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Abstract

We present an end-to-end learning system for agile, off-road autonomous driving
using only low-cost on-board sensors. By imitating an optimal controller, we train
a deep neural network control policy to map raw, high-dimensional observations
to continuous steering and throttle commands, the latter of which is essential to
successfully drive on varied terrain at high speed. Compared with recent approaches
to similar tasks, our method requires neither state estimation nor online planning
to navigate the vehicle. Real-world experimental results demonstrate successful
autonomous driving, matching the state-of-the-art performance.

1 Introduction

High-speed autonomous off-road driving is a challenging robotics problem [1, 2, 3]. To succeed in
this task, a robot is required to perform both precise steering and throttle maneuvers in a physically-
complex, uncertain environment by executing a series of high-frequency decisions. Compared
with most previously studied autonomous driving tasks, the robot must reason about unstructured,
stochastic natural environments and operate at high speed. Consequently, designing a control policy
by following the traditional model-plan-then-act approach [1, 4] becomes challenging, as it is difficult
to adequately characterize the robot’s interaction with the environment a priori.

This task has been considered previously, for example, by Williams et al. [2, 3] using model-predictive
control (MPC). While the authors demonstrate impressive results, their internal control scheme relies
on expensive and accurate Global Positioning System (GPS) and Inertial Measurement Unit (IMU)
for state estimation and demands high-frequency online replanning for generating control commands.
Due to these costly hardware requirements, their robot can only operate in a rather controlled
environment.

We aim to relax these requirements by designing a reflexive driving policy that uses only low-cost,
on-board sensors (e.g. camera, wheel speed sensors). Building on the success of deep reinforcement
learning (RL) [5, 6], we adopt deep neural networks (DNNs) to parametrize the control policy and
learn the desired parameters from the robot’s interaction with its environment. While the use of
DNNs as policy representations for RL is not uncommon, in contrast to most previous work that
showcases RL in simulated environments [6], our agent is a high-speed physical system that incurs
real-world cost: collecting data is a cumbersome process, and a single poor decision can physically
impair the robot and result in weeks of time lost while replacing parts and repairing the platform.
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Table 1: Comparison of our method to prior work on end-to-end learning for autonomous driving
Methods Tasks Observations Action Algorithm Experiment

[7] On-road low-speed Single image Steering Batch Real &simulated
[8] On-road low-speed Single image & laser Steering Batch Real &simulated
[9] On-road low-speed Single image Steering Batch Simulated
[10] Off-road low-speed Left & right images Steering Batch Real
[11] On-road unknown speed Single image Steering + break Online Simulated
Our

Method Off-road high-speed Single image +
wheel speeds

Steering
+ throttle

Batch &
online

Real &
simulated

Therefore, direct application of model-free RL techniques is not only sample inefficient, but costly
and dangerous in our experiments.

These real-world factors motivate us to adopt imitation learning [8] to optimize the control policy
instead. A major benefit of using imitation learning is that we can leverage domain knowledge
through expert demonstrations. This is particularly convenient, for example, when there already exists
an autonomous driving platform built through classic system engineering principles. While such a
system (e.g. the MPC controller using a pre-trained dynamics model and a state estimator based on
high-end sensors in [2]) usually requires expensive sensors and dedicated computational resources,
with imitation learning we can train a lower-cost robot to behave similarly, without carrying the
expert’s hardware burdens over to the learner. Note that here we assume the expert is given as a
black box oracle that can provide the desired actions when queried, as opposed to the case considered
in [12] where the expert can be modified to accommodate to the learning progress.

In this work, we present an end-to-end learning system for real-world high-speed off-road driving
tasks. By leveraging demonstrations from an algorithmic expert, our system can learn a control
policy that achieves similar performance as the expert. The system was implemented on a 1/5-scale
autonomous rally car. In real-world experiments, we show that our rally car—without any state
estimator or online planning, but with a DNN policy that directly inputs sensor measurements from a
low-cost monocular camera and wheel speed sensors—could learn to perform high-speed navigation
at an average speed of∼6 m/s and a top speed of∼8 m/s, matching the state of the art performance [3].

Related Work: End-to-end learning for self-driving cars has been explored since late 1980’s.
Autonomous Land Vehicle in a Neural Network (ALVINN) [8] was developed to learn steering angles
directly from camera and laser range measurements using a neural network with a single hidden layer.
Based on similar ideas, modern self-driving cars [10, 7, 9] have recently started to employ a batch
imitation learning approach: parameterizing control policies with DNNs, these systems require only
human driver demonstrations during the training phase and on-board measurements during the testing
phase. For example, Nvidia’s PilotNet [7], a convolutional neural network that outputs steering angle
given an image, was trained to mimic human drivers’ reaction to visual input with demonstrations
collected in real-world road tests. A Dataset Aggregation (DAgger) [13] related online imitation
learning algorithm for autonomous driving was recently demonstrated in [11], but only considered
simulated environments.

Our problem differs substantially from these previous driving tasks. We study autonomous driving on
a fixed set of dirt tracks, whereas on-road driving must perform well in a larger domain and contend
with moving objects such as cars and pedestrians. While on-road driving in urban environments
may seem more difficult, our agent must overcome challenges of a different nature. It is required
to drive at a high speed, and prominent visual features such as lane markers are absent. Compared
with paved roads, the surface of our dirt tracks are constantly evolving and highly stochastic. As a
result, to successfully perform high-speed driving in our task, high-frequency decision and execution
of both steering and throttle commands are required. Previous work only focuses on steering
commands [10, 7, 9]. A comparison of different imitation learning approaches to autonomous driving
is presented in Table 1.

Our task is most similar to the task considered by Williams et al. [2, 3] and Drews et al. [14].
Compared with a DNN policy, their MPC approach has several drawbacks: computationally expensive
optimization for planning is required to be performed online at high-frequency and the learning
component is not end-to-end. In [2, 3], accurate GPS and IMU feedbacks are also required for state
estimation, which may not contain sufficient information to contend with the changing environment
in off-road driving tasks. While the requirement on GPS and IMU is relaxed by using a vision-based
cost map in [14], a large dataset (300,000 images) was used to train the model, expensive on-the-fly
planning is still required, and speed performance is compromised. In contrast to previous work, our
approach off-loads the hardware requirements to an expert. While the expert may use high-quality
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sensors and more computational power, our agent only needs access to low cost on-board sensors and
its control policy can run reactively in high frequency, without on-the-fly planning and optimization.
Additionally, our experimental results match that in [2, 3] and are faster and more data efficient than
that in [14].

2 From Reinforcement Learning to Imitation Learning

To design a policy for off-road autonomous driving, we formulate policy optimization as a rein-
forcement learning problem and then show how a policy can be learned via imitation learning.

2.1 Problem Definition

To mathematically formulate the autonomous driving task, it is natural to consider a discrete-time
continuous-valued RL problem. Let S, A, and O be the state, action, and the observation spaces. In
our setting, the state space is unknown to the agent; observations consist of on-board measurements,
including a monocular RGB image from the front-view camera and wheel speeds from Hall effect
sensors; actions consist of continuous-valued steering and throttle commands. The goal is to find a
stationary deterministic policy π : O 7→ A (e.g. a DNN policy) such that π achieves low accumulated
cost over a finite horizon of length T

min
π
J(π) := min

π
Eρπ

[
T−1∑
t=0

c(st, at)

]
(1)

in which ρπ is the distribution of st ∈ S, ot ∈ O, and at ∈ A under policy at = π(ot), for t = 1 . . . T .
Here c(st, at) is the instantaneous cost, which, for example, encourages maximal speed driving while
staying on the track. For notations, we denote Qtπ(s, a) as the Q-function at time t under policy π
and V tπ = Ea∼π[Qtπ(s, a)] as its associated value function.

2.2 Imitation Learning

Directly optimizing (1) is challenging for high-speed off-road autonomous driving. Since our task
involves a physical robot, model-free RL techniques are intolerably sample inefficient and have the
risk of permanently damaging the car when applying a partially-optimized policy in exploration.
Although model-based RL may require fewer samples, it can lead to suboptimal, potentially unstable,
results because it is difficult for a model that uses only on-board measurements to fully capture the
complex dynamics of off-road driving.

Considering these limitations, we propose to solve for the policy π by imitation learning. We assume
the access to an oracle policy or expert π∗ to generate demonstrations during the training phase,
which relies on resources that are unavailable in the testing phase, e.g. additional sensors and
computation. For example, the expert can be a computationally intensive optimal controller that relies
on exteroceptive sensors not available at test time (e.g. GPS for state estimation), or an experienced
human driver.

Online imitation learning [13] is a recent approach to learn policies that can perform as well as the
expert with an error that has at most linear dependency on T . Its objective function for continuous
action spaces (as required in the autonomous driving task) is as follows:

min
π

Eρπ

[
T∑
t=1

ĉ(st, at)

]
. (2)

in which π∗ is an expert to (1), and ĉ(st, at) = Ea∗t∼π∗ [‖at − a
∗
t ‖]. Solving this objective function

can be shown to minimize an upper bound of J(π)− J(π∗). The details of the derivation is given
in Appendix, which simplifies the derivation in [13] and extends it to continuous action spaces as
required in the autonomous driving task.

This surrogate problem is comparatively more structured than the original RL problem (1), so we
can adopt algorithms with provable performance guarantees. In this paper, we use the meta-learning
algorithm DAgger [13], which reduces (11) to a sequence of supervised learning problems: Let D
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Figure 1: System diagram

Figure 2: The DNN control policy
be the training data. DAgger initializes D with samples gathered by running π∗. Then, in the ith
iteration, it trains πi by supervised learning,

πi = argmin
π

ED[ĉ(st, at)], (3)

where subscript D denotes empirical data distribution. Next it runs πi to collect more data, which is
then added into D to train πi+1. The procedure is repeated for O(T ) iterations and the best policy,
in terms of (11), is returned. Suppose the policy is linearly parametrized and ot = xt. Since our
instantaneous cost ĉ(st, ·) is strongly convex, the theoretical analysis of DAgger applies. Therefore,
running DAgger to solve (11) finds a policy π with performance J(π) ≤ J(π∗) +O(T ), achieving
our initial goal.

In contrast to the surrogate problem in online imitation learning (11), batch imitation learning [8, 10,
7, 9] is a standard supervised learning problem

min
π

Eρπ∗

[
T∑
t=1

c̃π(s
∗
t , a
∗
t )

]
, (4)

where the expectation is defined by a fixed policy π∗. Further analysis of online and batch learning
approaches to imitation learning can be found in Appendix.

3 The Autonomous Driving System

Building on the analyses in the previous section, we design a system that can learn to perform fast
off-road autonomous driving with only on-board measurements. The overall system architecture
for learning end-to-end DNN driving policies is illustrated in Fig. 1. It consists of three high-level
controllers (an expert, a learner, and a safety control module) and a low-level controller, which
receives steering and throttle commands from the high-level controllers and translates them to
pulse-width modulation (PWM) signals to drive the steering and throttle actuators of a vehicle.

We assume the expert is algorithmic and has access to expensive sensors (GPS and IMU) for accurate
global state estimates6 and resourceful computational power. The expert is built on multiple hand-
engineered components, including a state estimator, a dynamics model of the vehicle, a cost function

6Global position, heading and roll angles, linear velocities, and heading angle rate.
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of the task, and a trajectory optimization algorithm for planning (see Section 3.1). By contrast, the
learner is a DNN policy that has access to only a monocular camera and wheel speed sensors and
is required to output steering and throttle command directly (see Section 3.2). In this setting, the
sensors that the learner uses can be significantly cheaper than that of the expert; specifically on our
experimental platform, the AutoRally car (see Section 3.3), the IMU and the GPS sensors required
by the expert in Section 3.1 together cost more than $6,000, while the sensors used by the learner’s
DNN policy cost less than $500. The safety control module has the highest priority among all three
controllers and is used prevent the vehicle from high-speed crashing.

The software system was developed based on the Robot Operating System (ROS) in Ubuntu. In
addition, a Gazebo-based simulation environment [15] was built using the same ROS interface but
without the safety control module; the simulator was used to evaluate the performance of the system
before real track tests.

3.1 Algorithmic Expert with Model-Predictive Control

We use an MPC expert [16] based on an incremental Sparse Spectrum Gaussian Process (SSGP)
dynamics model (which was learned from 30 minute-long driving data) and an iSAM2 state estima-
tor [17]. To generate actions, the MPC expert solves a finite horizon optimal control problem for
every sampling time: at time t, the expert policy π∗(at|st) is a locally optimal policy such that

π∗(at|st) ≈ argmin
π

Eρπ

[
t+Th∑
τ=t

c(sτ , aτ )|st

]
(5)

where Th is the length of horizon it previews.

The computation is realized by the trajectory optimization algorithm, Differential Dynamic Pro-
gramming (DDP) [18]: in each iteration of DDP, the system dynamics and the cost function are
approximated quadratically along a nominal trajectory; then the Bellman equation of the approximate
problem is solved in a backward pass to compute the control law; finally, a new nominal trajectory is
generated by applying the updated control law through the dynamics model in a forward pass. Upon
convergence, DDP returns a locally optimal control sequence {â∗t , ..., â∗t+Th−1}, and the MPC expert
executes the first action in the sequence as the expert’s action at time t (i.e. a∗t = â∗t ). This process is
repeated at every sampling time.

3.2 Learning a DNN Control Policy

The learner’s control policy π is parametrized by a DNN containing ∼10 million parameters. As
illustrated in Fig. 2, the DNN policy, consists of two sub-networks: a convolutional neural network
(CNN) with 6 convolutional layers, 3 max-pooling layers and 2 fully-connected layers that takes
160×80 RGB monocular images as inputs7, and a feedforward network with a fully-connected hidden
layer, that takes wheel speeds as inputs. The convolutional and max-pooling layers are used to extract
lower-dimensional features from images. The DNN policy uses 3 × 3 filters for all convolutonal
layers, and rectified linear unit (ReLU) activation for all layers except the last one. Max-pooling
layers with 2× 2 filters are integrated to reduce the spatial size of the representation (and therefore
reduce the number of parameters and computation loads). The two sub-networks are concatenated
and then followed by another fully-connected hidden layer. The structure of this DNN was selected
empirically based on experimental studies of several different architectures.

In construction of the surrogate problem for imitation learning, the action space A is equipped with
‖ · ‖1 for filtering outliers, and the optimization problem defined in (2.2) is solved using ADAM [19],
which is a stochastic gradient descent algorithm with an adaptive learning rate. The neural network
policy does not use the state, but rather the synchronized raw observation ot, as input. Note that we
did not perform any data selection or augmentation techniques in any of the experiments. The only
pre-processing was scaling and cropping raw images.

3.3 The Autonomous Driving Platform

To validate our imitation learning approach to off-road autonomous driving, the system was
implemented on a custom-built, 1/5-scale autonomous AutoRally car (weight 22 kg; LWH
1m×0.6m×0.4m), shown in the top figure in Fig. 3. The car was equipped with an ASUS mini-ITX

7The raw images from the camera were re-scaled to 160× 80.
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Figure 3: The AutoRally car and the test track.

motherboard, an Intel quad-core i7 CPU, 16GB RAM, a Nvidia GTX 750ti GPU, and a 11000mAh
battery. For sensors, two forward facing machine vision cameras8, a Hemisphere Eclipse P307
GPS module, a Lord Microstrain 3DM-GX4-25 IMU, and Hall effect wheel speed sensors were
instrumented. In addition, an RC transmitter could be used to remotely control the vehicle by a
human, and a physical run-stop button was installed to disable all motions in case of emergency.

In the experiments, all computation was executed on-board the vehicle in real-time. In addition, an
external laptop was used to communicate with the on-board computer remotely via Wi-Fi to monitor
the vehicle’s status. The observations were sampled and action were executed at 50 Hz to account for
the high-speed of the vehicle and the stochasticity of the environment. Note this control frequency is
significantly higher than [7] (10 Hz), [9] (12 Hz), and [10] (15 Hz).

4 Experimental Setup
High-speed Navigation Task: We tested the performance of the proposed imitation learning system
in Section 3 in a high-speed navigation task with a desired speed of 7.5 m/s. The performance index
of the task was formulated as the cost function in the finite-horizon RL problem (1) with

c(st, at) = α1costpos(st) + α2costspd(st) + α3costslip(st) + α3costact(at), (6)

in which costpos favors the vehicle to stay in the middle of the track, costspd drives the vehicle to
reach the desired speed, costslip stabilizes the car from slipping, and costact inhibits large control
commands (see Appendix for details).

The goal of the high-speed navigation task to minimize the accumulated cost function over one-minute
continuous driving. That is, under the 50-Hz sampling rate, the task horizon was set T = 3, 000. The
cost information (6) was given to the MPC expert in Fig. 1 to perform online trajectory optimization
with a two-second preview horizon (i.e. Th = 100). In the experiments, the weighting in (6) were set
as α1 = 2.5, α2 = 1, α3 = 100 and α4 = 60, so that the MPC expert in Section 3.1 could perform
reasonably well. The learner’s policy was tuned by online/batch imitation learning in attempts to
match the expert’s performance.
Test Track: All the experiments were performed on an elliptical dirt track, shown in the bottom
figure of Fig. 3, with the AutoRally car described in Section 3.3. The test track was ∼3m wide and
∼30m long and built with fill dirt. Its boundaries were surrounded by soft HDPE tubes, which were
detached from the ground, for safety during experimentation. Due to the changing dirt surface, debris
from the track’s natural surroundings, and the shifting track boundaries after car crashes, the track
condition and vehicle dynamics can change from one experiment to the next, adding to the complexity
of learning a robust policy.
Data Collection: Training data was collected in two ways. In batch imitation learning, the MPC
expert was executed, and the camera images, wheel speed readings, and the corresponding steering
and throttle commands were recorded. In online imitation learning, a mixture of the expert and
learner’s policy was used to collect training data (camera images, wheel speeds, and expert actions): in
the ith iteration of DAgger, a mixed policy was executed at each time step π̂i = βiπ∗+(1−βi)πi−1,
where πi−1 is learner’s DNN policy after i − 1 DAgger iterations, and βi is the probability of
executing the expert policy. The use of a mixture policy was suggested in [13] for better stability.
A mixing rate β = 0.6 was used in our experiments. Note that the probability of using the expert
decayed exponentially as the number of DAgger iterations increased. Experimental data was collected

8In this work we only used one of the cameras.
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(a) MPC expert
(b) Batch learning (c) Online learning

Figure 4: Examples of vehicle trajectories. (a) Demonstration of the MPC expert. (b) Crashing case
when using batch imitation learning. (c) The vehicle avoids crashing when using online imitation
learning. Subfigures (b) and (c) depict test runs of the policies after training on 9,000 samples

Table 2: Test statistics. Total loss denotes the imitation loss in (11), which is the average of the
steering and the throttle losses. Completion ratio is defined as the ratio of the traveled time steps
to the targeted time steps (3,000). All results here represent the average performance over three
independent evaluation trials.

Policy Avg. speed Top speed Training data Completion ratio Total loss Steering / Throttle loss

Expert 6.05 m/s 8.14 m/s NA 100 % 0 0
Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124
Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055
Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071
Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083

Online (1 iter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 iter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055

on an outdoor track, and consisted on changing lighting conditions and environmental dynamics. In
the experiments, the rollouts about to crash were terminated remotely by overwriting the autonomous
control commands with the run-stop button or the RC transmitter in the safety control module; these
rollouts were excluded from the data collection.
Policy Learning: In online imitation learning, three iterations of DAgger were performed. At each
iteration, the robot executed one rollout using the mixed policy described above (the probabilities
of executing the expert policy were 60%, 36%, and 21%, respectively). For a fair comparison, the
amount of training data collected in batch imitation learning was the same as all of the data collected
over the three iterations of online imitation learning. At each training phase, the optimization problem
was solved by ADAM for 20 epochs, with mini-batch size 64, and a learning rate of 0.001. Dropouts
were applied at all fully connected layers to avoid over-fitting (with probability 0.5 for the firstly fully
connected layer and 0.25 for the rest). See Section 3.2 for details. Finally, after the entire learning
session of a policy, three rollouts were performed using the learned policy for performance evaluation.

5 Experimental Results
Online vs Batch Learning: We first study the performance of training a control policy with online
and batch imitation learning algorithms. Fig. 4 illustrates the vehicle trajectories of different policies.
Due to accumulating errors, the policy trained with batch imitation learning crashed into the lower-left
boundary, an area of the state space-action rarely explored in the expert’s demonstrations. On the
contrary, online imitation learning let the policy learn to successfully cope with corner cases as the
learned policy occasionally ventured into new areas of the state-action space.

Fig. 6a shows the performance in terms of distance traveled without crashing9 and Table 2 shows
the statistics of the experimental results. Overall, DNN policies trained with both online and batch
imitation learning algorithms were able to achieve a similar speed as the MPC expert. However,
with the same amount of training data, the policies trained with online imitation learning in general
outperformed those trained with batch imitation learning. In particular, the policies trained using
online imitation learning achieved better performance in terms of both completion ratio and imitation
loss. It is worth noting that the traveled distance of the policy learned with a batch of 3,000 samples
was longer than that of other batch learning policies. As shown in Table 2, this is mainly because
this policy achieved better steering performance than throttle performance. As a result, although
the vehicle was able to navigate without crashing, it actually traveled at a much slower speed. By

9We used the safe control module shown in Fig. 1 to manually terminate the rollout when the car crashed
into the soft boundary.
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(a) raw image (b) max-pooling1 (c) max-pooling2 (d) max-pooling3

Figure 5: From left to right: input RGB image, averaged feature maps for each max-pooling layer.

(a) (b)

Figure 6: (a) Performance of online and batch imitation learning in the distance (meters) traveled
without crashing. The policy trained with a batch of 3,000 samples was used to initialize online
imitation learning. (b) Performance comparison between our DNN policy and its CNN sub-network
in terms of batch imitation learning loss, where the horizontal axis is the size of data used to train the
neural network policies.

contrast, the batch learning policies that used more data had better throttle performance and worse
steering performance, resulting in faster speeds but higher chances of crashing.

Deep Neural Network Policy: One main feature of a DNN policy is that it can learn to extract both
low-level and high-level features of an image and automatically detect the parts that have greater
influence on steering and throttle. We validate this idea by showing in Fig. 5 the averaged feature
map at each max-pooling layer (see Fig. 2), where each pixel represents the averaged unit activation
across different filter outputs. We can observe that at a deeper level, the detected salient objects are
boundaries of the track and parts of a building. Grass and dirt contribute little to the DNN’s output.

We also analyze the importance of incorporating wheel speeds in our task. We compare the per-
formance of the policy based on our DNN policy and a policy based on only the CNN subnetwork
(without wheel-speed inputs) in batch imitation learning. The data was collected in accordance with
Section 4. Fig. 6b shows the batch imitation learning loss of different network architectures. The
full DNN policy in Fig. 2 achieved better performance consistently. While images contain position
information, it is insufficient to infer velocities. Therefore, we conjecture state-of-the-art CNNs (e.g.
[7]) cannot be directly used in this task. By contrast, while without a recurrent architecture, our DNN
policy learned to combine wheel speeds in conjunction with CNN to infer hidden state and achieve
better performance.

6 Conclusion

We introduce an end-to-end learning system to learn deep neural network driving policies that map
raw on-board observations to steering and throttle commands by mimicking an expert’s behavior. In
real-world experiments, our system was able to perform fast off-road navigation autonomously at an
average speed of ∼6 m/s and a top speed of ∼8 m/s, while only using low-cost monocular camera
and wheel speeds sensors. Our current and future work include developing more complex policy
representations, such as recurrent neural networks, and to improve robustness to visual distractions.
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A Imitation Learning

Directly optimizing (1) is challenging for high-speed off-road autonomous driving. Since our task involves a
physical robot, model-free RL techniques are intolerably sample inefficient and have the risk of permanently
damaging the car when applying a partially-optimized policy in exploration. Although model-based RL may
require fewer samples, it can lead to suboptimal, potentially unstable, results because it is difficult for a model
that uses only on-board measurements to fully capture the complex dynamics of off-road driving.

Considering these limitations, we propose to solve for the policy π by imitation learning. We assume the access
to an oracle policy or expert π∗ to generate demonstrations during the training phase, which relies on resources
that are unavailable in the testing phase, e.g. additional sensors and computation. For example, the expert can be
a computationally intensive optimal controller that relies on exteroceptive sensors not available at test time (e.g.
GPS for state estimation), or an experienced human driver.

The goal of imitation learning is to perform as well as the expert with an error that has at most linear dependency
on T . Formally, we introduce a lemma due to Kakade and Langford [20] and define what we mean by an expert.

Lemma 1. Define dπ(s) =
∑T−1
t=0 dtπ(s) as an unnormalized stationary state distribution, where dtπ is the

distribution of state at time t when running policy π. Let π and π′ be two policies. Then

J(π) = J(π′) + Es∼dπEa∼π[Atπ′(s, a)] (7)

where Atπ′(s, a) = Qtπ′(s, a)− V tπ′(s) is the advantage function at time t with respect to running π′.

Definition 1. A policy π∗ is called an expert to problem (1) ifCπ∗ = supt∈[0,T−1],s∈S Lip
(
Qtπ∗(s, ·)

)
∈ O(1)

independent of T , where Lip(f(·)) denotes the Lipschitz constant of function f and Qtπ∗(s, a) is the Q-function
at time t of running policy π∗.

The idea behind Definition 1 is that an expert policy π∗ should perform stably under arbitrary action perturbation
with respect to the cost function c(·, ·), regardless of where it starts.10 As we will see in Section A.3, this
requirement provides guidance for whether to choose batch learning vs. online learning to train a policy by
imitation.

A.1 Online Imitation Learning

We now present the objective function for the online learning [21] approach to imitation learning, which simplifies
the derivation in [13] and extends it to continuous action spaces as required in the autonomous driving task.
Although our goal here is not to introduce a new algorithm, but rather to give a concise introduction to online
imitation learning, we found that a connection between online imitation learning and DAgger-like algorithms [13]
in continuous domains has not been formally introduced. DAgger has only been used heuristically in these
domains as in [22, 11].

Assume π∗ is an expert to (1) and suppose A is a normed space with norm ‖ · ‖. Let DW (·, ·) denote the
Wasserstein metric [23]: for two probability distributions p and q defined on a metric spaceM with metric d,

DW (p, q) := sup
f :Lip(f(·))≤1

Ex∼p[f(x)]− Ex∼q[f(x)] (8)

= inf
γ∈Γ(p,q)

∫
M×M

d(x, y)dγ(x, y), (9)

where Γ denotes the family of distributions whose marginals are p and q. It can be shown by the Kantorovich-
Rubinstein theorem that the above two definitions are equivalent [23]. These assumptions allow us to construct a
surrogate problem, which is relatively easier to solve than (1). We achieve this by upper-bounding the difference
between the performance of π and π′ given in Lemma 1:

J(π)− J(π∗)

= Est∼dπ
[
Eat∼π[Qtπ∗(st, at)]− Ea∗t∼π∗ [Q

t
π∗(st, a

∗
t )]
]

≤ Cπ∗Est∼dπ [DW (π, π∗)]

≤ Cπ∗Est∼dπEat∼πEa∗t∼π∗ [‖at − a
∗
t ‖], (10)

where we invoke the definition of advantage function Atπ∗(st, at) = Qtπ∗(st, at)− Ea∗t∼π∗ [Q
t
π∗(st, a

∗
t )], the

first and the second inequalities is due to (8) and (9), respectively.

10We define the expert here using an uniform Lipschitz constant because the action space in our task is
continuous; for discrete action spaces, Lip

(
Qtπ∗(s, ·)

)
can be replaced by supa∈AQ

t
π∗(s, a) and the rest

applies.
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Define ĉ(st, at) = Ea∗t∼π∗ [‖at − a
∗
t ‖]. Thus, to make π perform as well as π∗, we can minimize the upper

bound, which is equivalent to solving a surrogate RL problem

min
π

Eρπ

[
T∑
t=1

ĉ(st, at)

]
. (11)

The optimization problem (11) is called the online imitation learning problem. This surrogate problem is
comparatively more structured than the original RL problem (1), so we can adopt algorithms with provable
performance guarantees. In this paper, we use the meta-learning algorithm DAgger [13], which reduces (11)
to a sequence of supervised learning problems: Let D be the training data. DAgger initializes D with samples
gathered by running π∗. Then, in the ith iteration, it trains πi by supervised learning,

πi = arg min
π

ED[ĉ(st, at)], (12)

where subscript D denotes empirical data distribution. Next it runs πi to collect more data, which is then added
into D to train πi+1. The procedure is repeated for O(T ) iterations and the best policy, in terms of (11), is
returned. Suppose the policy is linearly parametrized and ot = xt. Since our instantaneous cost ĉ(st, ·) is
strongly convex, the theoretical analysis of DAgger applies. Therefore, together with the assumption that π∗ is
an expert, running DAgger to solve (11) finds a policy π with performance J(π) ≤ J(π∗) +O(T ), achieving
our initial goal.

We note here the instantaneous cost ĉ(st, ·) can be selected to be any suitable norm according the problem’s
property. In our off-road autonomous driving task, we find l1-norm is preferable (e.g. over l2-norm) for its
ability to filter outliers in a highly stochastic environment.

A.2 Batch Imitation Learning

By swapping the order of π and π∗ in the above derivation in (10), we can derive another upper bound and use it
to construct another surrogate problem: define c̃π(s∗t , a

∗
t ) = Eat∼π[‖at − a∗t ‖] and Ctπ(s∗t ) = Lip(Qtπ(s∗t , ·)),

then

J(π)− J(π∗)

= Es∗t∼dπ∗
[
Eat∼π[Qtπ(s∗t , at)]− Ea∗t∼π∗ [Q

t
π(s∗t , a

∗
t )]
]

≤ Es∗t∼dπ∗Ea∗t∼π∗
[
Ctπ(s∗t )c̃π(s∗t , a

∗
t )
]
. (13)

where we use again Lemma 1 for the equality and the property of Wasserstein distance for inequality. The
minimization of the upper-bound (13) is called batch imitation learning problem [7, 9]:

min
π

Eρπ∗

[
T∑
t=1

c̃π(s∗t , a
∗
t )

]
, (14)

In contrast to the surrogate problem in online imitation learning (11), batch imitation learning reduces to a
supervised learning problem, because the expectation is defined by a fixed policy π∗.

A.3 Comparison of Imitation Learning Algorithms

Comparing (10) and (13), we observe that in batch imitation learning the Lipschitz constant Ctπ(s∗t ), without
π being an expert, can be on the order of T − t in the worst case. Therefore, if we take a uniform bound and
define Cπ = supt∈[0,T−1],s∈S C

t
π(s), we see Cπ ∈ O(T ). In other words, under the same assumption in online

imitation, i.e. (13) can be minimized to an error that depends linearly on T , the difference between J(π) and
J(π∗) in batch imitation learning can actually grow quadratically in T due to error compounding. Therefore, in
order to achieve the same level of performance as online imitation learning, batch imitation learning requires a
more expressive policy class or more demonstration samples. As shown in [13], the quadratic bound is tight.

Therefore, if we can choose an expert policy π∗ that is stable in the sense of Definition 1, then online imitation
learning is preferred theoretically. This is satisfied, for example, when the expert policy is an algorithm with
certain performance characteristics. On the contrary, if the expert is human, the assumptions required by online
imitation learning becomes hard to realize in real-road off-road driving tasks. Because humans rely on real-time
sensory feedback (as in sampling from ρπ∗ but not from ρπ) to generate ideal expert actions, the action samples
collected in the online learning approach using ρπ are often biased and inconsistent [24]. This is especially true
in off-road driving tasks, where the human driver depends heavily on instant feedback from the car to overcome
stochastic disturbances. Therefore, the frame-by-frame labeling approach [22], for example, can lead to a very
counter-intuitive, inefficient data collection process, because the required dynamics information is lost in a
single image frame. Overall, when using human demonstrations, online imitation learning can be as bad as batch
imitation learning [24], just due to inconsistencies introduced by human nature.
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B Cost Function

The position cost costpos(s) for the high-speed navigation task is a 16-term cubic function of the vehicle’s global
position (x, y):

costpos(s) = c0 + c1y + c2y
2 + c3y

3 + c4x+ c5xy

+c6xy
2 + c7xy

3 + c8x
2 + c9x

2y + c10x
2y2 + c11x

2y3

+c12x
3 + c13x

3y + c14x
3y2 + c15x

3y3.

This coefficients in this cost function were identified by performing a regression to fit the track’s boundary: First,
a thorough GPS survey of the track was taken. Points along the inner and the outer boundaries were assigned
values of −1 and +1, respectively, resulting in a zero-cost path along the center of the track. The coefficient
values ci were then determined by a least-squares regression of the polynomials in costpos(s) to fit the boundary
data.

The speed cost costspd = ‖vx − vdesired‖2 is a quadratic function which penalizes the difference between the
desired speed vdesired and the longitudinal velocity vx in the body frame. The side slip angle cost is defined as
costslip(s) = − arctan2(

vy
‖vx‖ ), where vy is the lateral velocity in the body frame. The action cost is a quadratic

function defined as costact(a) = γ1a1 + γ2a2, where a1 and a2 correspond to the steering and the throttle
commands, respectively. In the experiments, γ1 = 1 and γ2 = 1 were selected.
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