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Abstract—We present a non-parametric perceptual model for
generating video frames with deep networks, and provide a
framework for its use in tracking and prediction tasks on a real
robotic system. This is shown to greatly outperform standard
de-convolutional methods for image generation, producing clear
photo-realistic images. For tracking, we incorporate the sensor
model into an Extended Kalman Filter and estimate robot tra-
jectories. As a comparison, we introduce a secondary framework
consisting of a discriminative, inverse model for state estimation,
and compare this approach to that using a generative model.

I. INTRODUCTION & RELATED WORK

Several fundamental problems in robotics, such as state
estimation, prediction, and motion planning rely on accurate
models that can map state to measurements (forward models)
or measurements to state (inverse models). Classic examples
include the measurement models for global positioning sys-
tems, inertial measurement units, or beam sensors that are
frequently used in simultaneous localization and mapping [16],
or the forward and inverse kinematic models that map joint
configurations to workspace and vice-versa. Some of these
models can be very difficult to derive analytically, and, in
these cases, roboticists have often resorted to machine learning
to infer accurate models directly from data. For example,
complex nonlinear forward kinematics have been modeled
with techniques as diverse as Bayesian networks [3] and Bezier
Splines [17], and many researchers have tackled the problem
of learning inverse kinematics with nonparametric methods
like locally weighted projection regression (LWPR) [18, 6],
mixtures of experts [2], and Gaussian Process Regression [13].
While these techniques are able to learn accurate models,
they rely heavily on prior knowledge about the kinematic
relationship between the robot state space and work space.

Despite the important role that forward and inverse models
have played in robotics, there has been little progress in defin-
ing these models for very high-dimensional sensor data like
images and video. This has been disappointing: cameras are a
cheap, reliable source of information about the robot and its
environment, but the precise relationship between a robot pose
or configuration, the environment, and the generated image
is extremely complex. A possible solution to this problem is
to learn a forward model that directly maps the robot pose
or configuration to high-dimensional perceptual space or an
inverse model that maps new images to the robot pose or
configuration. Given these learned models, one could directly

and accurately perform a range of important tasks including
state estimation, prediction, and motion planning.

In this paper, we will explore the idea of directly learn-
ing forward and inverse perceptual models that relate high-
dimensional images to low dimensional robot state. In par-
ticular, we use deep neural networks to learn both forward
and inverse perceptual models for a camera pointed at the
manipulation space of a Barret WAM arm. While recent work
on convolutional neural networks (CNNs) provides a fairly
straightforward framework for learning inverse models that
can map images to robot configurations, learning accurate
generative (forward) models remains a challenge.

Generative neural networks have recently shown much
promise in addressing the problem of mapping low-
dimensional encodings to a high-dimensional pixel-space [4,
12, 8, 14]. The generative capacity of these approaches is
heavily dependent on learning a strictly parametric model to
map input vectors to images. Using deconvolutional networks
for learning controllable, kinematic transformations of objects
has previously been demonstrated, as in [5, 15]. However,
these models have difficulty reproducing clear images with
matching textures, and have mainly been investigated on affine
transformations of simulated objects.

Learning to predict frames has also been conducted on
two-dimensional robot manipulation tasks. In [7], the authors
propose using an LSTM-based network to predict next-frame
images, given the current frame and state-action pair. In
order to model pixel transformations, the authors make use
of composited convolutions with either unconstrained or affine
kernels. The generated image frames produce some semblance
of linear motion in the scene, however do not manage to repli-
cate multi-degree-of-freedom dynamics. Given that forward
prediction is conducted by recursive input of predicted frames,
the error is compounded and the quality of predictions quickly
degrades over future timesteps.

Instead of generating images directly after applying trans-
formations in a low-dimensional encoding, another approach
is to learn a transformation in the high-dimensional space
of the output. One can then re-use pixel information from
observed images to reconstruct new views from the same
scene, as proposed in [19]. Here, the authors learn a model to
generate a flow-field transformation from an input image-pose
pair derived from synthetic data. This is then subsequently
applied to a reference frame, effectively rotating the original



image to a previously unseen viewpoint. Using confidence
masks to combine multiple flow-fields generated from different
reference frames is also proposed. However, these frames are
selected randomly from the training data.

In the current work, we propose deep forward and in-
verse perceptual models for a camera pointed at the manip-
ulation space of a Barrett WAM arm. The forward model
maps a 4-dimensional arm configuration to a (256×256×3)-
dimensional RGB image and the inverse model maps
(256×256×3)-dimensional images to 4-dimensional config-
urations. A major contribution of this work is a new forward
model that extends the image-warping model in [19] with
a non-parametric reference-frame selection component. We
show that this model can generate sharp near photo-realistic
images from a never-before-seen 4-dimensional arm configu-
rations and greatly outperforms state of the art deconvolutional
networks [5, 15]. We also show how to design a convolutional
inverse model, and use the two models in tandem for tracking
the configuration of the robot from an unknown initial config-
uration and prediction to future never-before-seen images on
the real robot.

II. SENSOR MODEL DESIGN

Tracking and prediction are important tasks in robotics.
Consider the problem of tracking state and predicting fu-
ture images, illustrated in Fig.1. Given a history of RGB-
image observations Ot = (oi)

t
i=0 where o ∈ Rm, we wish to

track the state of the system x ∈ Rn for the corresponding
sequence Xt = (xi)

t
i=0 . Additionally, given a designated goal

image oT , we wish to define a target end state xT . Both
these state-estimation objectives can be accomplished with an
inverse sensor model, a parametrized function g : Rm 7→ Rn.
Having mapped the planning problem in joint-space, we
can perform online motion-planning to acquire a sequence
of expected states X t = (xi)

T
i=t+1. Classically, model-based

motion-planning would rely on cost functions computed in
simulation. However, we can translate a particular motion
plan into observation space using a forward sensor model,
allowing future observations to be predicted given a sequence
of commands and trajectory. This could also permit the use
of a cost function to be defined in observation space, which
is subsequently leveraged by the motion planner to ensure
trajectories are compatible with the real-world scene.

A. Forward Sensor Model

We use a generative observation model g to perform a
mapping from joint-space values xi to pixel-space values oi
for a trajectory sequence of future states X t . This is performed
using image-warping layers as proposed in [19]. Given an
input xi and a reference state-image pair (xr,or), we learn
to predict the pixel flow field

−→
h (xi,xr) from reference image

or to the image oi. The final prediction is made by warping
the reference image or with the predicted flow field

−→
h :

g(xi) = warp(or,
−→
h ). (1)

As long as there is a high correlation between visual
appearance of the reference image or and the output image
oi, warping the reference image results in higher-fidelity pre-
dictions when compared to models which map input directly
to RGB values [15].

We propose a variation of this idea that is extremely
effective in practice. Our network is comprised of two parts:
1) A non-parametric component, where given a state value xi,
a reference pair (xr,or) is found such that or has a similar
appearance as the output image oi; and 2) A parametric
component, where given the same state value xi and the
reference pair (xr,or), the inverse flow field

−→
h is computed

and used to warp the reference image to produce the output
image oi. The overall architecture is shown in Fig.2.

For the non-parametric component, we take a subset of the
training set Fp ⊆F , consisting of configuration-image pairs
and store the data in a KD-tree. We can quickly find a reference
pair by searching for the training data pair closest to the current
joint configuration xi in configuration space. Since the state-
space is low-dimensional we can find this nearest neighbor
very efficiently. To prevent over-fitting, we randomly sample
one of the k-nearest neighbors in the training phase.

For the parametric component, we use the deep neural
network architecture depicted in Figure 2. Given a current
and reference state vector as input, the network is trained to
produce a flow tensor to warp the reference image (similarly
to [19]). The input is first mapped to a high dimensional
space using six fully-connected layers. The resulting vector
is reshaped into a tensor with size 256× 8× 8. The spa-
tial resolution is increased from 8× 8 to 28 × 28 by using
5 deconvolution layers. Following the deconvolutions with
convolutional layers was found to qualitatively improve the
output images. Finally, we use the predicted flow field of size
2×256×256 to warp the reference image. To allow end-to-end
training, we used a differentiable image sampling method with
bi-linear interpolation kernel in the warping layer [9]. Using
L2 prediction loss, the final optimization function is defined
as follows:

min
W

L(W ) = ∑
i
||oi−warp(or,

−→
h W (xi,xr))||2 +λ ||W ||2 (2)

in which W contains the network parameters and λ is the
regularization coefficient. Training was conducted using the
Caffe [10] library, which had been extended to support the
warping layer. The ADAM optimization algorithm [11] was
used for the solver method.

The idea of warping the nearest neighbor can be extended to
warping an ensemble of k-nearest neighbor reference images,
with each neighbor contributing separately to the prediction.
In addition to the flow field, each network in the ensemble
also predicts a 256×256 confidence map (as shown in Fig.2).
We use these confidence maps to compute the weighted sum
of different predictions in the ensemble and compute the final
prediction.



Fig. 1. The proposed framework makes use of an inverse sensor model (blue) for inference of a state xi from observed frame oi. A motion
plan can be generated given a simulated model of the system. The resulting trajectory can be mapped into image space using a forward
sensor model (green).
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Fig. 2. Forward sensor model architecture. Top: Forward parametric branch example. Bottom: Complete architecture, containing a Nearest
Neighbor (NN) module producing (image, state)-pair outputs. These are used by individual Forward branches to produce a warped reference
image.

B. Tracking using the Forward Model

A common approach to state estimation is to use a Bayesian
filter with a generative sensor model to provide a correction
conditioned on measurement uncertainty. For instance, the
forward model described in Section II-A could be used to
provide such a state update, and potentially allow for a
single model to be used for both tracking and prediction. We
therefore consider this approach as a suitable comparison to
the inverse-forward framework being proposed.

In order to track a belief-state distribution, we can derive an
Extended Kalman Filter from the forward sensor model. This
is a straightforward process, as network models are inherently
amenable to linearization. The correction step is performed
by computing the Jacobian J as the product of the layer-wise
Jacobians:

J = J(L)× J(L−1)×·· ·× J(0), (3)

where L is the total number of layers in the network. The
dimensionality of the observations makes it impractical to

compute the Kalman Gain
(
K = ΣJT (JΣJT +R)−1

)
directly.

Instead, we use a low-rank approximation of the sensor-noise
covariance matrix R, and perform the inversion in projected
space:

(JT
ΣJ+R)−1 ≈U(UT JT

ΣJU +SR)
−1UT (4)

where SR contains the top-most singular values of R. For
simplicity, the state prediction covariance Q was approximated
as Q = γIn×n, where γ = 10−6. A first-order transition model
is used, where next-state joint-value estimates are defined as
x′t+1 = xt +(xt − xt−1)∆t for a fixed time-step ∆t. We provide
an initial prior over the state values with identical covariance,
and an arbitrary mean-offset from ground-truth.

C. Tracking using an Inverse Sensor Model

In order to infer the latent joint states xi from observed
images oi, we can also define a discriminative model g f wd .
Given the capacity of convolutional neural network models to
perform regression on high-dimensional input data, we used a
modified version of the VGG CNN-S network [1] containing



5 convolutional layers and 4 fully-connected layers (shown in
Fig.3). The model was trained on 256×256×3 input images
and corresponding joint labels, optimizing an L2 loss on joint
values and regularized with dropout layers.
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Fig. 3. Inverse sensor model architecture.

III. EXPERIMENTAL RESULTS

A. Datasets

The experiments were conducted using a Barrett WAM
manipulator, a cable-actuated robotic arm. Data was captured
from raw joint-encoder traces and a statically-positioned cam-
era, collecting 640x480 RGB frames at a rate of 30 fps. Due
to non-linear effects arising from joint flexibility and cable
stretch, large joint velocities and accelerations induce discrep-
ancies between recorded joint values and actual positions seen
in the images. In order to mitigate aliasing, the joint velocities
were kept under 10◦/s. This and other practical constraints
imposed limitations on obtaining an adequate sampling density
of the four-dimensional joint space. As such, the training
data was collected while executing randomly generated linear
trajectories using only the first four joints (trajectories were
made linear for simplicity). A total of 225,000 camera frames
and corresponding joint values were captured, with 50,000
reserved for a nearest-neighbor data-set, and the remaining
for training data. Test data was collected for arbitrary joint
trajectories with varying velocities and accelerations (without
concern for joint flexibility and stretch).

B. Forward Sensor Model Evaluation

We first examine the predicted observations generated by the
proposed forward sensor model (kNN-FLOW). A deconvolu-
tional network (DECONV) similar to that used in [5] is chosen
as a baseline, with the absence of a branch for predicting
segmentation masks (as these are not readily available from
RGB data). Qualitative comparisons between the ground-
truth, forward-sensor predictions, and DECONV outputs are
depicted in Fig.6 for a sequence of state-input values at various
times on a pair of test trajectories. Detailed texture and features
have been preserved in the kNN-FLOW predictions, and the
generated robot poses closely match the ground truth images.
The DECONV outputs suffer from blurred reconstructions, as
expected, and do not manage to render certain components of
the robot arm (such as the end-effector). Quantitative results
are shown in Table I, where it is apparent that the model
outperforms the DECONV baseline in both mean L1 and RMS
pixel error.

RGB Error Mean L1 RMS
kNN-FLOW (ours) 0.01109 0.023097

DECONV (baseline) 0.03066 0.061374

TABLE I
FORWARD MODEL BASELINE COMPARISON.

C. Tracking Task Evaluation

Given a sequence of observations {o0,o1, ...,ot−1,ot}, we
wish to infer the corresponding sequences of state values
{x0,x1, ...,xt−1,xt} which includes the current state. This track-
ing task can be accomplished with a discriminative (inverse)
sensor model, which provides deterministic subspace values
independently of previously observed frames. An example of
tracking accuracy, using the model described in Section II-C, is
shown in Fig.4, which demonstrates frame-by-frame tracking
capability within a margin of 3-degrees from ground-truth
data.

We evaluate the accuracy of the EKF tracker on the same
test trajectories as the inverse model. A single-trajectory ex-
ample is shown in Figure 4 for 5 and 10-degrees mean-offsets
at t = 0, where the ground-truth joint values are identical to
those shown for the inverse model. The results demonstrate
the ability of the tracker to converge the state estimate to the
true trajectory over time, given an initial prior.

The stability of the tracking is highly dependent on the
quality of the generated images. Discontinuities arise from
the non-parametric component of the observation model, as se-
lected nearest-neighbors may abruptly change during a tracked
trajectory. Although this effect is mitigated by using a softmax
mask for weighting of nearest-neighbor-flow outputs, these
sudden jumps in the value of the Jacobian and residual terms
can lead to aberrations in the tracking performance.

The comparatively high robustness of the inverse model in
tracking is further demonstrated by estimating the state of
an arbitrary nonlinear test trajectory shown in Figure 5. No
latent dynamics model is assumed here, and state estimates
are produced independently given a currently observed frame.

IV. CONCLUSIONS

A framework for tracking and prediction has been proposed,
which consists of separate models for purposes of state estima-
tion and generation of future observations. Beginning with the
task of frame prediction, a non-parametric approach is taken
to warping reference frames to generate novel instances of
the scene. In both a quantitative and qualitative sense, this
generative network produces improved results over the deconv-
net baseline.

For state-estimation and tracking, it is shown that the
generative observation model can be used in an EKF-based
framework to perform probabilistic inference on the underly-
ing latent state, and track the manipulator state over a simple
trajectory.

For this given dataset, the object is essentially fully-
observed, with limited instances of self-occlusion. As such,
it is shown that using a straight-forward discriminative model



Fig. 4. Inferred joint state values using (a) the inverse model, and the forward sensor model in an EKF update for a (b) 5-degree and (c) 10-degree offset
from ground-truth at t = 0.

Fig. 5. Inferred joint state values from a sequence of RGB images using
inverse sensor model for an arbitrary trajectory.

for tracking outperforms the filtered approach. However, in
a scene containing many instances of partial or full object
occlusion, an approach which models latent-state dynamics
may be favorable over the use of a discriminative, inverse
model.

V. FUTURE WORK

In training our models on state-observation pairs, we have
assumed that ground-truth state measurements are reliably
obtained from joint encoders through low-velocity operation.
In future work, training data will be collected using a high-
fidelity motion-capture system to collect ground-truth joint
displacement values. New data sets will also be comprised
of scenes containing partial or total occlusion of the manipu-
lator, to further demonstrate the tracking performance of the
framework.
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