
Incremental Sparse GP Regression for
Continuous-time Trajectory Estimation & Mapping

Xinyan Yan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

xinyan.yan@cc.gatech.edu

Vadim Indelman
Department of Aerospace Engineering

Technion - Israel Institute of Technology
Haifa, 32000, Israel

vadim.indelman@technion.ac.il

Byron Boots
Col1lege of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

bboots@cc.gatech.edu

Abstract—Recent work on simultaneous trajectory estimation
and mapping (STEAM) for mobile robots has found success
by representing the trajectory as a Gaussian process. Gaussian
processes can represent a continuous-time trajectory, elegantly
handle asynchronous and sparse measurements, and allow the
robot to query the trajectory to recover its estimated position
at any time of interest. A major drawback of this approach is
that STEAM is formulated as a batch estimation problem. In
this paper we provide the critical extensions necessary to trans-
form the existing batch algorithm into an efficient incremental
algorithm. In particular, we are able to speed up the solution
time through efficient variable reordering and incremental sparse
updates, which we believe will greatly increase the practicality of
Gaussian process methods for robot mapping and localization.
Finally, we demonstrate the approach and its advantages on both
synthetic and real datasets.

I. INTRODUCTION & RELATED WORK

Simultaneously recovering the location of a robot and a
map of its environment from sensor readings is a fundamental
challenge in robotics [17, 9, 1]. Well-known approaches to
this problem, such as square root smoothing and mapping
(SAM) [6], have focused on regression-based methods that ex-
ploit the sparse structure of the problem to efficiently compute
a solution. The main weakness of the original SAM algorithm
was that it was a batch method: all of the data must be
collected before a solution can be found. For a robot traversing
an environment, the inability to update an estimate of its
trajectory online is a significant drawback. In response to this
weakness, Kaess et al. [11] developed a critical extension to
the batch SAM algorithm, iSAM, that overcomes this problem
by incrementally computing a solution. The main drawback of
iSAM, was that the approach required costly periodic batch
steps for relinearization and variable reordering to maintain
sparsity. This approach was extended in iSAM 2.0 [12], which
employs an efficient data structure called a Bayes tree [13]
to perform incremental variable reordering and just-in-time
relinearization.

The majority of previous approaches to trajectory estimation
and mapping, including the smoothing-based SAM family of
algorithms, have formulated the problem in discrete time [15,
17, 9, 1, 6, 12, 3]. However, discrete-time representations
are restrictive: they are not easily extended to trajectories
with irregularly spaced waypoints or asynchronously sampled

measurements. A continuous-time formulation of the SAM
problem where measurements constrain the trajectory at any
point in time, would elegantly contend with these difficulties.
Viewed from this perspective, the robot trajectory is a function
x(t), that maps any time t to a robot state. The problem of
estimating this function along with landmark locations has
been dubbed simultaneous trajectory estimation and mapping
(STEAM) [2].

Tong et al. [18] proposed a Gaussian process (GP) regres-
sion approach to solving the STEAM problem. While their
approach was able to accurately model and interpolate asyn-
chronous data to recover a trajectory and landmark estimate,
it suffered from computational challenges: naive Gaussian
process approaches to regression have high space and time
complexity. Additionally, Tong et al.’s approach is a batch
method, so updating the solution necessitates saving all of the
data and completely resolving the problem. In order to combat
the computational burden, Tong et al.’s approach was extended
in Barfoot et al. [2] to take advantage of the sparse structure
inherent in the STEAM problem. The resulting algorithm
significantly speeds up solution time and can be viewed as
a continuous-time analog of Dellaert’s original square-root
SAM algorithm [6]. Unfortunately, like SAM, Barfoot et al.’s
GP-based algorithm remains a batch algorithm, which is a
disadvantage for robots that need to continually update the
estimate of their trajectory and environment.

In this work, we provide the critical extensions necessary
to transform the existing Gaussian process-based approach
to solving the STEAM problem into an extremely efficient
incremental approach. Our algorithm combines the benefits of
Gaussian processes and iSAM 2.0. Like the GP regression
approaches to STEAM, our approach can model continuous
trajectories, handle asynchronous measurements, and naturally
interpolate states to speed up computation and reduce storage
requirements, and, like iSAM 2.0, our approach uses a Bayes
tree to efficiently calculate a maximum a posteriori (MAP)
estimate of the GP trajectory while performing incremental
factorization, variable reordering, and just-in-time relineariza-
tion. The result is an online GP-based solution to the STEAM
problem that remains computationally efficient while scaling
up to large datasets.

II. BATCH TRAJECTORY ESTIMATION & MAPPING AS
GAUSSIAN PROCESS REGRESSION

We begin by describing how the simultaneous trajectory
estimation and mapping (STEAM) problem can be formulated
in terms of Gaussian process regression. Following Tong et
al. [18] and Barfoot et al. [2], we represent robot trajectories
as functions of time t sampled from a Gaussian process:

x(t) ∼ GP(µ(t),K(t, t′)), t0 < t, t′ (1)

Here, x(t) is the continuous-time trajectory of the robot
through state-space, represented by a Gaussian process with
mean µ(t) and covariance K(t, t′) functions.

We next define a finite set of measurements:

yi = hi(θi) + ni, ni ∼ N (0,Ri), i = 1, 2, ..., N (2)

The measurement yi can be any linear or nonlinear functions
of a set of related variables θi plus some Gaussian noise ni.
The related variables for a range measurement are the robot
state at the corresponding measurement time x(ti) and the
associated landmark location `j . We assume the total number
of measurements is N , and the number of trajectory states at
measurement times is M .

Based on the definition of Gaussian processes, any finite col-
lection of robot states has a joint Gaussian distribution [16]. So
the robot states at measurement times are normally distributed
with mean µ and covariance K.

x ∼ N (µ,K), x = [x(t1)ᵀ . . . x(tM)ᵀ]ᵀ

µ = [µ(t1)ᵀ . . . µ(tM)ᵀ]ᵀ, Kij = K(ti, tj)
(3)

Note that any point along the continuous-time trajectory can
be estimated from the Gaussian process model. Therefore, the
trajectory does not need to be discretized and robot trajectory
states do not need to be evenly spaced in time, which is an
advantage of the Gaussian process approach over discrete-time
approaches (e.g. Dellaert’s square-root SAM [6]).

The landmarks ` which represent the map are assumed to
conform to a joint Gaussian distribution with mean d and
covariance W (Eq. 4). The prior distribution of the combined
state θ that consists of robot trajectory states at measurement
times and landmarks is, therefore, a joint Gaussian distribution
(Eq. 5).

` ∼ N (d,W), ` = [`ᵀ1 `ᵀ2 . . . `ᵀO]ᵀ (4)

θ ∼ N (η,P), η = [µᵀ dᵀ]ᵀ, P = diag(K,W) (5)

To solve the STEAM problem, given the prior distribution of
the combined state and the likelihood of measurements, we
compute the maximum a posteriori (MAP) estimate of the
combined state conditioned on measurements via Bayes’ rule:

θ∗ , θMAP = argmax
θ

p(θ|y) = argmax
θ

p(θ)p(y|θ)

p(y)

= argmax
θ

p(θ)p(y|θ) = argmin
θ

(− log p(θ)− log p(y|θ))

= argmin
θ

(
‖θ − η‖2P + ‖h(θ)− y‖2R

)
(6)

where the norms are Mahalanobis norms defined as: ‖e‖2Σ =
eᵀΣ−1e, and h(θ) and R are the mean and covariance of the
measurements collected, respectively:

h(θ) = [h1(θ1)ᵀ h2(θ2)ᵀ . . . hN (θN)ᵀ]ᵀ (7)
R = diag(R1,R2, . . . ,RN) (8)

Because both covariance matrices P and R are positive
definite, the objective in Eq. 6 corresponds to a least squares
problem. Consequently, if some of the measurement functions
hi(·) are nonlinear, this becomes a nonlinear least squares
problem, in which case iterative methods including Gauss-
Newton and Levenberg-Marquardt [7] can be utilized. A lin-
earization of a measurement function at current state estimate
θ̄i can be accomplished by a first-order Taylor expansion:

hi
(
θ̄i + δθi

)
≈ hi(θ̄i) +

∂hi
∂θi

∣∣∣∣
θ̄i

δθi (9)

Combining Eq. 9 with Eq. 6, the optimal increment δθ∗ is:

δθ∗=argmin
δθ

(
‖θ̄+δθ−η‖2P + ‖h(θ̄)+Hδθ−y‖2R

)
(10)

H = diag(H1,H2, . . . ,HN), Hi =
∂hi
∂θi

∣∣∣∣
θ̄i

where H is the measurement Jacobian matrix. To solve the
linear least squares problem in Eq. 10, we take the derivative
with respect to δθ, and set it to zero, which gives us δθ∗

embedded in a set of linear equations

(P−1+HᵀR−1H)︸ ︷︷ ︸
I

δθ∗=P−1(η−θ̄)+HᵀR−1(y−h̄)︸ ︷︷ ︸
b

(11)

with covariance cov(δθ∗, δθ∗) = I−1.
The positive definite matrix I is the a posteriori information

matrix. To solve the linear equations for δθ∗, factorization-
based methods can provide a fast, numerically stable solution.
For example, δθ∗ can be found by first performing a Cholesky
factorization LLᵀ = I , and then solving by back substitution.
At each iteration we perform a batch state estimation update
θ̄ ← θ̄ + δθ∗ and repeat the process until convergence. If I
is dense, the time complexity of a Cholesky factorization and
back substitution are O(n3) and O(n2) respectively, where
I ∈ Rn×n [10]. However, if I has sparse structure, then
the solution can be found much faster. For example, for a
narrowly banded matrix, the computation time is O(n) instead
of O(n3) [10]. Fortunately, we can guarantee sparsity for the
STEAM problem (see Section II-B below).

A. State Interpolation
An advantage of the Gaussian process representation of the

robot trajectory is that any trajectory state can be interpolated
from other states by computing the posterior mean [18]:

x̄(t) = µ(t) + K(t)K−1(x̄− µ) (12)

x̄ = [x̄(t1)ᵀ . . . x̄(tM)ᵀ]ᵀ,K(t) = [K(t, t1) . . . K(t, tM)]

By utilizing interpolation, we can reduce the number of robot
trajectory states that we need to estimate in the optimization

procedure [18]. For simplicity, assume θi, the set of the related
variables of the ith measurement according to the model
(Eq. 2), is x(τ). Then, after interpolation, Eq. 9 becomes:

hi
(
θ̄i + δθi

)
= hi (x̄(τ) + δx(τ))

≈ hi(x̄(τ)) +
∂hi
∂x(τ)

· ∂x(τ)

∂x

∣∣∣∣
x̄

δx

= hi
(
µ(τ)+K(τ)K−1(x̄−µ)

)
+HiK(τ)K−1δx (13)

By employing Eq. 13 during optimization, we can make use
of measurement i without explicitly estimating the trajectory
states that it relates to. We exploit this advantage to greatly
speed up the solution to the STEAM problem in practice
(Section IV). Unlike the recent graph sparsification methods
that reduce the graph complexity in the SLAM context, neither
measurement composition is needed [4], nor a subset of
measurements is selected [14, 5], in our algorithm. However,
these methods can augmentat our algorithm by providing a
principal way of determining which states to interpolate.

B. Sparse Gaussian Process Regression

The efficiency of the Gaussian process Gauss-Newton al-
gorithm presented in Section II is dependent on the choice
of kernel. It is well-known that if the information matrix I
is sparse, then it is possible to very efficiently compute the
solution to Eq. 11 [6]. Barfoot et al. suggest a kernel matrix
with a sparse inverse that is well-suited to the simultaneous
trajectory estimation and mapping problem [2]. In particular,
Barfoot et al. show that K−1 is exactly block-tridiagonal
when the GP is assumed to be generated by linear, time-
varying (LTV) stochastic differential equation (SDE) which
we describe here:

ẋ(t) = A(t)x(t) + v(t) + F (t)w(t), (14)
w(t) ∼ GP(0, Qcδ(t− t′)) t0 < t, t′

where x(t) is trajectory, v(t) is known exogenous input, w(t)
is process noise, and F (t) is time-varying system matrix. The
process noise w(t) is modeled by a Gaussian process, and δ(·)
is the Dirac delta function. (See [2] for details). We consider
a specific case of this model in the experimental results in
Section IV-A. Because the mean function µ(t) is an integral
of the known exogenous input v(t), the assumption of zero
v(t) leads to Gaussian process with zero mean µ(t).

Assuming the GP is generated by Eq. 14, the measurements
are landmark and odometry measurements, and the variables
are ordered in XL ordering1, the sparse information matrix
becomes

I =

[
Ixx Ix`
Iᵀ
x` I``

]
(15)

where Ixx is block-tridiagonal and I`` is block-diagonal.
Ix`’s density depends on the frequency of landmark measure-
ments, and how they are taken.

1 XL ordering is an ordering where process variables come before land-
marks variables.

When the GP is generated by LTV SDE, K(τ)K−1 in
Eq. 12 has a specific sparsity pattern — only two column
blocks that correspond to trajectory states at ti−1 and ti are
nonzero (ti−1 < τ < ti) [2]:

K(τ)K−1 =
[
0 . . . 0 Λ(τ) Ψ(τ) 0 . . . 0

]
(16)

Λ(τ) = Φ(τ, ti−1)−QτΦ(ti, τ)ᵀQ−1
i Φ(ti, ti−1),

Ψ(τ) = QτΦ(ti, τ)ᵀQ−1
i

Φ(τ, s) is the state transition matrix from s to τ . Qτ is
the integral of Qc, the covariance of the process noise w(t)
(Eq. 14):

Qτ =

∫ τ

ti−1

Φ(τ, s)F (s)QcF (s)ᵀΦ(τ, s)ᵀds (17)

And Qi is the integral from ti−1 to t.
Consequently, based on Eq. 12 and Eq. 16, x̄(τ) is an affine

function of only two nearby states x̄(ti−1) and x̄(ti) (the
current estimate of the states at ti−1 and ti), ti−1<τ <ti:

x̄(τ) =µ(τ)+
[
Λ(τ) Ψ(τ)

]([x̄(ti−1)
x̄(ti)

]
−
[
µ(ti−1)
µ(ti)

])
(18)

Thus, it only takes O(1) time to query any x̄(τ) using
Eq. 18. Moreover, because interpolation of a state is only de-
termined by the two nearby states, measurement interpolation
in Eq. 13 can be simplified to:

hk
(
θ̄k + δθk

)
= hk (x̄(τ) + δx(τ))

≈ hk(x̄(τ)) +
∂hk
∂x(τ)

· ∂x(τ)

∂x

∣∣∣∣
x̄

δx

= hk(x̄(τ))+Hk

[
Λ(τ) Ψ(τ)

] [δx(ti−1)
δx(ti)

]
(19)

with x̄(τ) defined in Eq. 18.

III. THE BAYES TREE FOR FAST INCREMENTAL UPDATES
TO SPARSE GAUSSIAN PROCESS REGRESSION

Previous work on batch continuous-time trajectory estima-
tion as sparse Gaussian process regression [18, 2] assumes
that the information matrix I is sparse (Eq. 15) and applies
standard block elimination to factor and solve Eq. 11. But for
large numbers of landmarks, this process is very inefficient.
In square root SAM [6], matrix column reordering has been
applied for efficient Cholesky factorization in a discrete-time
context. Similarly, naive periodic variable reordering can be
employed here to solve the STEAM problem. (See [19] for
details). However, despite the efficiency of periodic batch
updates, it is still repeatedly executing a batch algorithm
that requires reordering and refactoring I , and periodically
relinearizing the measurement function for all of the estimated
states each time new data is collected. Here we provide the
extensions necessary to avoid these costly steps and turn
the naive batch algorithm into an efficient, truly incremental,
algorithm. The key idea is to perform just-in-time relineariza-
tion and to efficiently update an existing sparse factorization
instead of re-calculating one from scratch.

A. The Bayes Tree Data Structure

We base our approach on iSAM 2.0 proposed by Kaess et
al. [12], which was designed to efficiently solve a nonlinear
estimation problem in an incremental and real-time manner
by directly operating on the factor graph representation of the
SAM problem. The core technology behind iSAM 2.0 is the
Bayes tree data structure which allows for incremental variable
reordering and fluid relinearization [13]. We apply the same
data structure to sparse Gaussian process regression in the
context of the STEAM problem, thereby eliminating the need
for periodic batch computation.

The Bayes tree data structure captures the formal equiva-
lence between the sparse QR factorization in linear algebra
and the inference in graphical models, translating abstract
updates to a matrix factorization into intuitive edits to a graph.
Here we give a brief introduction of Bayes trees (see [13] for
details), and how they help solve the sparse Gaussian process
regression incrementally.

A Bayes tree is constructed from a Bayes net, which is
further constructed from a factor graph. A factor graph is a
bipartite graph G = (θ,F , E), representing the factorization
of a function (Eq. 20). θ = {θ1, . . . , θm} are variables, F =
{f1, . . . , fn} are factors (functions of variables), and E are the
edges that connect these two types of nodes. eij ∈ E if and
only if θj ∈ θi and fi(·) is a function of θi.

f(θ) =
∏
i

fi(θi) (20)

In the context of localization and mapping, a factor graph
encodes the complex probability estimation problem in a
graphical model. It represents the joint density of the variables
consisting of both trajectory and mapping, and factors corre-
spond to the soft constraints imposed by the measurements and
priors. If we assume that the priors are Gaussian, measure-
ments have Gaussian noise, and measurement functions are
linear or linearized, as in Section II, the joint density becomes
a product of Gaussian distributions:

f(θ)∝exp{−1

2

∑
‖Aiθi−bi‖22}=exp{−1

2
‖Aθ−b‖22} (21)

Here Ai and bi are derived from factor fi(·). A is a square-
root information matrix, with I = AᵀA [6], so the QR factor
R of A is equivalent to the transpose of the Cholesky factor L
of I . Maximizing the joint density is equivalent to the least-
square problem in Eq. 10.

A Gaussian process generated from linear, time-varying
(LTV) stochastic differential equations (SDE), as discussed
in Section II-B, has a block-tridiagonal inverse kernel matrix
K−1 and can be represented by a sparse factor graph [2]. In
this case, the factors derived from the GP prior are:

fj(θj) = fj(x(ti−1),x(ti))

∝ exp{−1

2

∥∥Φ(ti, ti−1)x(ti−1)+vi−x(ti)
∥∥2

Qi
} (22)

where fj(·) is the GP factor between x(ti−1) and x(ti), and
Φ(ti, ti−1) is the state transition matrix, Qi is the integral of

the covariance of the process noise (Eq. 17), and vi is the
integral of the exogenous input v(t) (Eq. 14):

vi =

∫ ti

ti−1

Φ(ti, s)v(s)ds (23)

Note that although the Gaussian process representation of the
trajectory is continuous in time, to impose this prior knowledge
only M − 1 factors connecting adjacent states are required,
where M is the total number of states.

The key of just-in-time relinearization and fluid variable
reordering is to identify the portion of a graph impacted by a
new or modified factor, which is difficult to achieve directly
from a factor graph. So the factor graph is first converted
to a Bayes net through the iterative elimination algorithm
related to Gaussian elimination. In each step, one variable θi is
eliminated from the joint density f(θi, si) and removed from
the factor graph, resulting in a new conditional P (θi|si) and
a new factor f(si), satisfying f(θi, si) = P (θi|si)f(si). The
joint density f(θi, si) is the product of the factors adjacent
to θi, and si is the set of variables that are connected to
these factors, excluding θi. The new conditional is added to
the Bayes net, and the new factor is added back to the factor
graph. The unnormalized joint density f(θi, si) is Gaussian,
due to Eq. 21:

f(θi, si) ∝ exp{−1

2
‖aθi +Assi − bi‖22} (24)

where a, As and bi correspond to the factors that are currently
adjacent to θi. These factors can be the factors included in the
original factor graph, or the factors induced by the elimination
process. The conditional P (θi|si) is obtained by evaluating
Eq. 24 with a given si:

P (θi|si) ∝ exp{−1

2
(θi + rᵀsi − d)2} (25)

where r = (a†As)
ᵀ, d = a†bi, and a† = (aᵀa)−1aᵀ. f(si)

can be further computed by substituting θi = d − rᵀsi into
Eq. 24. This elimination step is equivalent to one step of Gram-
Schmidt. Thus the new conditional P (θi|si) specifies one row
in the R factor of the QR factorization of A. The sequence
of the variables to be eliminated is selected to reduce fill-in
in R, just as in the case of matrix column reordering. The
joint density f(θ) represented by the Bayes net is maximized
by assigning d− rᵀsi to θi, due to Eq. 25, starting from the
variable that is eliminated last. This procedure is equivalent
to the back-substitution in linear algebra. The Bayes net is
further transformed into a directed tree graphical model – the
Bayes tree, by grouping together conditionals belonging to a
clique in the Bayes net in reverse elimination order.

When a factor is modified or added to the Bayes tree,
the impacted portion of the Bayes tree is re-interpreted as a
factor graph, the change is incorporated to the graph, and the
graph is eliminated with a new ordering. During elimination,
information only flows upward in the Bayes tree, from leaves
to the root, so only the ascendants of the nodes that contain
the variables involved in the factor are impacted.

The Bayes tree can be used to perform fast incremental up-
dates to the Gaussian process representation of the continuous-
time trajectory. As we demonstrate in the experimental results,
this can greatly increase the efficiency of Barfoot et. al’s batch
sparse GP algorithm when the trajectory and map need to be
updated online.

Despite the interpretation of the trajectory as a Gaus-
sian process, the approach described above is algorithmically
identical to iSAM2.0 when the states associated with each
measurement are explicitly estimated. In Section III-B below,
we extend our incremental algorithm to use Gaussian process
interpolation within the Bayes tree. By interpolating missing
states, we can handle asynchronous measurements and even
remove states in order to speed computation. In Section IV-A
and IV-B we show that this results in a significant speedup
over iSAM2.0.

B. Faster Updates Through Interpolation

To handle asynchronous measurements or to further reduce
computation time, we take advantage of Gaussian process state
interpolation, described in Section II-A, within our incremental
algorithm. This allows us to reduce the total number of
estimated states, while still using all of the measurements,
including those that involve interpolated states. By only es-
timating a small fraction of the states along the trajectory,
we realize a large speedup relative to a naive application
of the Bayes tree (see Section IV). This is an advantage of
continuous-time GP-based methods compared to discrete-time
methods like iSAM 2.0.

To use Gaussian process interpolation within our incremen-
tal algorithms, we add a new type of factors that correspond
to missing states (states to be interpolated).

We start by observing that, from Eq. 2, the factor fj(·)
derived from the measurement hk(·) is:

fj(θj) ∝ exp{−1

2
‖hk(θk + δθk)− yk‖2Rk

} (26)

where θj (the variables adjacent to factor fj(·)), and θk (the
variables related to measurement hk(·)), are the same set of
variables.

Without loss of generality, we assume that x(τ) is the set
of variables related to the measurement and the factor, with
ti−1 < τ < ti, so fj is a unitary factor of x(τ):

fj(θj) ∝ exp{−1

2
‖hk (x̄(τ) + δx(τ))− yk‖2Rk

} (27)

where θj , δx(τ). If x(τ) is missing, then this factor can
not be added to the factor graph directly, because a missing
state implies that it should not be estimated explicitly. Instead
of creating a new state directly, we interpolate the state and
utilize the linearized measurement function after interpolation
(Eq. 13):

fj(θj)∝exp{−1

2
‖hk (x̄(τ))+HkK(τ)K−1δx−yk‖2Rk

} (28)

where θj , δx. We apply the interpolation equations for the
sparse GP (Eq. 16 and Eq. 18), so that the factor becomes a

function of the two nearby states (in contrast to the missing
state):

fj(θj)∝exp{−1

2
‖hk(x̄(τ))+Hk

[
Λ(τ)Ψ(τ)

]
θj−yk‖2Rk

} (29)

where θj,
[
δx(ti−1)ᵀ δx(ti)

ᵀ
]ᵀ

, and x̄ is specified in Eq. 18.
A factor graph augmented with the factors associated with

measurements at missing states has several advantages. We
can avoid estimating a missing state at time t explicitly, but
still make use of a measurement at time t. This allows our
algorithm to naturally handle asynchronous measurements. We
can also reduce the size of the Bayes tree and the associated
matrices by skipping states, which results in a reduction of
computation time. Importantly, incorporating GP state inter-
polation and regression (Sections II-A and II-B) within Bayes
tree closely follows MAP inference. In particular, we show in
Section IV-A, and Section IV-B that skipping large numbers of
states can reduce computation time by almost 70% with only
a small reduction in accuracy. The full incremental algorithm
is described in Algorithm 1.

Algorithm 1 Incremental Sparse GP Regression via the Bayes
tree with Gaussian Process Priors (BTGP)

Set the sets of affected variables, variables involved in new factors, and
relinearized variables to empty sets, θaff := θnf := θrl := ∅.
while collecting data do

1. Collect measurements, store as new factors. Set θnf to the set of
variables involved in the new factors. If x(τ) ∈ θnf is a missing state,
replace it by nearby states (Eq. 18); If x(τ) ∈ θnf is a new state to
estimate, a GP prior (Eq. 22) is stored, and θnf := θnf ∪ xi−1.
2. For all θi ∈ θaff = θrl ∪ θnf , remove the corresponding cliques
and ascendants up to the root of the Bayes tree.
3. Relinearize the factors required to create the removed part, using
interpolation when missing states are involved (Eq. 29).
4. Add the cached marginal factors from the orphaned sub-trees of the
removed cliques.
5. Eliminate the graph by a new ordering into a Bayes tree (Eq. 25),
attach back orphaned sub-trees.
6. Partially update estimate from the root, stop when updates are below
a threshold.
7. Collect variables, for which the difference between the current
estimate and previous linearization point is above a threshold, into θrl.

end while

IV. EXPERIMENTAL RESULTS

We evaluate the performance of our incremental sparse
GP regression algorithm to solving the STEAM problem on
synthetic and real-data experiments and compare our approach
to the state-of-the-art. In particular, we evaluate how variable
reordering can dramatically speed up the batch solution to the
sparse GP regression problem, and how, by utilizing the Bayes
tree and interpolation for incremental updates, our algorithm
can yield even greater gains in the online trajectory estimation
scenario. We compare:
• PB: Periodic batch (described in Section II). This is the

state-of-the-art algorithm presented in Barfoot et al. [2]
(XL variable ordering), which is periodically executed as
data is received.

• PBVR: Periodic batch with variable reordering [19].
Variable reordering is applied to achieve efficient matrix
factorization.

• BTGP: The proposed approach - Bayes tree with Gaus-
sian process prior factors (described in Section III).

If the GP is only used to estimate the state at measurement
times, the proposed approach offers little beyond a reinter-
pretation of the standard discrete-time iSAM 2.0 algorithm.
Therefore, we also compare our GP-based algorithm, which
leverages interpolation, to the standard Bayes tree approach
used in iSAM 2.0. We show that by interpolating large
fractions of the trajectory during optimization, the GP allows
us to realize significant performance gains over iSAM 2.0 with
minimal loss in accuracy. For these experiments we compare:
• without interpolation: BTGP without interpolation at

a series of lower temporal resolutions. The lower the
resolution, the fewer the states to be estimated. With-
out interpolation BTGP is algorithmically identical to
iSAM 2.0 with coarse discretization of the trajectory.
Measurements between two estimated states are simply
ignored.

• with interpolation: BTGP with interpolation at a series
of lower resolutions. In contrast to the above case,
measurements between estimated states are fully utilized
by interpolating missing states at measurement times
(described in Section III-B).

• finest estimate: The baseline. BTGP at the finest reso-
lution, estimating all states at measurement times. When
measurements are synchronous with evenly-spaced way-
points and no interpolation is used, BTGP is identical to
iSAM 2.0 applied to the full dataset with all measure-
ments.

All algorithms are implemented with the same C++ library,
GTSAM 3.2,2 to make the comparison fair and meaningful.
Evaluation is performed on two datasets summarized in Ta-
ble I. We first evaluate performance in a synthetic dataset
(Section IV-A), analyzing estimation errors with respect to
ground truth data. Results using a real-world dataset are then
presented in Section IV-B.

A. Synthetic SLAM Exploration Task

This dataset consists of an exploration task with 1,500 time
steps. Each time step contains a trajectory state x(ti) =
[p(ti)

ᵀ ṗ(ti)
ᵀ]ᵀ, p(ti) = [x(ti) y(ti) θ(ti)]ᵀ, an

odometry measurement, and a range measurement related to
a nearby landmark. The total number of landmarks is 298.
The trajectory is randomly sampled from a Gaussian process
generated from white noise acceleration p̈(t) = w(t), i.e.
constant velocity, and with zero mean.

ẋ(t) = Ax(t) + Fw(t) (30)

x(t) =
[
p(t)ᵀ ṗ(t)ᵀ

]ᵀ
, p(t) =

[
x(t) y(t) θ(t)

]ᵀ
A =

[
0 I
0 0

]
, F =

[
0 I

]ᵀ
, w(t) ∼ GP(0,Qcδ(t−t′)) (31)

2https://collab.cc.gatech.edu/borg/gtsam/

−10 0 10 20 30 40 50 60
−70

−60

−50

−40

−30

−20

−10

0

10

dead reck. Path
true Path
est. Path
true Landmarks
est. Landmarks

Fig. 1: Synthetic dataset: Ground truth, dead reckoning path,
and the estimates are shown. State and landmark estimates
obtained from BTGP approach are very close to ground truth.

−60 −40 −20 0 20
−10

0

10

20

30

40

50

60

70

dead reck. Path
true Path
est. Path
true Landmarks
est. Landmarks

Fig. 2: The Autonomous Lawnmower dataset: Ground truth,
dead reckoning path and estimates are shown. The range
measurements are sparse, noisy, and asynchronous. Ground
truth and the estimates of path and landmarks obtained from
BTGP are very close.

Note that velocity ṗ(t) must to be included in trajectory state
to represent the motion in LTV SDE form [2]. This Gaussian
process representation of trajectory is also applied to the real
dataset. The odometry and range measurements with Gaussian
noise are specified as:

yio =

[
cos θ(ti) · ẋ(ti) + sin θ(ti) · ẏ(ti)

θ̇(ti)

]
+ no, (32)

yir =
∥∥[x(ti) y(ti)

]ᵀ−`j∥∥2
+ nr (33)

where yio consists of the robot-oriented velocity and heading
angle velocity with Gaussian noise, and yir is the distance
between the robot and a specific landmark `j at ti with
Gaussian noise.

We compare the computation time of the three approaches
(PB, PBVR and BTGP) in Fig. 3. The incremental Gaussian
process regression (BTGP) offers significant improvements in
computation time compared to the batch approaches (PBVR
and PB). In Fig. 3, we also demonstrate that BTGP can further
increase speed over a naive application of the Bayes tree (e.g.
iSAM 2.0) without sacrificing much accuracy by leveraging

TABLE I: Summary of experimental datasets

time steps # odo. m. # landmark m. # landmarks travel dist.(km)
Synthetic 1,500 1,500 1,500 298 0.2

Auto. Mower 9,658 9,658 3,529 4 1.9

interpolation. To illustrate the trade-off between the accuracy
and time efficiency due to interpolation, we plot RMSE of
distance errors and the total computation time by varying
the time step difference (the rate of interpolation) between
estimated states.

B. The Autonomous Lawnmower

The second experiment evaluates our approach on real data
from a freely available range-only SLAM dataset collected
from an autonomous lawn-mowing robot [8]. The “Plaza”
dataset consists of odometer data and range data to stationary
landmarks collected via time-of-flight radio nodes. (Additional
details on the experimental setup can be found in [8].) Ground
truth paths are computed from GPS readings and have 2cm
accuracy according to [8]. The environment, including the lo-
cations of the landmarks and the ground truth paths, are shown
in Fig. 2. The robot travelled 1.9km, occupied 9,658 poses,
and received 3,529 range measurements, while following a
typical path generated during mowing. The dataset has sparse
range measurements, but contains odometry measurements at
each time step. The results of incremental BTGP are shown in
Fig. 2 and demonstrate that we are able to estimate the robot’s
trajectory and map with a very high degree of accuracy.

As in Section IV-A, performance of three approaches – PB,
PBVR, and BTGP are compared in Fig. 4. In this dataset, the
number of landmarks is 4, which is extremely small relative
to the number of trajectory states, so there is no performance
gain from reordering. However, the Bayes tree-based approach
dramatically outperforms the other two approaches. As the
problem size increases, there is negligible increase in compu-
tation time, even for close to 10,000 trajectory states.

In Fig. 4, the results of interpolation at different levels of
resolutions are presented. They indicate a significant reduction
in computation time can be achieved with minor sacrifice in
accuracy.

V. CONCLUSION

We have introduced an incremental sparse Gaussian pro-
cess regression algorithm for computing the solution to the
continuous-time simultaneous trajectory estimation and map-
ping (STEAM) problem. The proposed algorithm elegantly
combines the benefits of Gaussian process-based approaches
to STEAM while simultaneously employing state-of-the-art
innovations from incremental discrete-time algorithms for
smoothing and mapping. Our empirical results show that by
parameterizing trajectories with a small number of states and
utilizing Gaussian process interpolation, our algorithm can
realize large gains in speed over iSAM 2.0 with very little
loss in accuracy (e.g. reducing computation time by 68%
while increasing RMSE by only 8cm on the Autonomous
Lawnmower Dataset).

REFERENCES
[1] T. Bailey and H. Durrant-Whyte. Simultaneous localisation and mapping (SLAM):

Part II state of the art. Robotics and Automation Magazine, 13(3):108–117, 2006.
[2] Tim Barfoot, Chi Hay Tong, and Simo Sarkka. Batch continuous-time trajectory

estimation as exactly sparse gaussian process regression. In Proceedings of
Robotics: Science and Systems, Berkeley, USA, July 2014.

[3] Byron Boots and Geoffrey J. Gordon. A spectral learning approach to range-only
SLAM. In Proceedings of the 30th International Conference on Machine Learning
(ICML), 2013.

[4] N. Carlevaris-Bianco, M. Kaess, and R.M. Eustice. Generic node removal for
factor-graph slam. Robotics, IEEE Transactions on, 30(6):1371–1385, Dec 2014.
ISSN 1552-3098. doi: 10.1109/TRO.2014.2347571.

[5] Siddharth Choudhary, Vadim Indelman, Henrik I. Christensen, and Frank Dellaert.
Information based reduced landmark slam. In ICRA, 2015.

[6] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization and
mapping via square root information smoothing. International Journal of Robotics
Reasearch, 25:2006, 2006.

[7] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations (Classics in Applied Mathematics, 16). Soc
for Industrial & Applied Math, 1996. ISBN 0898713641.

[8] Joseph Djugash. Geolocation with Range: Robustness, Efficiency and Scalabil-
ity. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
November 2010.

[9] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping
(slam): Part i the essential algorithms. IEEE ROBOTICS AND AUTOMATION
MAGAZINE, 2:2006, 2006.

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996. ISBN 0-8018-5414-8.

[11] M. Kaess, A. Ranganathan, and F. Dellaert. isam: Incremental smoothing and
mapping. Robotics, IEEE Transactions on, 24(6):1365–1378, Dec 2008. ISSN
1552-3098. doi: 10.1109/TRO.2008.2006706.

[12] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, and F. Dellaert. iSAM2:
Incremental smoothing and mapping using the Bayes tree. Intl. J. of Robotics
Research, IJRR, 31(2):217–236, Feb 2012.

[13] Michael Kaess, Viorela Ila, Richard Roberts, and Frank Dellaert. The bayes tree: An
algorithmic foundation for probabilistic robot mapping. In Algorithmic Foundations
of Robotics IX, pages 157–173. Springer, 2011.

[14] Mladen Mazuran, Gian Diego Tipaldi, Luciano Spinello, and Wolfram Burgard.
Nonlinear graph sparsification for SLAM. In Proceedings of Robotics: Science
and Systems (RSS), Berkeley, USA, 2014. URL http://ais.informatik.uni-freiburg.
de/publications/papers/mazuran14rss.pdf.

[15] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
SLAM: A factored solution to the simultaneous localization and mapping problem.
In In Proceedings of the AAAI National Conference on Artificial Intelligence, pages
593–598. AAAI, 2002.

[16] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.
2006.

[17] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. ISBN
0262201623.

[18] Chi Hay Tong, Paul Furgale, and Timothy D Barfoot. Gaussian process gauss–
newton for non-parametric simultaneous localization and mapping. The Interna-
tional Journal of Robotics Research, 32(5):507–525, 2013.

[19] Yan Xinyan, Vadim Indelman, and Byron Boots. Incremental sparse gp re-
gression for continuous-time trajectory estimation & mapping. arXiv preprint
arXiv:arXiv:1504.02696, 2015.

http://ais.informatik.uni-freiburg.de/publications/papers/mazuran14rss.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/mazuran14rss.pdf

0 2 4 6 8 10 12 14 16 18 203

3.5

4

4.5

5

5.5

6

time step difference between two estimated states

tim
e

(s
ec

)

Computation Time

without interpolation
with interpolation
finest est.

0 2 4 6 8 10 12 14 16 18 200.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 RMSE of distance errors of estimated states

time step difference between two estimated states

RM
SE

 (m
)

without interpolation
with interpolation
finest est. at estimated states

0 500 1000 15000

0.05

0.1

0.15

0.2

time step

tim
e

(s
ec

)

Computation Time of Each Step

PB /1
PBVR /1
BTGP /1

0 500 1000 15000

5

10

15

20

time step

tim
e

(s
ec

)

Accumulated Computation Time

PB /1
PBVR /1
BTGP /1
PB /10
PBVR /10
BTGP /10

Fig. 3: Synthetic dataset: (left) Comparison of the computation time of three approaches PB, PBVR, and BTGP. The modifiers
/1 and /10 indicate frequency of estimate updates — the number of range measurements between updates. Due to the large
number of landmarks, 298, variable reordering dramatically improves the performance. (right) Trade-off between computation
time and accuracy if BTGP makes use of interpolation. The y-axis measures the RMSE of distance errors of the estimated
trajectory states and total computation time with increasing amounts of interpolation. The x-axis measures the time step
difference between two estimated (non-interpolated) states. The results indicate that interpolating ∼ 90% of the states (i.e.
estimating only ∼ 10% of the states) while running BTGP can result in a 33% reduction in computation time over iSAM 2.0
without sacrificing accuracy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

0.1

0.2

0.3

0.4

0.5

time step

tim
e

(s
ec

)

Computation Time of Each Step
PB /1
PBVR /1
BTGP /1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

50

100

150

time step

tim
e

(s
ec

)

Accumulated Computation Time

 PB /1
PBVR /1
BTGP /1
PB /10
PBVR /10
BTGP /10

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5 RMSE of distance errors of estimated states

time step difference between two estimated states

R
M

SE
 (m

)

without interpolation
with interpolation
finest est. at estimated states

0 2 4 6 8 10 12 14 16 18 2020

40

60

80

100

120

140

160

time step difference between two estimated states

tim
e

(s
ec

)

Computation Time

without interpolation
with interpolation
finest est.

Fig. 4: Autonomous Lawnmower dataset: (left) Comparison of the computation time of PB, PBVR, and BTGP. As in Fig. 3,
/1 and /10 are modifiers — the number of range measurement between updates, and no interpolation is used by BTGP. The
‘gap’ in the upper graph is due to a long stretch around timestep 5000 with no range measurements . Due to the low number
of landmarks, variable reordering does not help The incremental BTGP approach dramatically reduces computation time.
(right) Trade-off between computation time and accuracy if BTGP makes use of interpolation. The y-axis measures the RMSE
of distance errors and total computation time with increasing amounts of interpolation. The x-axis measures the time step
difference between two estimated (non-interpolated) states. The results indicate that interpolating ∼ 80% of the states within
BTGP results in only an 8cm increase in RSME while reducing the overall computation time by 68% over iSAM 2.0.

	Introduction & Related Work
	Batch Trajectory Estimation & Mapping as Gaussian Process Regression
	State Interpolation
	Sparse Gaussian Process Regression

	The Bayes Tree for Fast Incremental Updates to Sparse Gaussian Process Regression
	The Bayes Tree Data Structure
	Faster Updates Through Interpolation

	Experimental Results
	Synthetic SLAM Exploration Task
	The Autonomous Lawnmower

	Conclusion

