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Abstract— In this paper, we attack the problem of learn-

ing a predictive model of a depth camera and manipulator

directly from raw execution traces. While the problem of

learning manipulator models from visual and proprioceptive

data has been addressed before, existing techniques often rely

on assumptions about the structure of the robot or tracked

features in observation space. We make no such assumptions.

Instead, we formulate the problem as that of learning a high-

dimensional controlled stochastic process. We leverage recent

work on nonparametric predictive state representations to learn

a generative model of the depth camera and robotic arm

from sequences of uninterpreted actions and observations. We

perform several experiments in which we demonstrate that

our learned model can accurately predict future depth camera

observations in response to sequences of motor commands.

I. INTRODUCTION

One of the most fundamental challenges in robotics is
the general identification problem [1]1: a robot, capable of
performing a set of actions a 2 A and receiving observations
o 2 O, is placed in an unknown environment. The robot
has no interpretation for its actions or observations and no
knowledge of the structure of the environment (Fig. 1).
The problem is to program the robot to learn about its
observations, actions, and environment well enough to make
predictions of future observations given sequences of actions.
In other words, the goal is to learn a generative model of the
observations directly from raw execution traces.

In this paper we investigate an instance of the general
identification problem: A robot observes a manipulator under
its control with a Kinect RGB-D camera. The goal is to
learn a generative model of RGB-D observations as the robot
controls its manipulator (Figure 2).

While the problem of learning manipulator models, or
body schemas, from visual and proprioceptive modalities
has been addressed before, existing techniques rely critically
on assumptions about the kinematic structure of the robot
and tracked features in observation space [2]–[5]. Here, we
address this problem in its most challenging instance: The
observations are streams of raw depth images (1.2 million
pixels), and the robot has no prior knowledge about what it
is controlling.
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1The general identification problem was first proposed by Ron Rivest in
1984 and originally called the Critter Problem
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Fig. 1. The problem setup. The robot has access to uninterpreted streams
of continuous observations and actions. We do not make any assumptions
about the observations that the robot receives, the actions the robot can
execute, or the structure of the environment.

We approach this difficult problem from a machine learn-
ing perspective. We dispense with problem-dependent geo-
metric and physical intuitions and instead model the senso-
rimotor data as a Predictive State Representation (PSR) [6],
[7], a general probabilistic modeling framework that can rep-
resent a wide variety of stochastic process models including
Kalman filters (KFs) [8], input output hidden Markov models
(IO-HMMs) [9], [10], and nonparametric dynamical system
models [11].

The main contribution of our work is to show that a
recent nonparametric variant of PSRs, called Hilbert Space
Embeddings of PSRs, can learn a generative model of the
RGB-D camera and robotic arm directly from sequences
of uninterpreted actions and observations. This problem is
far more difficult than the simulated problems explored
in previous PSR work [10], [12]–[14]. Additionally, the
manipulator used in our experiments has many additional
degrees of freedom compared to the systems considered in
recent work on bootstrapping in robotics [15]–[17].

We run several experiments that show qualitative examples
of our learned model tracking the current state of the system
and predicting future RGB-D images given motor com-
mands. We also provide rigorous quantitative results which
demonstrate that our learned model is more accurate than
competing nonparametric methods at tracking and predicting
RGB-D observations given previously unseen sequences of
motor commands. To the best of our knowledge this is the
first work to learn a model of a depth camera and manipulator
directly from raw execution traces.

II. RELATED WORK

Variations of the general identification problem are central
to several fields of research, although the assumptions made
by different communities are often very different.

In the controls community, the problem of inferring the
unknown parameters of an input-output system is called
system identification [18]–[20]. The system can be deter-
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Fig. 2. Observations and Actions. The robot receives sense data from
a Kinect RGB-D depth camera, but has no knowledge of the geometry
of the scene or the physics of the camera. The robot can control a 7–
degree-of-freedom Barrett WAM arm, but has no a priori knowledge of
the geometry, kinematics, or any aspects of the action space of the arm.
(A) An example 640 ⇥ 480 ⇥ 3 RGB image. (B) An example 640 ⇥
480 depth map. Darker indicates increased distance. Together, the RGB-
D observation vector has 1228800 elements. (C) The 7 degree-of-freedom
arm. Each action is a continuous-valued 7-dimensional vector. (D) Examples
of actions executed: 1000 continuous motor encoder values from the training
data set. (See Section V for details)

ministic, stochastic, or combined. Usually, either the form
of the system (linear, bilinear, etc.), the state space, or the
dynamics are assumed to be known in advance. If the system
has a stochastic component, the noise is generally assumed
to be sampled from a Gaussian distribution.

The robotics community has typically approached the
problem of learning a generative model of sensor data, called
bootstrapping, from a deterministic viewpoint, focusing on
the geometry and kinematics of the observation and action
spaces. Proposed solutions have focused on the topology of
the environment [21], the manifold structure of observation
space [22], or diffeomorphisms that describe the effect of
taking actions [17]. Although these approaches have been
developed specifically for robotic systems, they often make
very strong assumptions about the form of (or lack of)
stochasticity, the observability of the state space, or the geo-
metric structure of the observations, actions, or environment.

The bootstrapping problem can also be viewed as an
extreme form of system identification or self-calibration [15].
And, over the last several years, substantial progress has been
made on these problems. For example: learning complex
nonlinear forward kinematics to predict the consequences of
actions [23], [24], or learning body schemas that integrate

the visual and proprioceptive modalities to discover the
kinematic structure of a robot [2]–[4]. While these techniques
are able to learn accurate models, they rely heavily on
assumptions about the kinematic structure of the robot and
tracked features in visual space.

In the machine learning community, where probabilistic
models play a central role, the identification problem is typ-
ically concerned with learning the parameters of a controlled
stochastic process that generated the observations [11], [25],
[26]. Predictive State Representations (PSRs) [6], [7] are an
example of such a stochastic process model.

PSRs were originally developed in the reinforcement
learning community and explicitly designed to solve the
general identification problem. They have several advantages
over previous approaches to bootstrapping in robotics. First,
PSRs are more expressive than methods like the Spatial
Semantic Hierarchy [21] and Diffeomorphism models of
sensorimotor cascades [17], and the theory behind PSRs
is mature: their subsumption of popular classes of latent
variable models is well understood [7]. Second, PSR models
are easy to learn. Popular latent variable models of stochastic
processes are often learned using heuristics such as Expecta-
tion Maximization (EM), which suffer from bad local optima
and slow convergence rates. Recent PSR learning algorithms
rely on spectral methods [10], [27] and kernel methods [11]
which are statistically consistent.

Unfortunately, evaluation of PSRs have long been re-
stricted to learning fairly simple “grid-world” type simulated
environments [10], [12]–[14], a fact which has lead to the
perception that PSRs are not flexible enough, or that PSR
learning algorithms are not efficient enough, to represent
high-dimensional raw sensorimotor data [17]. However, in
the last few years PSRs and PSR-like models have experi-
enced a marked resurgence as increasingly powerful learning
algorithms have been developed [10], [11], [27]–[29].

III. PREDICTIVE STATE REPRESENTATIONS

We begin by providing a brief overview of predictive
state representations [7], [10] which we use as a generic
framework for tackling the general identification problem.

A. Predictive State
A PSR represents the state of a dynamical system as a set

of predictions of experiments or tests that can be performed
in the system. A test of length N is an ordered sequence of
future action-observations pairs ⌧ = a1, o1, . . . aN , oN that
can be selected and observed at any time t.

A test ⌧i is executed at time t if we intervene [30] to
select the sequence of actions specified by the test ⌧Ai =

a1, . . . , aN . A test is said to succeed at time t if it is executed
and the sequence of observations in the test ⌧Oi = o1, . . . , oN
matches the observations generated by the system. The
prediction for test i at time t is the probability of the test
succeeding given a history ht and given that we execute it:2

P
⇥
⌧Oi,t | ⌧Ai,t, ht

⇤
(1)

2For simplicity, we assume that all probabilities involving actions refer
to our PSR as controlled by an arbitrary blind or open-loop policy [31].



The key idea behind a PSR is that if we know the expected
outcomes of executing all possible tests, then we know
everything there is to know about the state of a dynamical
system [7]. In practice we will work with the predictions of
some set of tests. Let T = {⌧i} be a set of d tests, then

s(ht) =
�
P
⇥
⌧Oi,t | ⌧Ai,t, ht

⇤�d
i=1

(2)

is the prediction vector of success probabilities for the tests
⌧i 2 T given a history ht.

Knowing the success probabilities of some tests may allow
us to compute the success probabilities of other tests. That
is, given a test ⌧l and a prediction vector s(ht), there may
exist a prediction function f⌧l such that P

⇥
⌧Ol | ⌧Al , ht

⇤
=

f⌧l(s(ht)). In this case, we say s(ht) is a sufficient statistic
for P

⇥
⌧Ol | ⌧Al , ht

⇤
. A core set of tests is a set whose predic-

tion vector s(ht) is a sufficient statistic for the predictions
of all tests ⌧l at time t. Therefore, s(ht) is a state for a PSR.

B. Bayes Filtering
After taking action a and seeing observation o, we can

update the predictive state s(ht) to the state s(ht+1) using
Bayes’ rule. The key idea is that the set of functions F allows
us to predict any test from our core set of tests.

The state update proceeds as follows: first, we predict the
success of any core test ⌧i prepended by an action a and an
observation o, which we call ao⌧i, as a function of our core
test predictions s(ht):

P
⇥
⌧Oi,t+1, ot=o | ⌧Ai,t+1, at=a, ht

⇤
= fao⌧i(s(ht)) (3)

Second, we predict the likelihood of any observation o given
that we select action a (i.e., the test ao):

P [ot = o | at = a, ht] = fao(s(ht)) (4)

After executing action a and seeing observation o, Equa-
tions 3 and 4 allow us to find the prediction for a core test
⌧i from s(ht) using Bayes’ Rule:

si(ht+1) =
fao⌧i(s(ht))

fao(s(ht))
(5)

This recursive application of Bayes’ rule to the predictive
belief state is an instance of a Bayes filter.

The predictive state and the Bayes’ rule state update
together provide a very general framework for modeling
dynamical systems. In the next section we show how a
recent variant of PSRs can be used to learn models of
dynamical systems with high-dimensional continuous actions
and observations.

IV. HILBERT SPACE EMBEDDINGS OF PSRS

PSRs generally either assume small discrete sets of actions
A and observations O along with linear prediction func-
tions f⌧ 2 F [10], or if the actions and observations are
continuous, they assume Gaussian distributions and linear
functions [8]. Researchers have relied heavily on these as-
sumptions in order to devise computationally and statistically
efficient learning algorithms. Unfortunately, such restrictions
can be particularly unsuitable for robotics applications.

Instead, we consider a recent generalization of PSRs for
continuous actions and observations called Hilbert Space
Embeddings of PSRs (HSE-PSRs) [11]. The essence of the
method is to represent probability distributions of tests, ob-
servations, and actions as elements in a Hilbert space of func-
tions, defined through a chosen kernel. The distributions are
learned nonparametrically from samples and no assumptions
are made about the shape of the underlying distributions.
This results in an extremely flexible model. A HSE-PSR
is capable of modeling non-linear dynamics and estimating
multi-modal distributions for continuous or discrete random
variables without having to contend with problems such as
density estimation and numerical integration. During filtering
these points are conceptually updated entirely in Hilbert
space using a kernel version of Bayes’ rule. In practice, the
“kernel trick” is leveraged to represent the state and required
operators implicitly and to maintain a state vector with length
proportional to the size of the training dataset.

In the following subsections, we provide a very brief
overview HSE-PSRs. We ask the reader to refer to [11] for
a more complete treatment.

A. Hilbert Space Embeddings of Distributions
Let F be a reproducing kernel Hilbert space (RKHS)

associated with kernel KX(x, x0
)

def
=

⌦
�X

(x),�X
(x0

)

↵
F for

x 2 X . Let P be the set of probability distributions on
X , and X be a random variable with distribution P 2 P .
Following Smola et al. [32], we define the mean map (or
the embedding) of P 2 P into RKHS F to be µX

def
=

E
⇥
�X

(X)

⇤
. A characteristic RKHS is one for which the

mean map is injective: that is, each distribution P has
a unique embedding [33]. This property holds for many
commonly used kernels including the Gaussian RBF kernel
when X = Rd. Given i.i.d. observations xt, t = 1 . . . T , an
estimate of the mean map is:

µ̂X
def
=

1

T

TX

t=1

�X
(xt) =

1

T
⌥

X1T (6)

where ⌥

X def
= (�X

(x1), . . . ,�
X
(xT )) is the linear operator

which maps the tth unit vector of RT to �X
(xt).

Below, we’ll sometimes need to embed a joint distribution
P[X,Y ]. It is natural to embed P[X,Y ] into a tensor product
RKHS: let KY (y, y

0
) =

⌦
�Y

(y),�Y
(y0)

↵
G be a kernel on Y

with associated RKHS G. Then we write µXY for the mean
map of P[X,Y ] under the kernel KXY ((x, y), (x

0, y0)) def
=

KX(x, x0
)KY (y, y

0
) for the tensor product RKHS F ⌦ G.

We also define the uncentered covariance operator CXY
def
=

EXY

⇥
�X

(X)⌦ �Y
(Y )

⇤
. Both µXY and CXY represent the

distribution P [X,Y ]. One is defined as an element of F⌦G,
and the other as a linear operator from G to F , but they
are isomorphic under the standard identification of these
spaces [34], so we abuse notation and write µXY = CXY .
Given T i.i.d. pairs of observations (xt, yt), define ⌥

X
=�

�X
(x1), . . . ,�

X
(xT )

�
and ⌥

Y
=

�
�Y

(y1), . . . ,�
Y
(yT )

�
.

Write ⌥

⇤ for the adjoint of ⌥. Analogous to (6), we can
estimate



bCXY =

1

T
⌥

X
⌥

Y ⇤
. (7)

B. Kernel Bayes’ Rule

We now define the kernel mean map implementation of
Bayes’ rule (called the Kernel Bayes’ Rule, or KBR). In
particular, we want the kernel analog of P [X | y, z] =

P [X, y | z] /P [y | z]. In deriving the kernel realization of
this rule we need the kernel mean representation of a condi-
tional joint probability P [X,Y | z]. Given Hilbert spaces F ,
G, and H corresponding to the random variables X , Y , and Z
respectively, P [X,Y | z] can be represented as a mean map
µXY |z

def
= E

⇥
�X

(X)⌦ �Y
(Y ) | z

⇤
or the corresponding

operator CXY |z . Under some assumptions [34], this operator
satisfies:

CXY |z = µXY |z
def
= C(XY )ZC�1

ZZ�(z) (8)

Here the operator C(XY )Z represents the covariance of the
random variable (X,Y ) with the random variable Z. We
now define KBR in terms of conditional covariance opera-
tors [34]:

µX|y,z = CXY |zC�1
Y Y |z�(y) (9)

To use KBR in practice, we need to estimate the
operators on the RKHS of (9) from data. Given
T i.i.d. triples (xt, yt, zt) from P [X,Y, Z], write ⌥

X
=�

�X
(x1), . . . ,�

X
(xT )

�
, ⌥Y

=

�
�Y

(y1), . . . ,�
Y
(yT )

�
, and

⌥

Z
=

�
�Z

(z1), . . . ,�
Z
(zT )

�
. We can now estimate the

covariance operators bCXY |z and bCY Y |z via Equation 8 and
then apply KBR via Equation 9. We express this process
with Gram matrices, using a ridge parameter � that goes to
zero at an appropriate rate with T [34]:

⇤z = diag((GZ,Z + �TI)�1
⌥

Z⇤
�Z

(z)) (10)
cWX|Y,z = ⌥

X
(⇤zGY,Y + �TI)�1

⇤z⌥
Y ⇤

(11)

bµX|y,z =

cWX|Y,z�Y
(y) (12)

where GY,Y
def
= ⌥

Y ⇤
⌥

Y has (i, j)th entry KY (yi, yj),
and GZ,Z

def
= ⌥

Z⇤
⌥

Z has (i, j)th entry KZ(zi, zj). The
diagonal elements of ⇤z weight the samples, encoding the
conditioning information from z.

C. Nonparametric Representation of PSRs

We now use Hilbert space embeddings to represent predic-
tive states and kernel Bayes’ rule to update the distributions
given a new action and observation.

1) Parameters: HSE-PSR models are represented non-
parametrically as Gram matrices of training data. Given
T + 1 i.i.d. tuples of actions, observations, and histories
{(at, ot, ht)}Tt=1 generated by a controlled stochastic pro-
cess, we denote

⌥

A def
=

�
�A

(a1), . . . ,�
A
(aT )

�
(13)

⌥

O def
=

�
�O

(o1), . . . ,�
O
(oT )

�
(14)

along with Gram matrices GA,A = ⌥

A⇤
⌥

A and GO,O =

⌥

O⇤
⌥

O. We also define test embeddings

⌥

T def
=

�
�T

(h1), . . . ,�
T
(hT )

�
(15)

⌥

T 0 def
=

�
�T

(h2), . . . ,�
T
(hT+1)

�
(16)

along with Gram matrices GT ,T = ⌥

T ⇤
⌥

T and GT ,T 0
=

⌥

T ⇤
⌥

T 0. Here primes indicate tests shifted forward in time
by one step. The Gram matrices are the parameters for our
nonparametric dynamical system model. We will use them
below in order to create an initial feasible state as well as
update the state with KBR.

2) Estimating a Feasible State: We estimate an initial
feasible state S⇤ for the HSE-PSR as the mean map of the
stationary distributions of tests ⌥

T ↵h⇤ where

↵h⇤ =

1

T
1T (17)

Therefore, the initial state is the vector ↵h⇤ with length equal
to the size of the training dataset.

3) Gram Matrix State Updates: Given a HSE-PSR state
↵t, kernel Bayes’ rule is applied to update state given a new
action and observation. Updating consists of several steps.

The first step is extending the test distribution [11]. A
transition function which accomplishes this is computed
(GT ,T +�TI)�1GT ,T 0 . The transition is applied to the state

↵̂t = (GT ,T + �TI)�1GT ,T 0↵t (18)

resulting in a weight vector ↵̂t encodes the embeddings of
the extended test predictions at time t.

Given a diagonal matrix ⇤t = diag(↵̂t), and a new action
at, we can condition the embedded test predictions by right-
multiplying

↵a
t = ⇤t(GA,A+�TI)�1

⌥

A⇤
�A

(at) (19)

The weight vector ↵a
t encodes the embeddings of the ex-

tended test predictions at time t given action at.
Next, given a diagonal matrix ⇤

a
t = diag(↵a

t ), and a new
observation ot, we apply KBR to calculate the next state:

↵ao
t = (⇤

a
tGO,O + �TI)�1

⇤

a
t⌥

O⇤
�O

(ot) (20)

This completes the state update. The nonparametric state at
time t+ 1 is represented by the weight vector ↵t+1 = ↵ao

t .
We can continue to filter on actions and observations by
recursively applying Eqs. 18–20.

V. MODELING A DEPTH CAMERA & MANIPULATOR

A. The Experimental Setup
In this work, we seek to enable a robotic system to

autonomously learn a generative model of RGB-D images
collected from a depth camera that observes the robot’s
manipulation space. Our robot consists of a Kinect depth
camera observing a Barrett WAM arm located approximately
1.5 meters away. The robot can execute actions and receive
observations at a rate of 30 frames per second.

At each point in time, the robot executes a motor command
to each of the 7 active joints in the arm (see Figure 2(B)).
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Fig. 3. Motor encoder and kinematic error. (A) Motor encoder error caused
by cable stretch in Joint 4 of the WAM arm. The motor encoder returns joint
position estimates that deviate from the true joint positions as a stochastic
function of torque. The higher the torque, the more the motor encoders err.
(B) The arm in four configurations. In each configuration, the encoders and
forward kinematics erroneously predict the same hand pose. To show the
deviation, a ball is attached to the end effector. The center-to-center distance
between the two farthest ball positions is approximately 8 cm. (Figure in
(B) from [35])

For each joint, the motor command specifies a desired
joint configuration. The exact movement is a function of
the commanded target configuration and the controller’s
estimate of the current joint position as provided by the
arm’s motor encoders. After executing a motor command,
the robot receives an RGB-D observation from the depth
camera. Each observation is a vectorized 640⇥480⇥3 pixel
RGB image and a time-aligned 640 ⇥ 480 pixel depth map
(see Figure 2(A)).

If the motor encoders and RGB-D images were accurate
enough, then it would be possible to precisely specify a
generative model of the RGB-D images given the true
configuration of the arm joints and known geometry and
kinematics. Unfortunately, this is not the case. Both the
actions and observations contain error due to unmodeled
physics in the arm’s movements, inaccuracies in the motor
encoders, and limitations of the depth camera.

An important example of unmodeled physics is cable
stretch. The WAM am is driven by cables which wind and
unwind as the arm moves. Under differing torques, the cables
are wound with differing tensions causing inaccuracies in the
joint angles reported by the motor encoders (Figure 3(A)).
This results in hysteresis in the reported angles and ultimately
in inaccurate predictions of the arm’s location in 3D space
(Figure 3(B)).

Many of the factors contributing to inaccuracies in the
sensor and robot arm can be mitigated by building higher
precision parts. However, for many cheaper robots, at least
some form of error is likely to affect actions and observa-

tions. Modeling a robot as a stochastic process is a natural
framework for contending with these errors.

B. Learning the Model

1) Data Collection: The training data consisted of vec-
torized RGB-D observations in response to motor babbling:
we randomly moved the arm at different velocities to po-
sitions randomly sampled from a uniform distribution in
the 7D configuration space (with some velocity and joint-
limit constraints). We collected a long execution trace of
30,000 actions and observations; or roughly 16 minutes of
data. This data was used as training data for our HSE-PSR
algorithm. A sequence of 2000 similarly collected actions
and observations were held out as test data.

This is a very large quantity of training data. Previous
work on learning HSE-PSRs learned models from ⇠ 500

training data samples [11]. The quantity of training data was
kept low in these prior experiments due to the computational
complexity in learning, predicting, and filtering, each of
which is O(T 3

) in the number of samples. Given the physical
complexity of the robot considered here, it would be very
difficult to learn an accurate model from so few training
examples (500 samples is ⇠ 15 seconds of data). To over-
come this problem, we use a standard trick for computing
a sparse representation of Hilbert space embeddings via an
incomplete Cholesky approximation [36], [37]. This reduced
the computational complexity of our state updates from an
intractable 30000

3 to a more reasonable 1000

3.
2) State: The core component of our dynamical system

model is the predictive state. We model the robot with 1-step
tests. That is, each test is an action-observation pair ⌧ =

a1, o1 that can be executed and observed at each time t. The
state of the robot is, therefore, the probability distributions
of the next RGB-D images in response to motor commands:
P[ot | at, ht].

The predictive distributions are represented nonparamet-
rically as Hilbert space embeddings. The Gram matrices
GO,O, GA,A, GT ,T and GT ,T 0 were computed using Gaus-
sian RBF kernels and bandwidth parameters set by the
median of squared distance between training points (the
“median trick”) [28]. Finally, the initial state was set to the
stationary distribution of observations given our data collec-
tion policy: ↵h⇤ =

1
T 1T (Eq. 17). Given these parameters

and Eqs. 18–20, we can filter and predict observations from
our model.

3) Predicting: We have described above how to implicitly
maintain the PSR state nonparametrically as a set of weights
on training data. However, our ultimate goal is to make
predictions about future observations. We can do so with
mean embeddings: for example, given the extended state
↵̂t (Eq. 18) at some history ht, we fill in an action using
Eq. 19 to find the mean embedding of the distribution of
observations:

µO|ht,at
= ⌥

O↵a
t (21)

Once we have the embedding of the predictive distribution,
we have two options for efficiently computing a prediction.
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Fig. 4. Example predictions from the learned HSE-PSR model. We can calculate the expected observation or the Maximum A Posteriori observation
from an embedding of the probability distribution over the next observation given that we take a specific action. The two columns on the left show the
two predictions after filtering for 195 time steps. The two columns on the right show the two predictions after filtering for 930 time steps. The bottom row
shows the actual observation. The expected observation is the weighted average of many images in the training data set. The MAP observation is the the
highest probability observation in the training data set. Both are able to predict the actual observation well.

We can either compute the maximum a posteri (MAP) obser-
vation from the embedded distribution or we can compute the
expected observation. The MAP observation is computed:

ô = argmax

o

⌦
µO|h,a,�O

(o)
↵

However, the number of possible observations for our robot
is very large, so this maximization is not tractable in practice;
instead, we approximate it by using the standard approach
of maximizing over all observations in the training set [11].

We can also compute the expectation of our embedded
distribution of observations. Since the mean embedding µX

satisfies EX [f(x)] = hf, µXi for any f in our RKHS, we
can write ⇡i(ot) for the function which extracts the ith
coordinate of an observation. If these coordinate projections
are in our RKHS, we can compute E[ot|ht, at], the expected
observation, by computing the inner product

⌦
⇡i, µO|ht,at

↵

for all i. Examples of MAP and expected observations
calculated from embedded tests are shown in Figure 4.

VI. QUANTITATIVE RESULTS

We designed several experiments to illustrate the behavior
of the HSE-PSR and to rigorously evaluate the learned
model’s predictive accuracy. All evaluations are performed
on heldout data consisting of random trajectories that were
never observed in the training data.

Specifically, we studied the filtering or tracking perfor-
mance of the model as the robot executes motor commands
and receives RGB-D observations. We also studied the

long-range predictive accuracy of the model in response to
sequences of motor commands.

Finally, we compared the learned HSE-PSR model to
several nonparametric function approximation methods for
mapping motor commands directly to observations. We show
that the learned dynamical system model greatly outperforms
the non-dynamic methods by learning to accurately track the
state of the robot.
A. Filtering Accuracy

First we studied the filtering performance of the HSE-
PSR. As the learned model executes actions and receives
observations, the model’s prediction accuracy should in-
crease. Additionally, the process of filtering should help to
overcome error in the reported joint angles and observations
(see Section V-A), leading to more accurate predictions than
models which do not take history into account.

To test this hypothesis, we performed filtering over se-
quences of 100 actions and observations, comparing the pre-
dictive accuracy of the model as measured by mean squared
error (MSE) in the prediction of the next observation given
the current action. We then compared to a baseline provided
by kernel regression from motor commands to observations.
We trained kernel regression on the same dataset as the HSE-
PSR and used Gaussian RBF kernels. The squared error of
the predictions was averaged over 1000 trials (Figure 5(A)).

As expected, the model quickly incorporates information
from the actions and observations to accurately track the
state of the system. 1-step predictions indicate that the model
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Fig. 5. Accuracy of the learned model. Mean Squared Error (MSE) is computed by taking the squared difference between predicted and true depth maps
(at the pixel level) for 1000 experiments. (A.) Filtering for 100 time steps starting from the stationary distribution. The graph shows the mean squared
error in the prediction of the next observation given that we take a specified action. The HSE-PSR model decreases its prediction error over time, and,
once it is accurately tracking the system, is able to substantially outperform kernel regression which does not model dynamics. (B.) Predicting forward
100 time steps. After filtering, we used the learned model to predict 100 time steps into the future using only actions (no observations). The graph shows
the mean squared error of these predictions. Prediction error increases over time until the prediction accuracy is close to the accuracy of kernel regression.
This shows that long rang predictions are no worse than kernel regression and short term predictions are much more accurate. (C.) Example of filtering:
The distribution of observations becomes more concentrated as the robot begins to accurately track its state. (D.) Example of long-range predictions: The
distribution of observations becomes more uniform as the robot’s uncertainty increases over time.

soundly outperforms kernel regression while tracking. An
example of expected depth maps during filtering is shown
in Figure 5(C). The sharpening of the predicted images
indicates that the variance of the embedded distribution is
shrinking.

B. Long-range Prediction Accuracy

Next we consider the motivating problem of this paper:
Can we make accurate long range predictions of what
the depth camera will see given that the robot executes
a sequence of motor commands? We expect the predictive
performance of the model to degrade over time, but long
range prediction performance should not be worse than non-
parametric regression models which do not take history or
dynamics into account.

To test this hypothesis, we performed filtering for 1000
different extents t1 = 101, ..., 1100, and then predicted ob-
servations a further t2 steps in the future, for t2 = 1, ..., 100,
using the given sequence of actions. We then averaged the
squared prediction error over all t1. Again, we compared to
kernel regression with Gaussian RBF kernels learned on the
training data set. The squared error of the predictions was
averaged over 1000 trials (Figure 5(B)).

The prediction accuracy of the learned model degrades
over time, as expected. However, the model continues to

produce predictions that are more accurate than kernel re-
gression at 100 time steps into the future. An example
of expected depth map during prediction is shown in Fig-
ure 5(D). The blurring of the expected images indicates that
the variance of the embedded distribution is growing.

C. MAP vs. Expectation

In the previous experiments we measured prediction accu-
racy by looking at the expected observation given the HSE-
PSR state. We then compared this prediction with the result
of kernel regression which can be interpreted as the expected
observation given a motor command.

It often makes sense to consider the MAP observation
instead of the expected observation. (For a visual compari-
son, see Figure 4). For example, if the predictive distribution
is multimodal, then the MAP observation may result in a
more accurate prediction. Or, if we require a visualization
of the predictions, then MAP observations may provide a
qualitatively better looking prediction.

We compared four methods, the expected and MAP ob-
servation from our model as computed by Section V-B.3, as
well as their nonparametric regression counterparts: kernel
regression and nearest neighbor regression. The results are
shown in Figure 6. First, the results indicate that the HSE-
PSR produces much better predictions than the nonparamet-
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Fig. 6. Comparison of nonparametric approaches to predicting RGB-
D images. Mean Squared Error (MSE) computed by taking the squared
difference between predicted and true depth maps (at the pixel level) for
1000 experiments.

ric regression approaches. This result is likely attributable to
inacuracies in the motor commands. Second, the expected
observations have higher predictive accuracy than MAP
observations. This is likely due to the fact that the action and
observation spaces are high-dimensional and (approximately)
continuous. Since the MAP approaches are calculated with a
limited set of training samples, we cannot expect to always
have access to an observation in the training data set that is
very close to the observation that we wish to predict.

VII. CONCLUSION

In this paper we consider the problem of learning a
predictive model of a depth camera and manipular directly
from execution traces of RGB-D observations and motor
commands. We make as few assumptions about the system
as possible: the robot has no knowledge of its manipulator
and its goal is to predict raw observations. The fundamental
idea is to formulate the problem as learning a controlled
stochastic process and leverage recent work on Hilbert space
embeddings of predictive state representations in order to
learn the model. In real-world experiments, we showed that
our approach was able to handle high-dimensional data, to
learn complex nonlinear dynamics, and to overcome error
in the motor controller and depth camera to make accurate
predictions.
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