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Abstract
In many sequential prediction and decision-making problems such as Bayesian filtering and probabilistic model-based planning and
control, we need to cope with the challenge of prediction under uncertainty, where the goal is to compute the predictive distribution
p(y) given a input distribution p(x) and a probabilistic model p(y|x). Computing the exact predictive distribution is generally
intractable. In this work, we consider a special class of problems in which the input distribution p(x) is a multivariate Gaussian, and
the probabilistic model p(y|x) is learned from data and specified by a sparse spectral representation of Gaussian processes (SSGPs).

SSGPs are a powerful tool for scaling Gaussian processes (GPs) to large datasets by approximating the covariance function using
finite-dimensional random Fourier features. Existing SSGP algorithms for regression assume deterministic inputs, precluding their
use in many sequential prediction and decision-making applications where accounting for input uncertainty is crucial. To address this
prediction under uncertainty problem, we propose an exact moment-matching approach with closed-form expressions for predictive
distributions. Our method is more general and scalable than its standard GP counterpart, and is naturally applicable to multi-step
prediction or uncertainty propagation. We show that our method can be used to develop new algorithms for Bayesian filtering and
stochastic model predictive control, and we evaluate the applicability of our method with both simulated and real-world experiments.
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1 Introduction

The problem of prediction under uncertainty, appears in many fields of science and engineering that involve sequential prediction
and decision-making including state estimation, time series prediction, stochastic process approximation, and planning and control.
In these problems, uncertainty can be found in both the predictive models and the model’s inputs. Formally, we are often interested
in finding the probability density of a prediction y, given a distribution p(x) and a probabilistic model p(y|x). By marginalization,

p(y) =

∫
p(y|x)p(x) dx. (1)

Unfortunately, computing this integral exactly is often intractable. In this paper, we tackle a subfamily of (1) where: 1) the proba-
bilistic model is learned from data and specified by a sparse spectrum representation of a Gaussian process (SSGP); and 2) the input
x is normally distributed.

1.1 Related work

Gaussian Process (GP) inference with uncertain inputs has been addressed by [2, 8], and extended to the multivariate outputs by
[10]. These methods have led to the development of many algorithms in reinforcement learning [15, 4], Bayesian filtering [9, 6], and
smoothing [5]. However, these approaches have two major limitations: 1) they are not directly applicable to large datasets, due to the
polynomial (in data samples) time complexity for exact inference [16]; and 2) analytic moment expressions, when used, are restricted
to squared exponential (SE) or polynomial kernels [10] and cannot be generalized to other kernels in a straightforward way.

A common method for approximating large-scale kernel machines is through random Fourier features [14]. The key idea is to map
the input to a low-dimensional feature space yielding fast linear methods. In the context of GP regression (GPR), this idea leads to the
sparse spectrum GPR (SSGPR) algorithm [11]. SSGP has been extended in a number of ways for, e.g. incremental model learning
[7], and large-scale GPR [3]. However, to the best of our knowledge, prediction under uncertainty for SSGPs has not been explored.
Although there are several alternative approximations to exact GP inference including approximating the posterior distribution using
inducing points, comparing different GP approximations is not the focus of this paper.

1.2 Applications

We consider two problems that involve sequential prediction and decision-making: Bayesian filtering and stochastic model predictive
control (MPC). The goal of Bayesian filtering is to infer a hidden system state from observations through the recursive application of
Bayes’ rule. GP-based assumed density filtering (ADF) with SE kernels has been developed by [6], which has demonstrated superior
performance compared to other GP-based filters [9]. We extend this work with a highly efficient SSGP-based ADF approach.

The goal of stochastic MPC is to find finite horizon optimal control at each time instant. Due to the high computational cost of
GP inference and real-time optimization requirements in MPC, most GP-based control methods [4, 13] are restricted to episodic
reinforcement learning tasks. To cope with this challenge, we present an SSGP-based MPC approach that is fast enough to perform
optimization and model adaptation on-the-fly.

1.3 Our contributions

• We propose an exact moment-matching approach to prediction under uncertainty in SSGPs with closed-form expressions
for the predictive distribution. Compared to previous GP counterparts, our method: 1) is more scalable, and 2) can be
generalized to any continuous shift-invariant kernels with a Fourier feature representation.

• We demonstrate successful applications of the proposed approach to 1) recursive Bayesian filtering and 2) stochastic model
predictive control.

2 Sparse Spectral Representation of Gaussian Processes

Consider the task of learning the function f : Rd → R, given data D = {xi, yi}ni=1, with each pair related by

y = f(x) + ε, ε ∼ N (0, σ2
n), (2)

where ε is IID additive Gaussian noise. Gaussian process regression (GPR) is a principled way of performing Bayesian inference
in function space, assuming that function f has a prior distribution f ∼ GP(m, k), with mean function m : Rd → R and kernel
k : Rd ×Rd → R. Without loss of generality, we assume m(x) = 0. Exact GPR is challenging for large datasets due to its O(n3)
time and O(n2) space complexity [16], which is a direct consequence of having to store and invert an n× n Gram matrix.

Random features can be used to form an unbiased approximation of continuous shift-invariant kernel functions, and are proposed
as a general mechanism to accelerate large-scale kernel machines [14], via explicitly mapping inputs to low-dimensional feature
space. Based on Bochner’s theorem, the Fourier transform of a continuous shift-invariant positive definite kernel k(x, x′) is a proper
probability distribution p(ω) [14], which leads to an unbiased approximation of k: k(x, x′) ≈ 1

m

∑
φωi(x)φωi(x

′)∗, where random
frequencies {ωi}mi=1 are drawn IID from p(ω). Considering φω can be replaced by sinusoidal functions since both p(ω) and k(x, x′)
are reals, and concatenating features {φωi

}mi=1 into a succinct vector form, an approximation for k(x, x′) is expressed as:

1



k(x, x′) ≈ φ(x)Tφ(x′), φ(x) =

[
φc(x)
φs(x)

]
, φci (x) = σk cos(ωTi x), φsi (x) = σk sin(ωTi x), ωi ∼ p(ω), (3)

where σk is a scaling coefficient. For the commonly used Squared Exponential (SE) kernel: k(x, x′) = σ2
f exp(− 1

2‖x − x
′‖Λ−1),

p(ω) = N (0,Λ−1) and σk =
σf√
m

, where the coefficient σf and the diagonal matrix Λ are the hyperparameters. Spectral densities
p(ω) and scaling coefficients σk for other continuous shift-invariant kernels can be derived similarly. Based on the feature map, SSGP
is defined as
Definition 1. Sparse Spectrum GPs (SSGPs) are GPs with kernels defined on the finite-dimensional and randomized feature map φ
(3):

k̂(x, x′) = φ(x)Tφ(x′) + σ2
nδ(x− x′), (4)

where the function δ is the Kronecker delta function, to account for the additive zero mean Gaussian noise in (2).

Because of the explicit finite-dimensional feature map (3), each SSGP is equivalent to a Gaussian distribution over the weights of
features w ∈ R2m. Assuming that prior distribution of weights w is N (0,Σw), and the feature map is fixed, after conditioning on
the data D = {xi, yi}ni=1 the posterior distribution of w is

w ∼ N (α, σ2
nA
−1), α = A−1ΦY, A = ΦΦT + σ2

nΣ−1
α , (5)

which can be derived through Bayesian linear regression. In (5), the column vector Y and the matrix Φ are specified by the data D:
Y = [y1 . . . yn]

T , Φ = [φ(x1) . . . φ(xn)]. Consequently, the posterior distribution over the output y in (2) at a test point x is
exactly Gaussian, in which the posterior variance explicitly captures the model uncertainty in prediction with input x:

p(y|x) = N (αTφ(x), σ2
n + σ2

n‖φ(x)‖2A−1). (6)

This SSGP regression method is proposed in [11]. Its time complexity is O(nm2 + m3), which is significantly more efficient than
standard GPR’s O(n3) when m� n.

Remark: It’s worth noting that the method proposed in this paper is not tied to specific algorithms for SSGP regression such as linear
Bayesian regression [11], but accounts for any SSGP with specified feature weights distribution (5), where posterior α and A can be
computed by any means. Variations on A include sparse approximations by a low rank plus diagonal matrix, or iterative solutions by
optimization methods like doubly stochastic gradient descent [3].

3 Prediction under Uncertainty

We present an analytic moment-based approach to (1) under two conditions: 1) the uncertain input is normally distributed: x ∼
N (µ,Σ), and 2) probabilistic models are in the form of (6) specified by SSGPs. Despite these conditions, evaluating the integral
in (1) is still intractable. In this work, we approximate the true predictive distribution p(y) by a Gaussian via computation of the
exact moments in closed-form. We consider multivariate outputs by utilizing conditionally independent scalar models for each output
dimension, i.e., assuming for outputs in different dimension ya and yb, p(ya, yb|x) = p(ya|x)p(yb|x). For notational simplicity, we
suppress the dependency of φ(x) on x, and treat y as a scalar by default.

In the following we present our method, SSGP-exact moment matching (SSGP-EMM). We derive 1) the predictive mean E y; 2) the
predictive variance Var y and covariance Cov(ya, yb), which in the multivariate case correspond to the diagonal and off-diagonal
entries of the predictive covariance matrix; and 3) the cross-covariance between input and prediction Cov(x, y).

Using the expressions for SSGP (3), (6), and the law of total expectation, the predictive mean becomes

E y = EE(y|x) = E
(
αTφ

)
= αT E

[
φc

φs

]
, Eφci = σk E cos(ωTi x), Eφsi = σk E sin(ωTi x), (7)

where i = 1, . . . ,m, and in the nested expectation EE(y|x), the outer expectation is over the input distribution p(x) = N (µ,Σ),
and the inner expectation is over the conditional distribution p(y|x) (6).

By observing (7), we see that the expectation of sinusoids under the Gaussian distribution is the key to computing the predictive
mean. Thus we state the following proposition:
Proposition 1. The expectation of sinusoids over multivariate Gaussian distributions: x ∼ N (µ,Σ), x ∈ Rd, i.e., p(x) =

(2π)−
d
2 (det Σ)−

1
2 exp(− 1

2‖x− µ‖
2
Σ−1), can be computed analytically:

E cos(ωTx) = exp(−1

2
‖ω‖2Σ) cos(ωTµ), E sin(ωTx) = exp(−1

2
‖ω‖2Σ) sin(ωTµ).

The proof is omitted. The predictive mean (7), variance, and covariance between different outputs are derived using Proposition 1.
By the law of total variance, the predictive variance is

Var y = EVar(y|x) + VarE(y|x)αTΨα− (E y)2, (8)
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where Ψ is defined as the expectation of the outer product of feature vectors over input distribution p(x). Specifically, we compute
Ψ by applying the product-to-sum trigonometric identities:

E
(
φφT

)
= Ψ =

[
Ψcc Ψcs

Ψsc Ψss

]
, Ψcc

ij =
σ2
k

2

(
E
(
cos(ωi + ωj)

Tx
)

+ E
(
cos(ωi − ωj)Tx

))
,

Ψss
ij =

σ2
k

2

(
E
(
cos(ωi − ωj)Tx

)
−E

(
cos(ωi + ωj)

Tx
))
, Ψcs

ij =
σ2
k

2

(
E
(
sin(ωi + ωj)

Tx
)
−E

(
sin(ωi − ωj)Tx

))
(9)

where Ψcc,Ψss,Ψcs are m×m matrices, and i, j = 1, . . . ,m, on whose terms Proposition 1 can be directly applied.

Next we derive the covariance for different output dimensions for multivariate prediction. These correspond to the off-diagonal
entries of the predictive covariance matrix. We show that, despite the conditional independence assumption for different outputs
given a deterministic input, outputs become coupled with uncertain input. Using the law of total covariance, the covariance is:

Cov(ya, yb) = Cov (E(ya|x),E(yb|x)) = E (E(ya|x),E(yb|x))−(E ya)(E yb)= αTaΨabαb − (αTa Eφa)(αTb Eφb) (10)

where matrix Ψab is the expectation of the outer product of feature vectors corresponding to different feature maps φa, φb for outputs
ya, yb, computed similarly as in (3) with corresponding random frequencies {ωi}, and the scaling coefficient σk (3). αa and αb
are the corresponding weight vectors for ya and yb (6). Compared to the expression for the variance of a single output in (8), the
term E (Cov(ya|x)Cov(yb|x)) that is included in the law of total covariance is neglected due to the assumption of conditional
independence of different outputs (§2), so (10) does not have the corresponding first two terms in (8).

Finally, we compute the covariance between input and each output dimension. Invoking the law of total covariance:

Cov(x, y) = Cov(x,E(y|x)) = E (xE(y|x))− (Ex)(E y) = Υα− (E y)µ, (11)

where matrix Υ is the expectation of the outer product of the input x and the feature vector φ(x) over input distribution x ∼ N (µ,Σ):

E(xφT ) = Υ = [Υc
1 . . . Υc

m Υs
1 . . . Υs

m] , Υc
i = σk E

(
cos(ωTi x)x

)
, Υs

i = σk E
(
cos(ωTi x)x

)
,

where i = 1, . . . ,m. We state the following proposition to compute each column in Υ consisting of expectations of sinusoidal
functions and inputs.
Proposition 2. The expectation of the multiplication of sinusoids and linear functions over multivariate Gaussian distributions:
x ∼ N (µ,Σ), can be computed analytically:

E
(
cos(ωTx)x

)
=
(
E cos(ωTx)

)
µ− (E(sin(ωTx))Σω, E

(
sin(ωTx)x

)
=
(
E sin(ωTx)

)
µ+

(
E cos(ωTx)

)
Σω,

where the right-hand-side expectations have analytical expressions (Proposition 1).

The proof is omitted. Next, the result is extended to E
(
x cos(ωTx)

)
, by setting a to consist of indicator vectors. Applying Proposition

1 and 2, we complete the derivation of Cov(x, y) in (11).

Method SSGP-EMM GP-EMM
Time O(m2k2d2) O(n2k2d2)
Applicable
kernels

continuous shift-
invariant kernels

SE kernels

Table 1: Comparison of our proposed methods
and GP-EMM [8, 10] in computational complex-
ity and generalizability.

Remark: SSGP-EMM’s computation complexity is O
(
m2k2d2

)
, where m is the

number of features, k is the output dimension, and d is the input dimension. Com-
pared to the multivariate moment-matching approach for GPs (GP-EMM) [8, 10] with
O
(
n2k2d2

)
time complexity, SSGP-EMM is more efficient when m� n. Moreover,

our approach is applicable to any positive-definite continuous shift-invariant kernel
with different spectral densities, while previous approaches like GP-EMM [10] are
only derived for squared exponential (SE) kernels 1.

4 Applications to Bayesian Filtering and Predictive Control

We focus on the application of the proposed methods to Bayesian filtering and predic-
tive control. We consider the following discrete-time nonlinear dynamical system:

xt+1 = f(xt, ut) + wt, wt ∼ N (0,Σw), yt = g(xt) + vt, vt ∼ N (0,Σv), (12)

where xt ∈ Rd is state, ut ∈ Rr is control, yt ∈ Rk is observation or measurement, wt ∈ Rd is IID process noise, vt ∈ Rk

is IID measurement noise, and subscript t denotes discrete time index. We consider scenarios where f and g are unknown but a
dataset D =

(
{(xt, ut), xt+1}n−1

t=1 , {xt, yt}nt=1

)
is provided. The dynamics model p(xt+1|xt, ut) is learned using state transition

pairs {(xt, ut), xt+1}n−1
t=1 , and the observation model p(yt|xt) is learned separately from state-observation pairs {xt, yt}nt=1.

Bayesian filtering: The task of Bayesian filtering is to infer the posterior distribution of the current state of a dynamical system based
on the current and past noisy observations, i.e., finding p(xt|t), where the notation xt|s denotes the random variable xt|y0, . . . , ys.
Due to the Markov property of the process x, i.e., xt|x0, . . . , xt−1 = xt|xt−1, in Gauss-Markov models, p(xt|t) can be computed

1Expressions for polynomial kernels can be derived similarly.
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recursively through an alternating prediction step and correction step. We use the proposed SSGP-EMM to propagate full densities
thorough the probabilistic dynamics and observation models instead of using linearization or finite-samples [9]. Our method is related
to GP-ADF [6] which is based on GP-EMM [8, 10]. However, our method is more scalable and general as discussed in §3. In order
to demonstrate the applicability of our method, we use a real-world state estimation task in high-speed autonomous driving on a dirt
track (Figure 1a). The goal is estimating the vehicle’s linear velocities, heading rate, and roll angle using only wheel speed sensors
and ground truth samples generated by integrating GPS and IMU data. Filtered distributions using 80 features are shown in Figure
1b, and Figure 1c shows the negative log-likelihood of state NLx for different number of features. Surprisingly, only a small number
of features is necessary for satisfactory results.

Model Predictive Control: The goal of stochastic model predictive control (MPC) is to choose a control sequence that minimizes the
expected cost, given a dynamics model and cost function. The main challenge of applying MPC in practice is efficient and accurate
multi-step prediction due to the lack of explicit and accurate models. GPs have been used for dynamics modeling and prediction in
control algorithms to cope with model uncertainty [4, 13]. However, these methods are restricted to off-line optimization due to the
computational burden of GP inference. On the other hand, more efficient methods usually drop the uncertainty in the probabilstic
model or input (1), e.g., iLQG-LD [12] uses Locally Weighted Projection Regression (LWPR), AGP-iLQR uses subset of regressors
(SoR) approximation for GPs [1]. In this work, we combine our proposed SSGP-EMM and trajectory optimization (similar to
[1, 12, 13]) for MPC. In addition, the SSGP dynamics model is updated incrementally. We demonstrate the performance of our
algorithm using a simulated robotic arm manipulation task, in which our goal is tracking a moving target under dynamics variations.
We use 1200 samples and 50 features for model learning and compare our method with iLQG-LD [12] and AGP-iLQR [1]. Results
are shown in Figure (1d). Our method outperforms the other two because our multi-step predictions are more robust to model error.
More precisely, the other methods do not propagate the full densities through probabilistic models of the dynamics, as we do here.

(a) Autonomous driving task (b) Filtered distribution vs. ground truth (c) NLx vs. # of features

100 200 300 400 500 600 700 800
Time steps

101

102

103

C
o

st

iLQG-LD (LWPR)

AGP-iLQR (SoR-GP)

Our method (SSGP-EMM)

(d) Predictive control cost

Figure 1: (a) High-speed autonomous driving task. (b) All state trajectories, blue lines are the ground truth (30 seconds continuous
driving), red areas are filtered distributions. In (c), red is the mean and variance of the negative log-likelihood NLx for the 1200
filtering steps (30 seconds driving). (d) The total trajectory cost comparison for iLQG-LD [12], AGP-iLQR [1] and our method.

5 Conclusion

We introduced an analytic moment-based approach to prediction under uncertainty in sparse spectrum Gaussian processes (SSGPs).
Compared to its full GP counterpart [8, 10], our method is more general in terms of the choice of kernels, and is more scalable thanks
to the sparse spectrum representation (see Table 1). Although we adopt the name SSGP, our proposed method is not tied to specific
model learning methods such as linear Bayesian regression [11]. Our method is directly applicable to many sequential prediction and
decision-making problems that involve uncertain dynamical systems. We demonstrated the performance of our method in Bayesian
filtering and predictive control tasks using both real-world and simulated experiments.
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