothing estimation correctly identi-
fies the state by using future measurements zt+1:T .

1, . . . , l − 1) and X̃i = Xi (i = 1, . . . , l − 1 and l = n).
However, we present the KB-smoother in the general
data setting. For ease of explanation, we assume that
there exist pdfs p(x′|x) and p(z|x) for transition and
measurement processes, respectively, though, as men-
tioned above, this assumption is not required.

3.2 The Nonparametric Kernel Bayes
Smoother (nKB-smoother)

The nKB-smoother is applied to the output of the
nKB-filter. In general, filtering at time T ≥ 1 com-
putes the probability p(xT |z1:T ) of the hidden state xT

given a sequence of observations z1:T := {z1, . . . , zT}.
Smoothing computes the probability p(xt|z1:T ) of past
hidden state xt (1 ≤ t < T ) given a sequence of ob-
servations z1:T . In other words, smoothing gives an
accurate estimation of hidden state xt (1 ≤ t < T )
by correcting the filtering estimate using the future
observations zt+1:T .

Let kernel means of filtering and smoothing distribu-
tions be

mXt|z1:t := EXt∼p(xt|z1:t)[kX (·, Xt)], (1 ≤ t ≤ T ),

mXt|z1:T := EXt∼p(xt|z1:T )[kX (·, Xt)], (1 ≤ t < T ).
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We estimate the kernel means in the following non-
parametric forms:

m̂Xt|z1:t :=
n
∑

i=1

α
(t)
i kX (·, Xi), (1 ≤ t ≤ T ), (6)

m̂Xt|z1:T :=
l
∑

i=1

w
(t)
i kX(·, X̃i), (1 ≤ t < T ). (7)

Weights α(t) := (α
(t)
1 , . . . , α

(t)
n ) of the filtering kernel

means (6) are sequentially estimated using the nKB-
filter [10]. Therefore, in this paper, we suppose that
filtering weights {α(t)}Tt=1 are already given.

The objective of the nKB-smoother is to estimate

smoothing weights w(t) := (w
(t)
1 , . . . , w

(t)
l ). Figure 1

shows the forward and backward inference of the
nKB-filter and the nkB-smoother, respectively. We
derive the sequential updates for smoothing weights
{w(t)}T−1

t=1 .

The smoothing kernel mean (7) can be rewritten as
follows:

mXt|z1:T

:=

∫

kX (xt, ·)p(xt|z1:T )dxt

=

∫

kX (xt, ·)

∫

p(xt, xt+1|z1:T )dxt+1dxt

=

∫

kX (xt, ·)

∫

p(xt|xt+1, z1:t)p(xt+1|z1:T )dxt+1dxt

=

∫ ∫

kX (xt, ·)p(xt|xt+1, z1:t)dxtp(xt+1|z1:T )dxt+1

=

∫

mXt|xt+1,z1:tp(xt+1|z1:T )dxt+1, (1 ≤ t < T ), (8)

where mXt|xt+1,z1:t is the conditional kernel mean of
p(xt|xt+1, z1:t). Suppose that mXt|(·),z1:t(x) ∈ HX

holds for x ∈ X as a function of (·). Then, equa-
tion (8) leads to the following backward equation for

smoothing kernel means {mXt|z1:T }
T−1
t=1 over time:

mXt|z1:T (x) =
〈

mXt|(·),z1:t(x),mXt+1|z1:T
〉

HX
, (9)

where its initialization is the filtering kernel mean
mXT |z1:T . The conditional kernel mean mXt|xt+1,z1:t

can be estimated by using the nKBR [10], where its
likelihood is p(x′|x) and its prior is the filtering kernel
mean mXt|z1:t , which follows from

mXt|xt+1,z1:t =

∫

k(xt, ·)p(xt|xt+1, z1:t)dxt

=

∫

k(xt, ·)
p(xt+1|xt)p(xt|z1:t)

p(xt+1|z1:t)
dxt.

Thus, let m̂Xt|xt+1,z1:t be the nKBR estimator:

m̂Xt|xt+1,z1:t =

l
∑

i=1

γ
(t,xt+1)
i kX (·, X̃i). (10)

By substituting filtering and smoothing estimators (6),
(7) and the nKBR estimator (10) into the backward
equation (9), we obtain the following backward equa-
tion of smoothing weights w(t) (1 ≤ t ≤ T − 1):

• When t = T − 1,

m̂XT−1|z1:T (x) =
〈

m̂XT−1|(·),z1:T−1
(x), m̂XT |z1:T

〉

HX
,

=

n
∑

i=1

α
(T )
i m̂XT−1|Xi,z1:T−1

(x)

=

l
∑

j=1

(

n
∑

i=1

α
(T )
i γ

(T−1,Xi)
j

)

kX (x, X̃j)

=:

l
∑

j=1

w
(T−1)
j kX (x, X̃j). (11)

From (11), the weight update is

w
(T−1)
j =

n
∑

i=1

α
(T )
i γ

(T−1,Xi)
j , j = 1, . . . , l. (12)

• Similarly, when 1 ≤ t ≤ T − 2,

m̂Xt|z1:T (x) =
〈

mXt|(·),z1:t(x),mXt+1|z1:T

〉

HX

=
l
∑

i=1

w
(t+1)
i m̂Xt|X̃i,z1:t

(x)

=

l
∑

j=1

(

l
∑

i=1

w
(t+1)
i γ

(t,X̃i)
j

)

kX (x, X̃j)

=:
l
∑

j=1

w
(t)
j kX (x, X̃j). (13)

From (13), the weight update is

w
(t)
j =

l
∑

i=1

w
(t+1)
i γ

(t,X̃i)
j , j = 1, . . . , l. (14)

Thus, from updates (12) and (14), we have the follow-
ing smoothing weight recursion in matrix form:

w(T−1) = Γ(T−1)α(T ),

w(t) = Γ(t)w(t+1), (1 ≤ t ≤ T − 2), (15)

where

Γ(T−1) := (γ(T−1,X1), . . . , γ(T−1,Xn)) ∈ R
l×n,

Γ(t) := (γ(t,X̃1), . . . , γ(t,X̃l)) ∈ R
l×l.

The matrix Γ(T−1) is the collection of posterior weights
of (10) at time t = T − 1 given measurement sample
xT = X1, . . . , Xn. The matrix Γ(t) is the collection
of posterior weights of (10) at time t given transition
sample xt+1 = X̃1, . . . , X̃l.

8 For notational simplic-
ity, we use w(T ) := α(T ). Thus, smoothing weights

8If data {(X̃i, X̃
′
i)}

l
i=1 and {(Xi, Zi)}

n
i=1 are a single

trajectory data as noted in Section 3.1, then matrix Γ(t)

(1 ≤ t ≤ T − 1) becomes the n × n matrix Γ(t) :=
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{w(t)}T−1
t=1 can be computed by matrix multiplications;

w(t) = (
∏t

i=T−1 Γ
(i))w(T ), (1 ≤ t ≤ T − 1), where

∏t
i=T−1 Γ

(i) := Γ(t) · · ·Γ(T−1).

The detailed Gram matrix expression of Γ(t) (1 ≤
t ≤ T − 1) is as follows. Let GX̃ and GX̃′ be

Gram matrices such that (GX̃)ij = kX (X̃i, X̃j) and

(GX̃′)ij = kX (X̃ ′
i, X̃

′
j). The posterior weights in equa-

tion (10) is computed as

γ(t,xt+1) = M
(nKBR)
X|X ′ (m̂Xt|z1:t)kX ′(xt+1),

where M
(nKBR)
X|X ′ (m̂Xt|z1:t) is the nKBR matrix op-

erating from X ′ to X given the transition data
{(X̃i, X̃

′
i)}

l
i=1 and filtering prior m̂Xt|z1:t . We note

that the same matrix M
(nKBR)
X|X ′ (m̂Xt|z1:t) can be

used for computing γ(t,x) with different values x =
X̃1, . . . , X̃l. We can use the nKBR matrix (5) for the
consistent estimator. Finally, we have the following:

• When t = T − 1,

Γ(T−1) =(γ(T−1,X1), . . . , γ(T−1,Xn))

=M
(nKBR)
X|X ′ (m̂XT−1|z1:T−1

)GX̃′X

=diag(ξT−1)GX̃′((diag(ξT−1)GX̃′ )
2 + δ̃nIn)

−1

×diag(ξT−1)GX̃′X .

• Similarly, when 1 ≤ t ≤ T − 2,

Γ(t) =(γ(t,X̃1), . . . , γ(t,X̃l))

=M
(nKBR)
X|X ′ (m̂Xt|z1:t)GX̃′X̃

=diag(ξt)GX̃′((diag(ξt)GX̃′)
2 + δ̃nIn)

−1

×diag(ξt)GX̃′X̃ .

Here, ξt are the nKSR weights:

ξt = (GX̃ + lε̃lIl)
−1m̂Xt|z1:t = (GX̃ + lε̃lIl)

−1GX̃Xα(t)

and, δ̃n and ǫ̃l are their regularization constants.

Algorithm 1 summarizes the nKB-smoother.9 Figure
1 shows an example of computed kernel means with
weights α(t) and w(t). Smoothing weights w(t) are
used to compute expectations (3) of RKHS functions
∀f ∈ HX over smoothing distribution p(xt|z1:T ) and
the mode estimation. The mode is estimated by solv-
ing an optimization problem x̂ = argminx∈X ||m̂P −
kX (·, x)||2 = argmaxx∈X m̂P (x) given a smoothing es-
timator m̂P ∈ HX [10]. In experiments (Section 4),
we report the mode estimation results on the nKB-
smoother.

(γ(t,X1), . . . , γ(t,Xn)) (1 ≤ t ≤ T − 1).
9Algorithm 1 is so generic that any consistent nKBR

matrix is allowed over the currently used Tikhonov-type
nKBR matrix [10].

Algorithm 1: The nKB-smoother

Input: filtering weights α(1), . . . , α(T ) and
regularization constants ǫ̃l, δ̃n

Initialize: Γ(T−1) = M
(nKBR)
X|X ′ (m̂XT−1|z1:T−1

)GX̃′X

w(T−1) = Γ(T−1)α(T )

for t = T − 2 to t = 1 do

Γ(t) = M
(nKBR)
X|X ′ (m̂Xt|z1:t)GX̃′X̃

w(t) = Γ(t)w(t+1)

end

Return: smoothing weights w(1), . . . , w(T−1)

3.3 Computational Cost

Here we discuss the smoothing cost for a typical case
n = l. Kernel Bayes filtering costs O(n3) for a sin-
gle step of filtering because the nKBR needs a Gram
matrix inversion [10]. Similarly, kernel Bayes smooth-
ing costs O(l3) for a step of smoothing, since com-
putation of Γ(t) costs O(l3) and its multiplication
w(t) = Γ(t)w(t+1) costs O(l2). Thus smoothing has
the same order as the filtering. Filtering and smooth-
ing for a length T test sequence costs O(Tn3). The
cost can be reduced to O(Tnr2) by using low rank
approximations of rank r, as used in Fukumizu et al.
[10]. In addition, we note that the KB-smoother can
be made more efficient through parallel computation
of the matrices {Γ(t)}T−1

t=1 , since matrix Γ(t) does not
depend on matrix Γ(t+1).

3.4 Consistency of Smoothing

We have the following consistency result for the
smoothing estimator. The proof is in Appendix 6.1.

Theorem 3.1. Let ξt(xt+1, x̃t+1) :=
〈

mXt|xt+1,z1:t ,mXt|x̃t+1,z1:t

〉

HX
, ∆mXt|xt+1,z1:t :=

mXt|xt+1,z1:t − m̂Xt|xt+1,z1:t , and ∆ξt(xt+1, x̃t+1) :=
〈

∆mXt|xt+1,z1:t ,∆mXt|x̃t+1,z1:t

〉

HX
. Assume that

ξt ∈ HX ⊗ HX . If
∥

∥mXt+1|z1:T − m̂Xt+1|z1:T

∥

∥

HX
=

Op(l
−αt+1) for αt+1 ∈ (0, 1

2 ] and ‖∆ξt‖HX⊗HX
=

Op(l
−2βt) for βt ∈ (0, 1

2 ], then
∥

∥mXt|z1:T − m̂Xt|z1:T

∥

∥

HX
= Op(l

−αt),

where αt = min{αt+1, βt}.

From the consistecy of filtering, it is known [10]
that

∥

∥mXT |z1:T − m̂XT |z1:T

∥

∥

HX
= Op(l

−αT ) for αT ∈

(0, 1
2 ]. By induction with Theorem 3.1, we have the

consistency of smoothing
∥

∥mXt|z1:T − m̂Xt|z1:T

∥

∥

HX
=

Op(l
−αt) for any 1 ≤ t < T .
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Figure 2: Smoothing in a cluttered environment. (Left) The blue curve shows the true trajectory of the object
and red points the measurements. (Middle) Filtering (green) and smoothing (blue) as outputs of the nKB-
filter and the nKB-smoother, respectively. The red and magenta show the true target’s position {(xt, yt)}t and
measurements {(x̃t, ỹt)}t, respectively. More results on different training and test data are presented in the

supplementary material. (Right) Averaged results of RMSEs {(1/240
∑240

t=1 ||(x
(i)
t , y

(i)
t ) − (x̂

(i)
t , ŷ

(i)
t )||2)1/2}Mi=1

(vertical) on each training sample size n (horizontal) over M = 10 experiments.

4 Experimental Results

We implemented and validated the nKB-smoother on
a synthetic and a real-world dataset.

4.1 Synthetic Experiment: Smoothing in a
Cluttered Environment

In the first experiment we applied the nKB-filter [10]
and the nKB-smoother (Algorithm 1) to the problem
of “Tracking a Single Object with Cluttered Measure-
ments,” from the RBMCDA toolbox.10

The objective of this problem is to estimate the tra-
jectory of a single moving object in R

2, using measure-
ments corrupted by clutter. The transition dynamics
of the object are modeled with a standard discretized
Wiener velocity model (e.g., [1]). The target’s state at
time t is described by xt = (xt, yt, ẋt, ẏt) with the ob-
ject’s position (xt, yt) and the velocity (ẋt, ẏt) in carte-
sian coordinates R2. The measurement for the target
is w.r.t. position zt = (x̃t, ỹt) with a mixture noise
of a Gaussian and the uniform clutter. Figure 2 (left)
shows the target’s trajectory (blue) and measurements
(red points). We assume that the transition and mea-
surement processes are not known; instead we learn
them from samples of transition pairs {(xi,x

′
i)}

n
i=1 and

state-observation pairs {(xi, zi)}
n
i=1.

Figure 2 (middle) shows point estimation of the tar-
get’s position (xt, yt) by the nKB-filter and the nKB-
smoother. Figure 2 (right) shows the averaged per-
formance of the nKB-filter in root mean squared error
(RMSE) against training sample size n. The nKB-
smoother provides a more accurate estimate of the tar-
get’s position relative to the nKB-filter by using future

10Matlab codes and documents are in
http://becs.aalto.fi/en/research/bayes/rbmcda/.
For details, see the URL and documents within.

observations zt+1:T in the kernel mean form.

4.2 Real-World Experiment: Slotcar State
Estimation

The second experiment focuses on estimating the
progress of a miniature car (1:32 scale) racing around
a 14m track (a similar dataset was used in Song et al.
[26], Boots et al. [3]). Figure 3 shows the car and an
attached 6-axis IMU (an Intel Inertiadot), as well as
the track. The observations are noisy estimates of 3D
acceleration and velocity of the car, collected at 10Hz
from the IMU. Ground truth positional information is
captured by an overhead camera that uses a particle
filter to track the position of the car in the image. De-
spite the complexity of the track (it has several sharp
U-turns and bridges), the position of the car on each
lap can be described by a circular manifold. We con-
sider the 2-D space that contains this manifold to be
the latent state space.

The goal of the experiment is to infer the progress
of the car on the manifold from just the noisy IMU
data. Our training data consists of the ground-truth
tracking information converted to the 2-D position
on the circular manifold and aligned with IMU data.
Specifically we train each algorithm on transition pairs
{(xi,x

′
i)}

n
i=1 and state-observation pairs {(xi, zi)}

n
i=1.

To test our data, we learn linear-Gaussian models,
Gaussian process models, and nonparametric models
of the transition and measurement processes. We then
execute filtering and smoothing to infer the progress
of the car from noisy observations on a heldout test
set. Performance is compared to the Kalman filter and
Kalman smoother, with parameters estimated by lin-
ear regression, as well as Gaussian process extended
Kalman filter (GP-EKF) and Gaussian process ex-

http://becs.aalto.fi/en/research/bayes/rbmcda/
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Figure 3: (Top left) The slotcar and inertial measurement unit. (Lower left) The 14m racetrack. The six graphs
illustrate filtering and smoothing performance. The blue points show the ground-truth position of the car on
the circular manifold representing a single lap around the track. We chose the diameter of the manifold to be
one. The magenta points show the results of filtering and smoothing. For visual clarity we only plot the first 250
data ponts, but we summarize the quantitative results in Table 1. (Left) Kalman-filter and Kalman smoothing.
(Middle) GP-EKF and GP-EKS (Right) nKB-filter and nKB-smoothing. The results indicate that the nKB-filter
and the nKB-smoother are better able to infer the position of the car on the circular manifold compared to the
linear Kalman and and Gaussian Process-based approaches.

Table 1: Filtering and Smoothing Error

Algorithm MSE on x1 MSE on x2

Kalman Filter 0.1082 0.0143
Kalman Smoothing 0.0121 0.0096

GP-EKF 1.64128 e-03 1.8133 e-03
GP-EKS 1.64122 e-03 1.8132 e-03
nKB-filter 4.3901 e-04 3.1178 e-04

nKB-smoothing 2.2087e-04 1.9457 e-04

tended Kalman smoothing (GP-EKS) [17].

The training dataset consist of 7000 transition and
state observation pairs and the test dataset consists
of 1400 observations. In our model, the regularization
parameter is set equal to 0.01 and the bandwidths of
the Gaussian RBF kernels are set via cross validation
to minimize the prediction error on the training data.

In Table 1, the Mean Squared Error (MSE) for pre-
diction on the manifold with various approaches is re-
ported. Figure 3 illustrates the performance of each
algorithm inferring the latent state on the test set.
nKB-smoothing improves on the nKB-filtering result
and also has the highest accuracy compared to the
linear Kalman and and Gaussian Process-based ap-
proaches.

5 Conclusion

We have introduced a novel algorithm for smooth-
ing in state space models using kernel mean embed-
dings called the nonparametric kernel Bayes’ smoother
(nKB-smoother). The nKB-smoother is very general:

it can be applied to any state space model with hidden
states and measurements, and does not require simple
probabilistic models for the transition or measurement
distributions. We derive the smoothing equations, an-
alyze the computational cost, and show smoothing
consistency. Finally, we implement the nKB-smoother
and show that it can achieve accurate results in prac-
tice. We believe that this paper provides an important
tool for inference in state space models and that it will
assist in developing more advanced algorithms, includ-
ing expectation-maximization-like algorithms for semi-
parametric kernel Bayesian inference.
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[13] S. Grünewälder, G. Lever, L. Baldassarre, S. Patter-
son, A. Gretton, and M. Pontil. Conditional mean
embeddings as regressors. In ICML, pages 1823–1830,
2012.
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6 Supplementary Materials

6.1 Proof of Theorem 3.1

Proof. Let m̃Xt|z1:T :=
l
∑

i=1

w
(t+1)
i mXt|X̃i,z1:t

. We then have

∥

∥mXt|z1:T − m̂Xt|z1:T

∥

∥

HX
≤
∥

∥mXt|z1:T − m̃Xt|z1:T

∥

∥

HX

+
∥

∥m̃Xt|z1:T − m̂Xt|z1:T

∥

∥

HX
.

(16)

We consider each of the two terms in equation (16). Let ∆mXt|z1:T := mXt|z1:T − m̃Xt|z1:T . For the first term,
∥

∥∆mXt|z1:T

∥

∥

2

HX

=

∥

∥

∥

∥

∥

mXt|z1:T −

l
∑

i=1

w
(t+1)
i mXt|X̃i,z1:t

∥

∥

∥

∥

∥

2

HX

=
l
∑

i,j=1

w
(t+1)
i w

(t+1)
j ξt(X̃i, X̃j)

−2

l
∑

i=1

w
(t+1)
i

∫

ξt(X̃i, x)dPXt+1|z1:T (x)

+

∫

ξt(x, x̃)dPXt+1|z1:T (x)dPXt+1|z1:T (x̃)

=
〈

∆mXt+1|z1:T ⊗∆mXt+1|z1:T , ξt
〉

HX⊗HX

≤
∥

∥∆mXt+1|z1:T

∥

∥

2

HX
‖ξt‖HX⊗HX

Since ‖ξt‖HX⊗HX
< ∞, the first term decays with Op(l

−2αt+1). For the second term, we have
∥

∥m̃Xt|z1:T − m̂Xt|z1:T

∥

∥

2

HX

=

∥

∥

∥

∥

∥

l
∑

i=1

w
(t+1)
i (mXt|X̃i,z1:t

− m̂Xt|X̃i,z1:t
)

∥

∥

∥

∥

∥

2

HX

=

∥

∥

∥

∥

∥

l
∑

i=1

w
(t+1)
i ∆mXt|X̃i,z1:t

∥

∥

∥

∥

∥

2

HX

=
l
∑

i,j=1

w
(t+1)
i w

(t+1)
j ∆ξt(X̃i, X̃j)

=
〈

m̂Xt+1|z1:T ⊗ m̂Xt+1|z1:T ,∆ξt
〉

HX⊗HX

≤
∥

∥m̂Xt+1|z1:T

∥

∥

2

HX
‖∆ξt‖HX⊗HX

.

Since ‖m̂Xt+1|z1:T ‖HX → ‖mXt+1|z1:T ‖HX < ∞, the second term decays with Op(l
−2βt). These results lead to

the statement
∥

∥mXt|z1:T − m̂Xt|z1:T

∥

∥

HX
= Op(l

−αt), where αt = min{αt+1, βt}.

6.2 Experimental Setting & Video: Tracking a Single Object (Experiment 1)

State Space Model Setting: The target’s state at time t is described by xt = (xt, yt, ẋt, ẏt) with the object’s
position (xt, yt) and the velocity (ẋt, ẏt) in cartesian coordinates R2. The discretized dynamics is expressed with
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Figure 4: A supplementary video. This animation visualizes the sequential update of kernel means of the nKB-
filter [10] and the nKB-smoother (Algorithm 1) for a test sequence z1:240 in the clutter problem. The upper
three figures show the sequential update of kernel means mXt|z1:t (t = 1 : 240) of the nKB-filter. The lower three
figures show the estimated smoothing kernel means mXt|z1:240 (t = 1 : 240) of the nKB-smoother. For each, the
left figure shows the kernel mean projected to state x, the middle figure shows the kernel mean projected to
state y, and the right figure both. Each figure visualizes the following. (Left four figures) The black dot vertical
line shows the true target’s state (x, y). The magenta dot vertical line shows the (cluttered) observation (x̃, ỹ).
The kernel mean weights are shown with left vertical axis. The positive (negative) weight values are visualized
with blue (red) bars, respectively. The cyan curve shows the estimated kernel mean (estimated RKHS function)
mP (·) ∈ HX as a function of (·) with right vertical axis. The blue dot in the top of the mountain shows the
result of the mode estimation for the target’s state (x, y) with the objective function value. From the two middle
figures, it can be observed that the filtering estimation is bimodal for uncertainty, but smoothing estimation
correctly identifies the state by using the future measurements z112:240, so that the blue dot is on the black dot
vertical line.

a time-invariant linear equation:

xt+1 = Axt + qt, A :=









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, (17)

where qt is discrete Gaussian white process noise having moments

E[qt] = 0,

E[qtq
⊤
t ] :=









∆t3/3 0 ∆t2/2 0
0 ∆t3/3 0 ∆t2/2

∆t2/2 0 ∆t 0
0 ∆t2/2 0 ∆t









q

with q > 0. The measurement process for the target is a mixture model:

p(zt|xt) = (1 − ρ)N(zt|Hxt, R) + ρ
1

|S|
, (18)
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Figure 5: Performance of the nKB-filter and the nKB-smoother in different training and test data on the clutter
problem. This figure shows 8 (4 × 2) experimental results. The upper-left two figures show the performance on
the dimension x and y when the training sample size is n = 956, respectively. The lower figures show the results
when the training sample size is increased to n = 956, 1195, 1434, 1673. It is observed that the performance is
increased. The right eight figures show results on different test data.

where 1 − ρ and ρ are probabilities of measurements from the actual target and clutter, respectively. The
measurement from the actual target is a Gaussian N(zt|Hxt, R) with the measurement model matrix H and
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noise covariance matrix R. The measurement from the clutter is uniform on the area S. We used the same
parameter setting as the RBMCDA’s demo used, i.e., the size of time step ∆t = 0.1, q = 0.1, ρ = 1/2,
S = [−5, 5]× [−4, 4], and

H =

(

1 0 0 0
0 1 0 0

)

, R =

(

0.05 0
0 0.05

)

.

nKB-smoother setting: We used Gaussian kernels kX (x1,x2) = e−||x1−x2||
2/2σ2

X and kZ(z1, z2) =

e−||z1−z2||
2/2σ2

Z for target’s states and measurements, respectively, where σX = σZ = 0.1. We set regular-
ization constants ǫn = δn = ǫ̃n = δ̃n = 0.001. Note ǫ̃n and δ̃n are new regularization constants introduced for
KB-smoother.

A supplementary video: We present an animation which shows results of the nKB-filter [10] and the nKB-
smoother (Algorithm 1) in the clutter problem. Please see a supplementary movie file (.mov). Figure 4 presents
a snapshot of the animation at time step t = 111.

Supplementary results: Figure 5 shows other results in different training and test data on the clutter problem.

6.3 Marginal Kernel Mean Computation on Tree Graphs

In this section, we present marginal kernel mean computation on general tree graphs by using the nKB-filter and
the nKB-smoother, as the extension of state space models.

6.3.1 The nKB-filter & nKB-smoother on N Branch Cases

For ease of understanding, we begin with the two branch case shown in Figure 6 (left). Let x := (x1:T , x̄t+1:T̄ ) be
hidden variables and z := (z1:T , z̄t+1:T̄ ) be measurement variables. The joint probability density function (pdf)
p(x, z) of Figure 6 (left) is given by11

p(x, z) =

(

T−1
∏

i=0

p(xi+1|xi)

)(

T
∏

i=1

p(zi|xi)

)





T̄−1
∏

i=t

p(x̄i+1|x̄i)









T̄
∏

i=t+1

p(z̄i|x̄i)



 ,

where p(x1|x0) := p(x1) and x̄t := xt. For ease of presentation, we assume that the transition process

{p(xi+1|xi)}
T−1
i=1 and {p(x̄i+1|x̄i)}

T̄−1
i=t follow the same conditional pdf p(x′|x). We also assume that the mea-

surement process {p(zi|xi)}
T
i=1 and {p(z̄i|x̄i)}

T̄
i=t+1 follow the same conditional pdf p(z|x). It is not difficult to

extend this to general inhomogenous cases, if there is a training sample for learning each of them. We assume
that there are training data {X̃i, X̃

′
i}

l
i=1 and {Xi, Zi}

n
i=1 for p(x′|x) and p(z|x), respectively.

The objective here is to compute the kernel means {mXτ |z}
T
τ=1 and {mX̄τ |z}

T̃
τ=t+1 of conditional distributions

{p(xτ |z)}
T
τ=1 and {p(x̄τ |z)}

T̄
τ=t+1 given measurements z, respectively. We begin with giving an order to the

two branches. Wlog, we set (xt+1:T , zt+1:T ) > (x̄t+1:T̄ , z̄t+1:T̄ ). We have outputs of the nKB-filter and the
nKB-smoother on chain (x1:T , z1:T ) as

m̂Xt|z1:t =
n
∑

i=1

α
(t)
i kX (·, Xi), t = 1, . . . , T,

m̂Xt|z1:T =
l
∑

i=1

w
(t)
i kX (·, X̃i), t = 1, . . . , T − 1.

11For simplicity, we omitted illustrations of observable variables z in Figure 6.
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Figure 6: Marginal kernel mean computation on tree graphs using the nKB-filter and the nKB-smoother; (left)
the simple two branch case, (middle) general N branch case, and (right) a tree example.

By applying the nonparametric kernel sum rule12 (Section 2 or Song et al. [25]) to m̂Xt|z1:T
, we have

m̂X̄t+1|z1:T = ÛX̄t+1|Xt
m̂Xt|z1:T

=

l
∑

i=1

η
(t+1)
i kX (·, X̃ ′

i),

where ÛX̄t+1|Xt
is the nKSR operator to obtain the estimator m̂X̄t+1|z1:T . Next, we apply the KB-filter to the

other chain (x̄t+1:T̄ , z̄t+1:T̄ ) with the initial belief m̂X̄t+1|z1:T , so that the outputs are

m̂X̄τ |z1:T ,z̄t+1:τ
=

n
∑

i=1

ᾱ
(τ)
i kX (·, Xi), τ = t+ 1, . . . , T̄ .

Then, we apply the nKB-smoother to the chain (x1:t, z1:t)(x̄t+1:T̄ , z̄t+1:T̄ ) backward with the initial kernel mean
mX̄T̄ |z, so that the outputs are

m̂X̄τ |z =

l
∑

i=1

w̄
(τ)
i kX (·, X̃i) τ = t+ 1, . . . , T̄ − 1.

m̂Xτ |z =

l
∑

i=1

w̄
(τ)
i kX (·, X̃i) τ = 1, . . . , t.

The numbers written in Figure 6 (left) show the order of inference of KB-filter and KB-smoother. By induction,
the same applies to the N branch case in Figure 6 (middle). First, give an order to the N branches. Then,
apply KB-filter and KB-smoother to one branch by one branch. As an example, Figure 6 (right) shows the order
of KB-filter and KB-smoother in a tree graph. Thus, the marginal kernel mean computation on a general tree
graph is obtained.

12By the Markov property, the conditional pdf p(x̄t+1|z1:T ) has the sum rule expression:

p(x̄t+1|z1:T ) =

∫

p(x̃, z̃t+1:T̄ |z1:T )δ(x̃t+1 − x̄t+1)dz̃t+1:T̄dx̃

=

∫

p(x̄t+1|xt)p(xt|z1:T )dxt,

where δ(x̃t+1 − x̄t+1) is the dirac’s delta function.
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