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I. INTRODUCTION

High-speed autonomous driving on rough terrain is a chal-
lenging robotics problem [11, 5] (Figure 1). In this task,
a robot is required to perform precise steering and throttle
maneuvers in a physically-complex, uncertain environment by
making high-frequency decisions. Traditional engineering ap-
proaches to autonomous driving, which decouple the agent into
independent perception [5], planning and control [11] mod-
ules, has enjoyed great success when the robot’s interaction
with the environment can be precisely characterized. However,
as robots move into unstructured natural environments and
operate at higher speeds, it is becoming more difficult to model
these interactions a priori.

One possible solution to this problem is to add costly
sensors and focus on complicated system engineering—which
consumes large amounts of time and money—for robust
but conservative solutions. For example, a similar task has
been considered by Williams et al. [11] using model-based
Reinforcement Learning (RL). While the authors demonstrate
impressive results, their internal control scheme assumes full
observability and relies on an accurate state estimator that has
access to exteroceptive sensors (e.g. GPS) and a dynamics
model of the car. This requires extensive calibration and the
robot to operate in a controlled environment, which limits the
applicability of their approach.

In this paper, we focus on an alternative framework for
designing intelligent robots: policies that govern a robot’s
behavior can be learned from the robot’s interaction with
its environment rather than hand-crafted by an engineer. We
aim to learn an agile driving policy that uses only on-
board measurements (e.g. images, wheel speeds) to control
continuous-valued actions. With these sensory limitations, it
becomes unclear how to accurately describe the dynamics as
required in the traditional model-based approach. Building
on the success of deep RL [4, 6], we adopt deep neural
networks to parametrize the control policy, essentially jointly
optimizing the perception and the control systems. While the
usage of deep neural network as a policy representation is not
uncommon, in contrast to most previous works that showcase
RL in simulated environments [6], our agent is a high-speed
physical system that incurs real-world cost: a single poor
decision can physically impair the robot. Therefore, direct
application of model-free RL techniques is not only sample
inefficient, but also potentially costly and dangerous in our

Fig. 1: (left) The AutoRally car: weight 22 kg; LWH
1m×0.6m×0.4m. (middle) High-speed off-road driving task.
(right) Test track

experiments.
These real-world factors motivate us to adopt imitation

learning [8] to optimize the control policy instead. Self-driving
cars [1, 9] have recently started to employ an end-to-end imita-
tion learning approach: based on deep neural network policies,
these systems require only expert demonstrations during the
training phase and on-board measurements during the testing
phase. For example, Nvidia’s PilotNet [1], a convolutional
neural network that outputs steering angle given an image, is
trained to copy the human driver’s reaction and demonstrates
impressive performance in real-world road tests.

Here we show the idea of imitation learning can be extended
to high-speed off-road driving tasks. Our problem and setup,
however, differs from these on-road driving tasks considered
previously. Prominent visual features, such as road lines, are
absent, and the surfaces that the robot navigates is constantly
evolving and highly stochastic. In addition, high-speed driving
on rough terrains requires both steering and throttle commands
to be applied at a high frequency, whereas previous works [7,
1, 9] only concern steering commands.

To tackle with these difficulties, we study the properties of
batch and online imitation learning algorithms in theory and
experiments. Empirically, we find that imitation learning in
general is more data-efficient than learning a new dynamics
model for model-based RL, such as model predictive control
(MPC) [11]. Furthermore, training the control policy with on-
line learning and DAgger [10], along with an MPC expert, im-
proves the robot’s performance in tasks with clear objectives;
batch learning is preferred for complex tasks where the expert
is a human and a cost function is difficult to parametrically
define (e.g. obstacle avoidance using raw images). Leveraging
imitation learning, our AutoRally car with deep neural network
policy can learn to perform high-speed navigation at a state-
of-the-art average speed of ∼6 m/s, and obstacle avoidance at
4-5 m/s.



II. OUR APPROACH

We formulate the learning of control policy as a discrete-
time continuous-valued RL problem. In our setting, the state
space is unknown to the agent; observations consist of on-
board measurements, including a monocular RGB image from
the front-view camera, wheel speed, and inertial measurement
unit (IMU) readings; actions include continuous-valued steer-
ing and throttle commands. Let A and O be the the action
space and observation space. The goal is to find a stationary
deterministic policy π : O 7→ A such that π achieves low
accumulated cost over a horizon of T .

A. Imitation Learning

Directly solving a RL problem is challenging for high-
speed off-road autonomous driving. On one hand, since our
task involves a physical robot, model-free RL techniques are
intolerably sample inefficient and have the risk of permanently
damaging the car when applying a partially optimized policy
in exploration. On the other hand, although model-based RL
requires fewer samples, it can lead to suboptimal, potentially
unstable, results when the model fails to fully capture the
complex dynamics of dirt track driving.

Considering these limitations, we propose to solve for the
control policy by imitation learning. We assume the access to
an oracle or expert π∗ to generate domenstrations during the
training phase, which relies on resources that are unavailable in
the testing phase, e.g., additional sensors, model knowledge,
and computations. Such an expert can be a computationally
intensive optimal controller that relies on exteroceptive sensors
not available at test time (e.g. GPS for state estimation), or an
human teleoperating driver.

The goal of imitation learning is to perform as well as the
expert with an error that has at most linear dependency on the
task time horizon T . In order to tackle the limitations of batch
learning, e.g., the compounding error that grows quadratically
with task horizon T , we train the neural network policy π iter-
atively using a meta-learning algorithm, DAgger [10], in which
at each iteration a supervised learning subproblem is solved.
While online learning seems appealing theoretically, batch
learning has been empirically shown to outperform online
learning in certain tasks [3], especially when combined with
expressive function approximators like deep neural networks.
Particularly, when the expert is human, collecting samples for
the batch learning approach is simpler to realize than the online
learning approach. Because humans rely on real-time sensory
feedback to generate ideal expert actions, the action samples
collected in the online learning approach are often biased and
inconsistent [3].

B. End-to-End Neural Network Policy Learning

We parameterize the policy π by a deep neural network,
called the Deep AutoRally Network (DARN). DARN consists
of three sub-networks: a convolutional neural network (CNN)
that takes RGB images as inputs, and two feedforward net-
works with fully-connected layers, that take wheel speeds and
IMU readings as inputs. To learn the policy, we consider A,

Fig. 2: Simulated navigation task: snapshots from the on-board
camera.

Fig. 3: Real obstacle avoidance task: onboard camera images
showing the car avoiding two obstacles successively.

equipped with ‖·‖1, and solve for the policy using ADAM [2],
which is a stochastic gradient descent algorithm with adaptive
learning rate. Note that the neural network policy does not use
the state, but rather the synchronized raw observation as input.

III. EXPERIMENTS

We considered two tasks: 1) high-speed navigation along the
track, and 2) high-speed obstacle avoidance using monocular
images. In the high-speed driving task, we used both an MPC
expert and a human driver. In the obstacle avoidance task, we
only used the human driver because a cost function that takes
images as input is hard to specify. We implemented our method
on a 1/5 scale autonomous AutoRally car (Figure 1) and this
platform was used to carry out both simulated (Gazebo-based)
and real-world experiments. Simulation results on high-speed
navigation tasks show that our approach is more data efficient
than model-based RL in which a dynamics model of the
vehicle needs to be learned from data. The real track tests
show that DARN is able to perform fast off-road navigation
autonomously at an average speed of 6 m/s, and obstacle
avoidance (Figure 3) at 4-5 m/s.
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